辽河东部凹陷大平房地区走滑活动及其对构造圈闭的控制作用

王雅芳, 吕修祥, 李伯华, 王居峰, 肖文摇, 涂金. 辽河东部凹陷大平房地区走滑活动及其对构造圈闭的控制作用[J]. 地质通报, 2017, 36(7): 1259-1267.
引用本文: 王雅芳, 吕修祥, 李伯华, 王居峰, 肖文摇, 涂金. 辽河东部凹陷大平房地区走滑活动及其对构造圈闭的控制作用[J]. 地质通报, 2017, 36(7): 1259-1267.
WANG Yafang, LÜ Xiuxiang, LI Bohua, WANG Jufeng, XIAO Wenyao, TU Jin. Strike-slip activities and their controls of structural traps in Daping-fang area, eastern sag of Liaohe Depression[J]. Geological Bulletin of China, 2017, 36(7): 1259-1267.
Citation: WANG Yafang, LÜ Xiuxiang, LI Bohua, WANG Jufeng, XIAO Wenyao, TU Jin. Strike-slip activities and their controls of structural traps in Daping-fang area, eastern sag of Liaohe Depression[J]. Geological Bulletin of China, 2017, 36(7): 1259-1267.

辽河东部凹陷大平房地区走滑活动及其对构造圈闭的控制作用

  • 基金项目:
    国家科技部油气重大专项《渤海湾盆地北部油气富集规律与增储领域研究》(编号:2016ZX05006005)
详细信息
    作者简介: 王雅芳(1991-), 女, 在读硕士生, 地质资源与地质工程专业。E-mail:wangyafang15@163.com
    通讯作者: 吕修祥(1963-), 男, 教授, 博士生导师, 从事油气藏形成与分布、矿产普查与勘探方面的教学和研究。E-mail:luxx@cup.edu.cn
  • 中图分类号: P546;P618.130.2

Strike-slip activities and their controls of structural traps in Daping-fang area, eastern sag of Liaohe Depression

More Information
  • 辽河东部凹陷由于潜在的油气资源和复杂的构造条件(郯庐断裂穿过此凹陷),走滑活动及其对构造圈闭的控制作用对于揭示郯庐断裂北段新生代的活动及渤海湾盆地的油气勘探有重要意义。以大平房地区为实例,根据地震、钻井和测井资料,揭示了大平房地区存在走滑构造活动的行迹,包括平面上的雁列构造及其对火山岩分布的影响,剖面上的负花状构造样式及断层倾向和背斜轴向沿构造走向的变化。发育的荣兴屯走滑断裂控制并改造大平房断背斜的构造格局,东营组二段沉积开始,致使地层反转,形成透镜状地层。荣兴屯走滑活动产生的构造圈闭具有纵向分段、平面分带的特征。

  • 加载中
  • 图 1  辽河东部凹陷构造单元及大平房地区构造地震剖面

    Figure 1. 

    图 2  大平房地区东营组底界构造

    Figure 2. 

    图 3  大平房地区东二段火山岩分布格局(据参考文献[4]修改)

    Figure 3. 

    图 4  大平房地区主测线方向的地震剖面变化(L3087、L3302和L3348剖面位置见图 2

    Figure 4. 

    图 5  大平房地区大15-大38-荣87地层对比(剖面位置见图 1,L3312)

    Figure 5. 

    图 6  大平房地区走滑活动对构造圈闭的控制模型

    Figure 6. 

    表 1  大平房地区东二段火山岩最大沉积厚度及剥蚀量

    Table 1.  Maximum volcanic rock sedimentation thickness and denudation amount in E3d2 in Dapingfang area

    剖面 A-A' B-B' C-C' D-D'
    井位 厚度/m 剥蚀量/m 不整合面 井位 厚度 剥蚀量/m 不整合面 井位 厚度 剥蚀量/m 不整合面 井位 厚度 剥蚀量/m 不整合面
    大15 28.5 645 东营组顶部 大32 166 749.28 E3d1 大36 63 2460.91 E3d1 大43 206.5 1349.5 E3d1
    大45 80.5 大38 57 1495.1 E3d1 大4 81 1411.261 E3d2 大33 443 461.96 E3d2
    大5 122.5 大3 113.5 大8 133.5 1318.41 E3d3 大42 52.5 629.22 E3d1
    大7 113.5 大2 137 大29 361.5 2171.64 E3d3
    大16 57.5 大46 115.5 1506.94 E3d2 大6 215 295.07 E3d3
    大20 75 455.76 E3d2 大1 164.5 大40 362 116.29 Ng之上
    大17 70 315.8 E3d3
    大22 212
    注:E3d1—东营组一段;E3d2—东营组二段;E3d3—东营组三段;Ng—馆陶组;A-A’、B-B’、C-C’、D-D’剖面见图 3
    下载: 导出CSV
  • [1]

