SHRIMP zircon U-Pb dating, geochemistry and zircon Lu-Hf isotopic composition of Hengtian granite porphyries in eastern Guangdong Province and their geological implications
-
摘要:
横田花岗斑岩位于粤东田东钨锡多金属矿床的中部。以横田花岗斑岩为研究对象,开展了SHRIMP锆石U-Pb定年、岩石地球化学、锆石Lu-Hf同位素组成特征研究。花岗斑岩多呈岩株产出,灰白色,斑状结构,块状构造,主要由斑晶(10%)和基质(90%)组成,斑晶由斜长石、钾长石、石英、黑云母组成,杂乱分布,粒度为0.6~6mm,基质由长石、石英、黑云母组成,长石粒度为0.02~0.25mm。获得花岗斑岩锆石206Pb/238U年龄加权平均值为142±1Ma,说明岩体形成于早白垩世。主量、微量元素特征显示,花岗斑岩属于高钾钙碱性强过铝质,富集Rb、U、Nd、Hf等元素,亏损Ba、Nb、Sr、P、Ti等,与高分异的S型花岗岩相似。花岗斑岩的锆石εHf(t)值均小于0,在t-εHf(t)和t-(176Hf/177Hf)i图上,所有样品点均落在球粒陨石演化线之下和华南中元古代基底演化线之上,二阶段模式年龄变化范围为1.28~1.47Ga,表明成岩物质主要来源于中元古代古老地壳变质泥岩部分熔融。
Abstract:The granite porphyry related to tungsten-tin polymetallic deposits was discovered in Hengtian area, eastern Guangdong Province. In this paper, the authors reported detailed studies of SHRIMP zircon U-Pb dating, major elements, trace elements and zircon Hf isotopic compositions of the granite porphyry. The granite porphyries are mostly grayish white dykes with porphyritic texture and massive structure. They mainly consist of phenocrysts (10%) and matrix (90%), the phenocrysts are composed of plagioclase, Kfeldspar, quartz and biotite with particle size of 0.6~6mm in mixed and disorderly distribution, whereas the matrix is composed of feldspar, quartz and biotite, with the feldspar particle size being generally 0.02~0.25mm. Zircon U-Pb age analysis for the granite porphyry yielded a weighted average 206Pb/238U age of 142±1Ma, indicating that the rock was formed in Early Cretaceous. Major and trace element characteristics show that the granite porphyry belongs to high potassium calc-alkaline peraluminous series en-riched in Rb, U, Nd, HF and depleted in Ba, Nb, Sr, P, Ti, similar to features of highly fractionated S-type granites. The εHf(t) values of the granite porphyry are less than 0; in t-εHf(t) and t-(176Hf/177Hf)i diagrams, all points fall under the chondritic evolu-tion line and above the south of the Mesoproterozoic basement evolution line. Moreover, the ages are between 1.28Ga and 1.47Ga, indicating that rock-forming materials were mainly derived from the partial melting of metamorphic mudstone in Meso-proterozoic ancient crust.
-
Key words:
- eastern Guangdong Province /
- Hengtian /
- granite porphyry /
- SHRIMP zircon U-Pb dating /
- geochemistry /
- Lu-Hf isotopes
-
图 5 花岗斑岩原始地幔标准化微量元素蛛网图(a)和球粒陨石标准化稀土元素配分图(b)(标准化值据参考文献[50])
Figure 5.
表 1 花岗斑岩SHRIMP锆石U-Pb同位素测试分析结果
Table 1. SHRIMP zircon U-Pb data of granite porphyry
测试点 U/10-6 Th/10-6 Th/U 206Pb*/% 206Pbc/% 207Pb*/206Pb* ±% 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238U 年龄/Ma H01-1.1 652 235 0.37 12.3 -- 0.04960 2.1 0.1511 2.4 0.02210 1.3 140.9 ±1.9 H01-2.1 143 45 0.32 2.78 1.23 0.04870 4.6 0.1510 4.9 0.02247 1.6 143.3 ±2.4 H01-3.1 700 338 0.50 13.4 0.10 0.05570 1.9 0.1714 2.4 0.02233 1.5 142.4 ±2.3 H01-4.1 1081 511 0.49 21.1 0.00 0.05101 1.5 0.1606 2.0 0.02284 1.3 145.6 ±2.0 H01-5.1 1279 617 0.50 24.8 0.06 0.04960 2.3 0.1546 2.6 0.02263 1.3 144.2 ±1.9 H01-6.1 285 196 0.71 5.30 -- 0.05510 3.0 0.1647 3.3 0.02167 1.5 138.2 ±2.4 H01-7.1 947 408 0.45 17.9 0.12 0.05263 1.7 0.1605 2.1 0.02211 1.3 141.0 ±1.9 H01-8.1 694 219 0.33 13.3 0.48 0.05220 1.9 0.1616 2.3 0.02246 1.3 143.2 ±1.9 H01-9.1 607 300 0.51 11.5 -- 0.05350 2.1 0.1630 2.4 0.02211 1.3 141.0 ±2.0 H01-10.1 895 333 0.38 17.0 0.37 0.04923 1.8 0.1500 2.3 0.02210 1.4 140.9 ±2.1 H01-11.1 1797 956 0.55 34.5 -- 0.05335 1.2 0.1656 1.7 0.02251 1.2 143.5 ±1.9 H01-12.1 1466 702 0.50 27.9 0.05 0.05334 1.3 0.1642 1.8 0.02233 1.3 142.3 ±1.9 H01-13.1 876 354 0.42 16.4 0.45 0.05282 1.8 0.1593 2.2 0.02187 1.3 139.5 ±1.9 H01-14.1 304 164 0.56 5.65 -- 0.05330 3.3 0.1592 3.6 0.02168 1.4 138.2 ±2.2 H01-15.1 943 408 0.45 18.4 -- 0.05193 1.7 0.1631 2.1 0.02278 1.3 145.2 ±2.0 H01-16.1 1168 538 0.48 22.3 -- 0.05153 1.6 0.1587 2.0 0.02234 1.3 142.4 ±1.9 H01-17.1 1687 777 0.48 32.0 -- 0.05179 1.3 0.1582 1.8 0.02216 1.2 141.3 ±1.9 H01-18.1 1588 881 0.57 31.5 -- 0.05007 1.3 0.1598 1.8 0.02315 1.2 147.5 ±2.0 H01-19.1 1118 507 0.47 21.6 0.26 0.05452 1.4 0.1702 1.9 0.02264 1.3 144.3 ±2.0 H01-20.1 1012 445 0.45 20.1 0.38 0.05900 2.3 0.1900 2.6 0.02336 1.3 148.8 ±2.0 H01-21.1 1027 434 0.44 19.3 0.11 0.05120 1.7 0.1547 2.1 0.02191 1.3 139.7 ±1.9 H01-22.1 1465 1068 0.75 28.3 0.03 0.05503 1.2 0.1722 1.8 0.02270 1.2 144.7 ±2.0 H01-23.1 1102 551 0.52 20.9 -- 0.05201 1.8 0.1586 2.2 0.02212 1.3 141.0 ±1.9 注:Pbc和Pb*分别代表普通铅和放射铅 表 2 花岗斑岩主量、微量和稀土元素分析结果
Table 2. Major, trace and rare earth element compositions of granite porphyry
序号 1 2 3 4 5 6 7 8 9 SiO2 77.06 75.12 75.93 76.66 77.18 73.38 76.37 74.24 77.12 TiO2 0.094 0.063 0.186 0.07 0.07 0.19 0 0.05 0.08 Al2O3 13.07 12.78 12.49 12.62 12.41 13.27 12.71 15.31 13.22 Fe2O3 2.75 0.42 0.82 0.88 0.72 1.06 0.49 0.41 0.46 FeO 0.4 1.55 0.66 1.19 0.71 1.54 1.23 0.41 2.1 MnO 0.0065 0.065 0.08 0.03 0.07 0.03 0.03 0.04 MgO 0.14 0.057 0.3 0.15 0.11 0.28 0.13 0.13 0.86 CaO 0.094 0.7 0.59 0.01 0.21 0.73 0.29 0.45 0.57 Na2O 0.26 2.39 3.42 3.08 3.29 3.26 2.46 7.32 2.90 K2O 3.74 5.06 4.32 4.89 4.72 5.12 5.29 0.97 2.09 P2O5 0.027 0.011 0.03 0.01 0.01 0.06 0.15 0.06 灼失 2.27 1.34 0.56 0.59 1.11 1.03 总计 99.90 99.56 98.77 98.05 100.05 99.90 分异指数(DI) 86.19 90.88 92.17 94.43 95.28 90.99 