    Morley C K. Variations in Late Cenozoic-Recent Strike-slip and Oblique-Extensional Geometries, within Indochina:The Influence of Pre-existing Fabrics[J]. Journal of Structural Geology, 2007, 29, 36-58. doi: 10.1016/j.jsg.2006.07.003

    [2]

    童亨茂, 宓荣三, 于天才, 等.渤海湾盆地辽河西部凹陷的走滑构造作用[J].地质学报, 2008, 82(8):1017-1026. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200808001.htm

    [3]

    漆家福, 张一伟, 陆克政, 等.渤海湾新生代裂陷盆地的伸展模式及其动力学过程[J].石油实验地质, 1995, 17(7):316-322. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD504.001.htm

    [4]

    孙洪斌, 张凤莲.辽河盆地走滑构造特征与油气[J].大地构造与成矿学, 2002, 26(1):16-21. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200201003.htm

    [5]

    Maniatis G, Hampel A. Along-strike Variations of the Slip Direction on Normal Faults:Insights from Three-dimensional Finite-element Models[J]. Journal of Structural Geology, 2008, 30:21-28. doi: 10.1016/j.jsg.2007.10.002

    [6]

    陈书平, 吕丁友, 王应斌, 等.渤海盆地新近纪-第四纪走滑作用及油气勘探意义[J].石油学报, 2010, 31(6):894-899. doi: 10.7623/syxb201006004

    [7]

    李宏伟, 许坤.郯庐断裂走滑活动与辽河盆地构造古地理格局[J].地学前缘, 2001, 8(4):467-470. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200104043.htm

    [8]

    漆家福.渤海湾新生代盆地的两种构造系统及其成因解释[J].中国地质, 2004, 31(1):15-22. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200401001.htm

    [9]

    童亨茂, 孟令箭, 蔡东升, 等.裂陷盆地断层的形成和演化——目标砂箱模拟实验与认识[J].地质学报, 2009, 83(6):759-774. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200906003.htm

    [10]

    童亨茂, 聂金英, 孟令箭, 等.基底先存构造对裂陷盆地断层形成和演化的控制作用规律[J].地学前缘, 2009, 16(4):759-774. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200904012.htm

    [11]

    Tong H M. The Effect of Multiple Pre-existing Weaknesses on Formation and Evolution of Faults in Extended Sandbox Models[J]. Tectonophysics, 2014, 626:197-212. doi: 10.1016/j.tecto.2014.04.046

    [12]

    Tong H M, Yin A. Reactivation Tendency Analysis:A Theory for Predicting The Temporal Evolution of Preexisting Weakness under Uniform Stress State[J]. Tectonophysics, 2011, 503:195-200. doi: 10.1016/j.tecto.2011.02.012

    [13]

    刘斐.辽河盆地中央凸起南部海外河地区构造演化特征[J].石油与天然气地质, 2011, 32(2):259-264. doi: 10.11743/ogg20110214

    [14]

    于福生, 董月霞, 童亨茂, 等.渤海湾盆地辽河西部凹陷古近纪变形特征及成因[J].石油与天然气地质, 2015, 36(1):51-60. doi: 10.11743/ogg20150107

    [15]

    杨桥, 魏刚, 马宝军, 等.郯庐断裂带辽东湾段新生代右旋走滑变形及其模拟实验[J].石油与天然气地质, 2009, 30(4):483-496. doi: 10.11743/ogg20090415

    [16]

    余一欣, 周心怀, 徐长贵, 等.渤海海域新生代断裂发育特征及形成机制[J].石油与天然气地质, 2011, 32(2):273-279. doi: 10.11743/ogg20110216

    [17]

    万桂梅, 周东红, 汤良杰.渤海海域郯庐断裂带对油气成藏的控制作用[J].石油与天然气地质, 2009, 30(4):450-454. doi: 10.11743/ogg20090410

    [18]

    王国纯.郯庐断裂与渤海海域反转构造及花状构造[J].中国海上油气(地质), 1998, 12(5):289-294. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199805000.htm

    [19]

    Chen Z Y, Yan H, Li J S, et al. Relationship Between Tertiary Volcanic Rocks and Hydrocarbons in the Liaohe Basin, People's Republic of China1[J]. AAPG, 1999, 83:1004-1014.

    [20]

    李思伟, 王璞珺, 丁秀春, 等.辽河东部凹陷走滑构造及其与火山岩分布的关系[J].地质评论, 2014, 60(3):591-600. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201403012.htm

    [21]

    张延玲, 杨长春, 贾曙光, 等.辽河油田东部凹陷中段走滑断层与油气的关系[J].地质通报, 2006, 25(9/10):1152-1155. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2006Z2027.htm

    [22]

    Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific Plate Relative to Eurasia and Its Potential Relation to Cenozoic Extension Along the Eastern Margin of Eurasia[J]. Geology, 1995, 23:719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2

    [23]

    Steinberger B, Sutherland R, O'Connell R J. Prediction of Emperor-Hawaii Seamount Locations from A Revised Model of Global Plate Motion and Mantle Flow[J]. Nature, 2004, 430:167-173. doi: 10.1038/nature02660