93.15 95.18 85.68 液相线温度 682 728 720 720 708 771 716 762 709 H2O含量 5.16 4.63 4.72 4.73 4.86 4.15 4.77 4.25 4.84 A/CNK 2.813 1.196 1.098 1.216 1.138 1.085 1.234 1.101 1.638 A/NK 2.913 1.356 1.211 1.217 1.178 1.215 1.299 1.169 1.878 SI 1.97 0.6 3.16 1.47 1.15 2.49 1.35 1.41 10.23 AR 1.87 2.1 3.19 2.9 3.18 2.74 2.22 3.22 2.13 A/MF 2.95 4.44 4.55 3.95 5.63 3.12 4.71 10.67 2.3 C/MF 0.04 0.44 0.39 0.01 0.17 0.31 0.2 0.57 0.18 Li 16.10 94.50 7.05(4) Be 4.99 4.27 4.44(4) Sc 4.22 3.26 V 0.67 1.38 2.59(4) Cr 6.12 7.53 53.39(4) Co 221.00 565.00 1.19(4) Ni 5.60 20.30 3.72(4) Cu 7.26 5.84 11.75(4) Zn 11.30 38.50 15.74(4) Ga 19.90 19.60 Ge 1.41 1.74 As 166.00 1.81 0.91(4) Rb 243.10 855.40 204 Sr 16.72 16.83 64 Zr 144.00 80.50 73 Nb 20.90 32.45 9.52(4) Cs 4.81 8.96 6.8(4) Ba 289.38 69.32 160.55(4) Hf 5.12 4.71 5.9 Ta 3.18 6.62 3.5(4) W 503 1140 4.29(4) 5 Tl 1.34 1.52 Pb 25.4 12 46.83(4) Bi 15.4 1.36 0.3(4) Th 29.65 42.81 U 5.28 15.51 Mo 2.27 0.465 4.09(4) Ag 0.377 0.504 Cd 1.17 1.11 0.15(4) In 0.411 0.299 Sn 26.8 19.8 1.2(4) 86 100 Sb 0.259 0.0482 0.15(4) La 27.18 21.20 31.41 Ce 43.06 50.89 57.18 Pr 4.58 6.56 7.41 Nd 15.85 25.59 26.65 Sm 3.19 7.90 5.56 Eu 0.33 0.15 0.35 Gd 3.13 7.69 3.47 Tb 0.71 1.59 1.03 Dy 5.53 10.81 6.29 Ho 1.22 2.38 1.47 Er 3.64 6.84 4.43 Tm 0.59 1.23 0.75 Yb 4.06 9.16 4.83 Lu 0.56 1.30 0.73 Y 32.30 63.30 44.14 ΣREE 153.29 113.63 151.56 LREE 112.28 94.18 128.56 HREE 41.00 19.44 23.00 LREE/HREE 2.74 4.84 5.59 (La/Yb)N 1.66 4.80 4.66 δEu 0.06 0.31 0.23 δCe 1.05 0.86 0.89 资料来源 本文 本文 ③ ④ ④ ④ [43] [44] [45] 注:(4)表示括号内样品件数;主量元素含量单位为%,稀土和微量元素为10-6 表 3 花岗斑岩Lu-Hf同位素分析结果
Table 3. Zircon Lu-Hf isotopic composit ions of granite porphyry
测点编号(原锆石点号) t/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i εHf(t) TDM1/Ga TDM2 ƒLu-Hf H01-1(23.1) 141.0 0.0397 0.0014 0.282596 0.000023 0.282592 -3.69 0.94 1.40 -0.96 H01-2(22.1) 144.7 0.0376 0.0013 0.282618 0.000022 0.282614 -2.82 0.91 1.35 -0.96 H01-3(21.1) 139.7 0.0454 0.0016 0.282611 0.000027 0.282607 -3.20 0.92 1.37 -0.95 H01-4(20.1) 148.8 0.0250 0.0009 0.282592 0.000025 0.282589 -3.62 0.93 1.41 -0.97 H01-5(19.1) 144.3 0.0401 0.0014 0.282596 0.000018 0.282592 -3.62 0.94 1.40 -0.96 H01-6(18.1) 147.5 0.0397 0.0015 0.282566 0.000025 0.282562 -4.61 0.98 1.47 -0.96 H01-7(17.1) 141.3 0.0489 0.0018 0.282616 0.000018 0.282611 -3.01 0.92 1.36 -0.95 H01-8(16.1) 142.4 0.0362 0.0013 0.282610 0.000019 0.282606 -3.15 0.92 1.37 -0.96 H01-9(15.1) 145.2 0.0406 0.0015 0.282597 0.000024 0.282593 -3.57 0.94 1.40 -0.95 H01-10(14.1) 138.2 0.0310 0.0012 0.282589 0.000024 0.282586 -3.97 0.94 1.42 -0.97 H01-11(13.1) 139.5 0.0303 0.0011 0.282618 0.000024 0.282615 -2.91 0.90 1.35 -0.97 H01-12(12.1) 142.3 0.0453 0.0017 0.282634 0.000026 0.282630 -2.34 0.89 1.32 -0.95 H01-13(11.1) 143.5 0.0344 0.0013 0.282592 0.000025 0.282589 -3.76 0.94 1.41 -0.96 H01-14(10.1) 140.9 0.0352 0.0013 0.282600 0.000022 0.282597 -3.54 0.93 1.39 -0.96 H01-15(9.1) 141.0 0.0418 0.0015 0.282598 0.000024 0.282594 -3.63 0.94 1.40 -0.95 H01-16(8.1) 143.2 0.0271 0.0010 0.282589 0.000019 0.282586 -3.85 0.94 1.42 -0.97 H01-17(7.1) 141.0 0.0394 0.0014 0.282650 0.000021 0.282646 -1.78 0.86 1.28 -0.96 H01-18(6.1) 138.2 0.0444 0.0016 0.282640 0.000024 0.282636 -2.21 0.88 1.31 -0.95 H01-19(5.1) 144.2 0.0421 0.0015 0.282599 0.000020 0.282595 -3.52 0.94 1.40 -0.95 H01-20(4.1) 145.6 0.0313 0.0011 0.282583 0.000023 0.282580 -4.02 0.95 1.43 -0.97 H01-21(3.1) 142.4 0.0356 0.0013 0.282617 0.000020 0.282614 -2.90 0.91 1.36 -0.96 H01-22(2.1) 143.3 0.0131 0.0005 0.282632 0.000017 0.282631 -2.28 0.87 1.32 -0.99 H01-23(1.1) 140.9 0.0281 0.0010 0.282589 0.000020 0.282586 -3.90 0.94 1.42 -0.97 -
[1] 徐晓春, 岳书仓.粤东地区中生代火山岩与侵入岩的成因关系及成因类型[J].合肥工业大学学报(自然科学版), 1994, 4:184-192. http://www.cnki.com.cn/Article/CJFDTOTAL-HEFE404.031.htm
[2] 徐晓春, 岳书仓.粤东地区中生代岩浆作用的大地构造背景及构造-岩浆演化[J].合肥工业大学学报(自然科学版), 1996, 1:127-134. http://www.cnki.com.cn/Article/CJFDTOTAL-HEFE601.022.htm
[3] 周新民.南岭地区晚中生代花岗岩成因与岩石圈动力学演化[M].北京:科学出版社, 2007:1-691.
[4] 李献华, 李武显, 李正祥.再论南岭燕山早期花岗岩的成因类型与构造意义[J].科学通报, 2007, 52(9):981-991. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200709000.htm
[5] 毛景文, 谢桂青, 郭春丽, 等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报, 2007, 23(10):2329-2338. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710003.htm
[6] 毛景文, 谢桂青, 郭春丽, 等.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报, 2008, (4):510-526. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200804007.htm
[7] 舒良树.华南构造演化的基本特征[J].地质通报, 2012, 31(7):1035-1053. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201207004.htm
[8] Sun W D, Ding X, Hua Y, et al. The golden transformation of the Cretaceous plate subduction in the west pacific[J]. Earth and Planetary Science Letters, 2007, 262:533-542 doi: 10.1016/j.epsl.2007.08.021
[9] 李晓峰, Yasushi W, 华仁民, 等.华南地区中生代Cu-(Mo)-WSn矿床成矿作用与洋岭/转换断层俯冲[J].地质学报, 2008, 82(5):625-640. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200805007.htm
[10] Li X H, Li Z X, Li W X, et al. U-Pb Zircon, geochemical and SrNd-Hf isotopic constraints on age and origin of Jurassic Iand Atype granites from central Guangdong, SE China:A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 2007, 96:186-204. doi: 10.1016/j.lithos.2006.09.018
[11] 周新民.对华南花岗岩研究的若干思考[J].高校地质学报, 2003, 9(4):556-565. http://www.cnki.com.cn/Article/CJFDTOTAL-CSDI201702049.htm
[12] Niu Y L. Subduction initiation, trench retreat and global tectonic consequences:The origin of backarc basins in the western Pacific and effect on eastern China geology since the Mesozoic, In Plate Tectonics, Geological Events and Resources:New Advances in Geological Sciences[M]. Science Beijing:Press, 2013:1-25.