    [24]

    Clift P D, Schlup M, Carter A. Discussion of Exhumation History of Eastern Ladakh Revealed by 40Ar/39Ar and Fission Ttrack Ages:the Indus River-Tso Morari Transect, NW Himalaya[J]. Journal of the Geological Society, London, 2004, 161(5):893-894. doi: 10.1144/0016-764903-104

    [25]

    Schellart W P, Lister G S. The Role of the East Asian Active Margin in Widespread Extensional and Strike-slip Deformation in East Asia[J]. Journal of Geological Society, London, 2005, 162(6):959-972. doi: 10.1144/0016-764904-112

    [26]

    万桂梅, 汤良杰, 周心怀, 等.渤海海域新近纪-第四纪断裂特征及形成机制[J].石油学报, 2010, 31(4):591-595. doi: 10.7623/syxb201004012

    [27]

    李军生, 林春明.反转背斜构造自生自储油藏成藏模式[J].石油学报, 2006, 27(2):34-37. doi: 10.7623/syxb200602007

    [28]

    余一欣, 周心怀, 徐长贵, 等.渤海辽东湾坳陷走滑断裂差异变形特征[J].石油与天然气地质, 2014, 35(5):632-638. doi: 10.11743/ogg20140507

    [29]

    杨雪, 杨桥, 于福.辽河盆地西部凹陷北部地区古近系地层剥蚀量恢复[J].西安石油大学学报(自然科学版), 2006, 21(5):34-41. http://www.cnki.com.cn/Article/CJFDTOTAL-XASY200605006.htm

    [30]

    Zanchi A, Berra F, Mattei M, et al. Inversion Tectonics in Central Alborz, Iran[J].Journal of Structural Geology, 2006, 28:2023-2037. doi: 10.1016/j.jsg.2006.06.020

    [31]

    Grimaldi G O, Dorobek S L. Fault Framework and Kinematic Evolution of Inversion Sructures:Natural Examples from the Neuquén Basin, Argentina[J]. AAPG Bulletin, 2011, 95(1):27-60. doi: 10.1306/06301009165

    [32]

    Scisciani V, Agostini S, Calamita F, et al. Positive Inversion Tectonics in Foreland Fold-and-thrust belts:A Reappraisal of the Umbria-Marche Northern Apennines (Central Italy)by Integrating Geological and Geophysical Data[J].Tectonophysics, 2014, 637:218-237. doi: 10.1016/j.tecto.2014.10.010

    [33]

    Ventisette C D, Montanari D, Sani F, et al. Basin Inversion and Fault Reactivation in Laboratory Experiments[J]. Journal of Structural Geology, 2006, 28:2067-2083. doi: 10.1016/j.jsg.2006.07.012

    [34]

    Buchanan P G, McClay K R. Experiments on Basin Inversion Above Reactivated Domino Faults[J]. Marine and Petroleum Geology, 1992, 9:486-500. doi: 10.1016/0264-8172(92)90061-I

    [35]

    Nielsen S B, Hansen D L. Physical Explanation of the Formation and Evolution of Inversion Zones and Marginal Troughs[J]. Geology, 2000, 28:875-878. doi: 10.1130/0091-7613(2000)28<875:PEOTFA>2.0.CO;2

    [36]

    Pereira R, Alves Tiago M, Cartwright J. Post-rift Compression on the SW Iberian Margin (Eastern North Atlantic):A Case for Prolonged Inversion in the Ocean-continent Transition Zone[J]. Geological society of London, 2011, 168(6):1249-1263. doi: 10.1144/0016-76492010-151

    [37]

    Mosar J, Lewis G, Torsvik T H. North Atlantic Sea-floor Spreading Rates:Implications for the Tertiary Development of Inversion Structures of the Norwegian-Greenland Sea[J]. Journal of Structural Geology, 2002, 159:503-515.

    [38]

    GuimerÀ J, Mas R, Ángela Alonso. Intraplate Deformation in the NW Iberian Chain:Mesozoic Extension and Tertiary Contractional Inversion[J]. The Geological Society of London, 2004, 161:291-303. doi: 10.1144/0016-764903-055

    [39]

    Sibson R H. A Note on Fault Reactivation[J]. Journal of Structural Geology, 1985, 7:751-754. doi: 10.1016/0191-8141(85)90150-6

    [40]

    陈国民, 李三国, 王海峰, 等.荣兴屯构造带断裂特征及油气地质意义[J].西南石油大学学报(自然科学版), 2014, 36(3):19-26. doi: 10.11885/j.issn.1674-5086.2013.08.06.01

    [41]

    池英柳, 赵文智.渤海湾盆地新生代走滑构造与油气聚集[J].石油学报, 2000, 21(2):14-20. doi: 10.7623/syxb200002003

  • 加载中

(6)

(1)

计量
  • 文章访问数:  1178
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2016-10-15
修回日期:  2017-05-26
刊出日期:  2017-07-25

目录