[13] Chen J Y, Yang J H, Zhang J H, et al. Geochemical transition shown by Cretaceous granitoids in southeastern China:Implications for continental crustal reworking and growth[J]. Lithos, 2014, 196:115-130. http://adsabs.harvard.edu/abs/2014Litho.196..115C
[14] 毛建仁, 陶奎元, 邢光福, 等.中国东南大陆边缘中新生代地幔柱活动的岩石学记录[J].地球学报, 1999, 20(3):253-258. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199903006.htm
[15] 万天丰, 赵庆乐.中国东部构造-岩浆作用的成因[J].中国科学(D辑), 2012, 42(2):155-163. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201202003.htm
[16] 徐晓春, 岳书仓.粤东中生代火山-侵入杂岩的地壳深熔成因——Pb-Nd-Sr多元同位素体系制约[J].地质论评, 1999, S1:829-835. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1999S1119.htm
[17] 徐晓春, 岳书仓.粤东地区中生代火成岩的时空分布:岩石特征及成岩物化条件[J].合肥工业大学学报(自然科学版), 1993, 1:1-12. http://www.cnki.com.cn/Article/CJFDTOTAL-HEFE199301000.htm
[18] 徐晓春.粤东中生代火山-侵入杂岩的稀土元素地球化学研究[J].合肥工业大学学报(自然科学版), 1993, 2:121-127. http://www.cnki.com.cn/Article/CJFDTOTAL-HEFE199302022.htm
[19] 岳书仓, 徐晓春.粤东地区中生代岩浆作用的大地构造背景及构造-岩浆演化[J].合肥工业大学学报(自然科学版), 1996, 19(1):127-134. http://www.cnki.com.cn/Article/CJFDTOTAL-HEFE601.022.htm
[20] 邢光福.台湾:从粤东沿海逆时针旋转而来的陆块[J].火山地质与矿产, 2000, 21(3):157-165. http://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ200003000.htm
[21] 邢光福, 陈荣, 杨祝良, 等.东南沿海晚白垩世火山岩浆活动特征及其构造背景[J].岩石学报, 2009, 25(1):77-91. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200901008.htm
[22] 满发胜, 白玉珍, 倪守斌, 等.莲花山钨矿床同位素地质学初步研究[J].矿床地质, 1983, 4:37-44. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198304005.htm
[23] 陈惜华, 胡祥昭, 丛献东.西岭锡矿床岩体含矿性与成因类型的研究[J].地球化学, 1986, 1:50-57. doi: 10.3321/j.issn:0379-1726.1986.01.006
[24] 地质矿产部书刊编辑室.全国同位素年龄汇编(3)[M].北京:地质出版社, 1983.
[25] 陶奎元, 谢家莹, 阮宏宏, 等.中国东南沿海中生代火山作用基本特征[J].中国地质科学院南京地质矿产研究所所刊, 1988, 9(4):12-28. http://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ198804001.htm
[26] 尹家衡, 黄光昭, 徐明华.粤东中生代火山旋回划分及对比[J].中国地质科学院南京地质矿产研究所所刊, 1989, 10(4):16-28. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ198900014004.htm
[27] 李坤英, 沈加林, 王小平, 等.东南沿海火山、侵入杂岩同位素年代学[J].中国地质科学院南京地质矿产研究所所刊, 1990, 4:45-57. http://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ199004006.htm
[28] 赵希林, 毛建仁, 陈荣, 等.闽西南地区紫金山岩体锆石SHRIMP定年及其地质意义[J].中国地质, 2008, 135(4):590-597. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200804004.htm
[29] 王小雨. 粤东新寮岽铜多金属矿床地质特征及成因初步研究[D]. 中国地质大学(北京)硕士学位论文, 2015: 1-99.
[30] 刘鹏, 程彦博, 毛景文, 等.粤东田东钨锡多金属矿床花岗岩锆石U-Pb年龄、Hf同位素特征及其意义[J].地质学报, 2015, 7:1244-1257. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201507008.htm
[31] 广东省地质矿产局.广东省区域地质志[M].北京:地质出版社, 1988:6-274.
[32] 蒙晓莲.粤东地区地层含矿性探讨[J].有色金属矿产与勘查, 1994, 3:151-157. http://www.cnki.com.cn/Article/CJFDTOTAL-YSJS403.006.htm
[33] 徐晓春, 谢巧勤, 岳书仓.粤东地区中生代金属矿床的成矿机制[J].合肥工业大学学报(自然科学版), 2000, 1:99-103. http://www.cnki.com.cn/Article/CJFDTOTAL-HEFE200001021.htm
[34] 宋彪, 张玉海, 万渝生, 等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评, 2002, (S1):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1006.htm
[35] 陈振宇, 周剑雄.锆石等测年矿物的电子探针及阴极射线致发光综合研究新方法[J].地质论评, 2002, 48(增刊):31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1007.htm
[36] Compston W, Williams I S, Meyer C. U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe[J]. Journal of Geophysical Research:Solid Earth (1978-2012), 1984, 89(S02):525-534. doi: 10.1029/JB089iS02p0B525
[37] Claesson S. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides[J]. Contributions to Mineralogy and Petrology, 1987, 97(2):196-204. doi: 10.1007/BF00371239
[38] 简平, 刘敦一, 张旗, 等.蛇绿岩及蛇绿岩中浅色岩的SHRIMP U-Pb测年[J].地学前缘, 2003, 4:439-456. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200311002036.htm
[39] Ludwig K R. Users Manual for Isoplot 3. 00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronological Center, Special Publication, 2003.
[40] Claoué-Long J C, Compston W, Roberts J, et al. Two Carboniferous ages:A comparison of SHRIMP zircon dating with Conventional zircon ages and 40Ar/39Ar Analysis[J]. Sepm. Spe. Publ., 1995, 54:3-21.
[41] Steiger R H, Jäger E. Sub commission on geochronology:Convention on the use of decay constants in geoand cosmochronology[J]. Earth Planet. Sci. Lett., 1977, 36:359-362. doi: 10.1016/0012-821X(77)90060-7
[42] Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by a twostage model. Earth and Planetary Science Letters, 1975, 26:207-221. doi: 10.1016/0012-821X(75)90088-6
[43] 沈渭洲, 凌洪飞.岩背和塌山含锡花岗斑岩的同位素地球化学特征和物质来源[J].地球学报, 1994, Z1:117-123. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB4Z1.016.htm
[44] 刘师先. 塌山斑岩锡矿床地质特征及成矿机理[J]. 地球化学, 1992, 2: 149-157, 201-202.
[45] 古法安.广东省海丰县塌山矿区与斑岩有关的锡矿地质特征及成因[J].科技信息(学术研究), 2008, 25:229-230. http://www.cnki.com.cn/Article/CJFDTOTAL-KJXI200825167.htm
[46] Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation[M]. New York:Longman Scientific and Technical, 1993:1-352.
[47] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 1989, 101(5):635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[48] Peccerillo R, Taylor S R. Geochemistry of eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58:63-81. doi: 10.1007/BF00384745
[49] Middlemost E A K. Magmas and Magmatic Rocks[M]. London:Longman, 1985:1-266.
[50] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 1989, 42:313-345.
[51] Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth's earliest crust from Hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399:252-255. doi: 10.1038/20426
[52] Vervoort J D, Patchett P J, Blichert-Toft J, et al. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system[J]. Earth Planet. Sci. Lett., 1999, 168:79-99. doi: 10.1016/S0012-821X(99)00047-3
[53] 毛建仁, 许乃政, 胡庆, 等.福建省上杭-大田地区中生代成岩成矿作用的构造环境演化[J].岩石学报, 2004, 20(2):285-296. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402009.htm
[54] 毛建仁, 陈荣, 李寄嵎, 等.闽西南地区晚中生代花岗质岩石的同位素年代学、地球化学及其构造演化[J].岩石学报, 2006, 22(6):1723-1734. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200606029.htm
[55] 李良林, 周汉文, 陈植华, 等.福建太姥山地区花岗岩岩石地球化学特征及其地质意义[J].岩石矿物学杂志, 2011, 30(4):593-609. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201104005.htm
[56] 李良林, 周汉文, 陈植华, 等.福建沿海晚中生代花岗质岩石成因及其地质意义[J].地质通报, 2013, 32(7):1047-1062. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201307009.htm
[57] 段政, 邢光福, 余明刚, 等.浙闽边界区晚中生代火山作用时序与过程分析[J].地质论评, 2013, 59(3):454-469. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201303007.htm
[58] 胡春杰, 黄文婷, 包志伟, 等.福建紫金山矿田晚中生代英安玢岩形成时代及其成矿意义[J].大地构造与成矿学, 2012, 36(2):284-292. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201202019.htm
[59] 肖爱芳, 黎郭朋, 柳小明.福建省紫金山铜金矿田石冒山群下组火山岩锆石LA-ICP-MS U-Pb测年与白垩纪岩浆活动期次[J].大地构造与成矿学, 2012, 26(4):613-623. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201204017.htm
[60] 张承帅, 苏慧敏, 于淼, 等.福建龙岩大洋-莒州花岗岩锆石UPb年龄和Sr-Nd-Pb同位素特征及其地质意义[J].岩石学报, 2012, 28(1):225-242. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201201019.htm
[61] Guo F, Fan W M, Li C W, et al. Multi-stage crust-mantle interaction in SE China:Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong-Fu-jian provinces[J]. Lithos, 2012, 150:62-84. doi: 10.1016/j.lithos.2011.12.009
[62] Huang H Q, Li X H, Li Z X, et al. Intraplate crustal remelting as the genesis of Jurassic high-K granites in the coastal region of the Guangdong Province, SE China[J]. Journal of Asian Earth Sciences, 2013, 74:280-302. doi: 10.1016/j.jseaes.2012.09.009
[63] Liu L, Qiu J S, Li Z. Origin of mafic microgranular enclaves (MMEs) and their host quartz monzonites from the Muchen pluton in Zhejiang Province, Southeast China:Implications for magma mixing and crustmantle interaction[J]. Lithos, 2013, 160:145-163.
[64] 陈润生, 李建威, 曹康, 等.闽北上房钨矿床锆石U-Pb和辉钼矿Re-Os定年及其地质意义[J].地质论评, 2013, 38(2):289-304. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201302010.htm
[65] 李斌, 赵葵东, 杨水源, 等.福建紫金山矿田二亩沟铜(金)矿区英安玢岩的成因及其成矿意义[J].岩石学报, 2013, 29(12):4167-4185. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201312009.htm
[66] 王对兴, 李春麟, 高万里, 等.浙东早白垩世岩浆混合作用:新昌小将岩体U-Pb年代学及地球化学证据[J].岩石学报, 2013, 29(11):2993-4003. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311028.htm
[67] 李海立, 肖惠良, 范飞鹏, 等.广东潮安飞鹅山钨钼多金属矿床辉钼矿Re-Os同位素定年[J].地质学报, 2016, 2:231-239. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201602003.htm
[68] Chappell B W, White A J R. Two constracting granite types[J]. Pac. Geol., 1974, 8:173-174. https://www.researchgate.net/publication/248955317_Two_contrasting_granite_types_25_years_later
[69] Loiselle M C, Wones D R. Characteristics and origin of anorogenic granites[J]. Geol. Sco. Am. Abstr. Programs, 1979, 11:468.
[70] Yang C Q. The genetic types of the granitoids in South China[C]//Xu K Q, Tu G Z. Geology of Granites and Their Metallogenetic Relations. Proceed Int Symp Nanjing Univ. Beijing:Science Press, 1982:253-276.
[71] Whalen J B, Currie K L, Chappell B W. A-type granites:Geochemical characteristics, discrimination and petrogenesis[J]. Contri-butions to Mineralogy and Petrology, 1987, 95(4):407-419. doi: 10.1007/BF00402202
[72] Bonin B. A-type granites and related rocks:Evolution of a concept, problems and prospects[J]. Lithos, 2007, 97(1/2):1-29. https://www.researchgate.net/publication/222435637_A-type_granites_and_related_rocks_Evolution_of_a_concept_problems_and_prospects
[73] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geol. Soc. Am. Bull., 1987, 101:635-643. https://www.researchgate.net/publication/249526232_Tectonic_discrimination_of_granitoids
[74] Pearce J A, Harris N B W, Tindle A G. Trace element discrimina-tion diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956
[75] Chappell B W, White A J R. I-and S-type granites in the Lachlan Fold Belt[J]. Transactions of the Royal Society of Edinburgh:Earth Sciences, 1992, 83(1/2):1-26. http://www.docin.com/p-704721225.html
[76] Landenberger B, Collins W J. Derivation of A-type granites from a dehydrated charnockitic lower crust:Evidence from the Chaelundi Complex, Eastern Australia[J]. Journal of Petrology, 1996, 37(1):145-170. doi: 10.1093/petrology/37.1.145
[77] Clemens J D. S-type granitic magmas-petrogenetic issues, models and evidence[J]. Earth-Science Reviews, 2003, 61(1/2):1-18. https://www.researchgate.net/publication/223738213_S-type_granitic_magmas-petrogenetic_issues_models_and_evidence
[78] 王德滋, 刘昌实, 沈渭洲, 等.桐庐I和相山S型两类碎斑熔岩对比[J].岩石学报, 1993, 9(1):44-54. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB199301004.htm
[79] Kalsbeek F, Jepsen H F, Nutman A P. From source migmatites to plutons:Tracking the origin of ca. 435Ma S-type granites in the East Greenland Caledonian orogeny[J]. Lithos, 2001, 57(1):1-21. doi: 10.1016/S0024-4937(00)00071-2
[80] Koester E, Pawley A R, Fernandes L A D, et al. Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in southern Brazil[J]. Journal of Petrology, 2002, 43(8):1595-1616. doi: 10.1093/petrology/43.8.1595
[81] Alther R, Holl A, Hegner E, et al. High-potassium, calc-alkaline Ⅰ-type plutonism in the European Variscides:Northern Vosges (France) and northern Schwarzwald (Germany)[J]. Lithos, 2000, 50:51-73 doi: 10.1016/S0024-4937(99)00052-3
[82] 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报, 2007, 23(2):185-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm
[83] Li Z X, Li X H, Wartho J A, et al. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China:New age constraints and pressure-temperature conditions[J]. Geological Society of America Bulletin, 2010, 122(5/6):772-793.
[84] 舒良树.华南前泥盆纪构造演化:从华夏地块到加里东期造山带[J].高校地质学报, 2006, 12(4):418-431. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200604002.htm
[85] Huang T K. On Major Tectonic Forms of China[J]. Geological Memoirs:Serial A, 1945, 20:1-165.
[86] 任纪舜.印支运动及其在中国大地构造演化中的意义[J].地球学报, 1984, 6(2):31-42. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB198402003.htm
[87] 任纪舜.论中国南部的大地构造[J].地质学报, 1990, 64(4):275-288. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199004000.htm
[88] 赵越, 徐刚, 张拴宏, 等.燕山运动与东亚构造体制的转变[J].地学前缘, 2004, 11(3):319-328. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200403042.htm
[89] Dong S W, Zhang Y Q, Long C X, et al. Jurassic Tectonic Revolution in China and New Interpretation of the"Yanshan Movement"[J]. Acta Geologica Sinica, 2008, 82(2):334-347.
[90] 董树文, 施炜, 张岳桥, 等.大巴山晚中生代陆内造山构造应力场[J].地球学报, 2010, 31(6):769-780. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201006001.htm
[91] 彭建堂, 胡瑞忠, 袁顺达, 等.湘南中生代花岗质岩石成岩成矿作用时限[J].地质论评, 2008, 54(5):617-625. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200805009.htm
[92] 华仁民, 毛景文.试论中国东部中生代成矿大爆发[J].矿床地质, 1999, 18(4):300-308. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ199904001.htm
[93] 华仁民, 陈培荣, 张文兰, 等.论华南地区中生代3次大规模成矿作用[J].矿床地质, 2005, 24(2):99-107. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200502001.htm
[94] 华仁民, 李光来, 张文兰, 等.华南钨和锡大规模成矿作用的差异及其原因初探[J].矿床地质, 2010, 29(1):9-23. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201001004.htm
[95] 毛景文, 王志良.中国东部大规模成矿时限及其动力学背景的初步探讨[J].矿床地质, 2000, 19(4):289-296. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200004000.htm
[96] 毛景文, 谢桂青, 李晓峰, 等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘, 2004, 11(1):45-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200401002.htm
[97] 王德滋, 沈渭洲.中国东南部花岗岩成因与地壳演化[J].地学前缘, 2003, 10(3):209-220. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303031.htm
[98] 徐夕生, 谢昕.中国东南部晚中生代-新生代玄武岩与壳幔作用[J].高校地质学报, 2005, 11(3):318-334. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200503004.htm
[99] 董树文, 张岳桥, 龙长兴, 等.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报, 2007, 81(11):1449-1461. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200711002.htm
[100] 徐先兵, 张岳桥, 贾东, 等.华南早中生代大地构造过程[J].中国地质, 2009, 36(3):573-593. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200903009.htm
[101] 张岳桥, 董树文, 李建华, 等.华南中生代大地构造研究新进展[J].地球学报, 2012, 33(3):257-279. http://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201203001.htm
[102] 杨宗永, 何斌.华南侏罗纪构造体质转换:碎屑锆石U-Pb年代学证据[J].大地构造与成矿, 2013, 37(4):580-591. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201304004.htm
[103] 毛景文, 邵拥军, 谢桂青, 等.长江中下游成矿带铜陵矿集区铜多金属矿床模型[J].矿床地质, 2009, 28(2):109-119. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200902002.htm
① 广东省地质调查院. 广东厚婆坳铜锡多金属矿整装勘查区专项填图与技术应用示范成果报告. 2016.
② 南京地质矿产研究所. 中国东南大陆火山地质及矿产. 1991.
③ 广东地矿局722地质队. 汕头幅F-50-18-C澄海幅F-50-18-D南澳岛幅F-50-19-C潮阳幅F-50-30-A东湖幅F-50-30-B 1/5万区域地质图说明书. 1993.
④ 广东省地质局区域地质调查大队. 汕头幅F-50-3惠来幅F-50-9 1/20万区域地质调查报告. 1973.
⑤ 南京地质调查中心. 广东厚婆坳铜锡多金属矿整装勘查区找矿预测模型构建与找矿预测研究. 2016.
⑥ 广东省有色金属地质局九三一队. 广东莲花山断裂带南西段锡铜多金属矿整装勘查成果汇报. 2016.