Rb-Sr isotopic geochronology and geochemical characteristics of S and Pb isotopes of the Lulu Pb-Zn deposit in Luquan, Yunnan Province
-
摘要:
云南禄劝噜鲁铅锌矿床地处扬子地块西南缘,矿体赋存于下寒武统梅树村组下段,呈脉状、似层状产出。矿石矿物主要有方铅矿、闪锌矿、黄铁矿等;脉石矿物主要有重晶石、石英、方解石。噜鲁铅锌矿床硫化物成矿时的87Sr/86Sr值为0.7112~0.7115,暗示成矿物质可能来自于基底地层;Rb-Sr等时线年龄为202.8±1.4Ma,成矿年龄为印支晚期-燕山早期。硫化物硫同位素组成δ34S变化范围为6.33‰~9.75‰,暗示成矿流体中的硫主要是海相硫酸盐热化学还原的产物;铅同位素206Pb/204Pb、207Pb/204Pb、208Pb/204Pb变化范围分别为18.259~18.342、15.608~15.639、38.46~38.821,位于上地壳和造山带铅演化线之间,落入基底岩石(昆阳群)及不同时代碳酸盐岩铅同位素组成范围内,表明成矿物质具有壳源特征,主要由基底岩石提供。综合各类地质-地球化学信息认为,噜鲁铅锌矿床成矿流体中不同组分来源不同,但主要来自于基底地层,成矿机制是在印支运动强驱动力的作用下,促使含矿基底地层成矿元素活化-迁移混合-空间就位,形成工业矿床。
Abstract:The Lulu Pb-Zn deposit is located on the western margin of Yangtze Block and is hosted in the dolostone of Cambrian Meishucun Formation. Ore minerals are mainly galena, sphalerite and pyrite, Gangue minerals are mainly quartz, calcite and barite. The 87Sr/86Sr ratios of sulfides are 0.7112~0.7115, indicating that the ore-forming materials were derived from basements. Rb-Sr isochron age of sphalerite is 223.5±2.9Ma, suggesting Late Indosinian to Early Yanshanian period. The δ34S ratios of S isotope of sulfides in the deposit range from 9.72‰ to 22.44‰. The δ34S values of S isotope of barite in the deposit range from 26.08‰ to 29.34‰. These data suggest that the reduced sulfur in the ore-forming fluids was the product of thermo-chemical sulfate reduction. The range of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb are respectively from 18.259 to 18.342, from 15.608 to 15.639, and from 38.460 to 38.821. Pb isotope compositions lie in the region between the upper crust and the orogenic Pb area and fall into the field of basement rocks, which indicates that the crust source of ore-forming metals was mainly supplied by basement rocks. All the geological and geochemical information shows that the source of ore-forming metals and the fluid of the Lulu Pb-Zn deposit were the mixed products derived mainly from basement strata. The mineralization was caused by strong driving force of Indosinian movement, which prompted activation, migration, mixture and spatial emplacement of the ore-containing basement strata with ore-forming elements, thus forming industrial deposit.
-
表 1 噜鲁铅锌矿床硫化物Rb-Sr同位素组成
Table 1. Rb-Sr isotopic composition of sulfides from the Lulu Pb-Zn deposit
编号 矿物 Rb/10-6 Sr/10-6 87Rb/86Sr 87Sr/86Sr LL-0-02 黄铁矿 0.1476 1.293 0.3205 0.712331±10 LL-0-04 黄铁矿 2.013 2.957 2.036 0.717113±8 LL-13 方铅矿 0.3405 0.9726 1.037 0.714388±9 LL-34 方铅矿 1.594 1.231 3.814 0.722339±11 LL-36 方铅矿 0.9152 0.2279 12.17 0.746457±8 表 2 噜鲁铅锌矿床硫同位素组成
Table 2. Sulfur isotopic composition of the Lulu Pb-Zn deposit
编号 测试矿物 δ34S/‰ 编号 测试矿物 δ34S/‰ LL-0-01 方铅矿 11.09 LL-27 黄铁矿 16.80 LL-0-02 方铅矿 10.86 LL-29 黄铁矿 13.78 LL-0-04 方铅矿 10.77 LL-32 黄铁矿 16.86 LL-12 方铅矿 11.63 LL-42 黄铁矿 22.44 LL-13 方铅矿 11.66 LL-45 黄铁矿 13.30 LL-16 方铅矿 12.10 LL-0-07 闪锌矿 14.22 LL-28 方铅矿 12.82 LL-32 闪锌矿 10.97 LL-32 方铅矿 11.08 LL-38 闪锌矿 18.76 LL-34 方铅矿 12.27 LL-0-10 闪锌矿 10.38 LL-36 方铅矿 11.01 LL-33 闪锌矿 13.18 LL-41 方铅矿 10.87 LL-0-08 闪锌矿 9.72 LL-42 方铅矿 10.32 LL-0-07 重晶石 27.02 LL-45 方铅矿 10.67 LL-34 重晶石 27.12 LL-01 黄铁矿 22.30 LL-0-08 重晶石 26.36 LL-12 黄铁矿 11.63 LL-0-04 重晶石 27.21 LL-13 黄铁矿 21.57 LL-12 重晶石 26.08 LL-14 黄铁矿 14.35 LL-0-10 重晶石 29.34 LL-14-1 黄铁矿 17.33 LL-13 重晶石 27.92 LL-16 黄铁矿 14.53 LL-16 重晶石 28.47 LL-17 黄铁矿 21.67 LL-14 重晶石 26.09 表 3 噜鲁铅锌矿床铅同位素组成
Table 3. The lead isotope composition of the Lulu Pb-Zn ore deposits
样号 矿物 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 206Pb/207Pb μ ω Th/U LL-42 黄铁矿 18.342 15.629 38.543 1.174 9.530 37.600 3.820 LL-45 黄铁矿 18.339 15.626 38.532 1.174 9.520 37.540 3.820 LL-0-01 方铅矿 18.283 15.608 38.564 1.171 9.490 37.820 3.860 LL-0-02 方铅矿 18.298 15.615 38.557 1.172 9.510 37.770 3.840 LL-0-04 方铅矿 18.315 15.624 38.561 1.172 9.520 37.780 3.840 LL-13 方铅矿 18.329 15.617 38.545 1.174 9.510 37.570 3.820 LL-32 方铅矿 18.316 15.612 38.46 1.173 9.500 37.240 3.790 LL-34 方铅矿 18.291 15.627 38.558 1.171 9.530 37.930 3.850 LL-36 方铅矿 18.331 15.618 38.537 1.174 9.510 37.530 3.820 LL-41 方铅矿 18.326 15.632 38.535 1.172 9.540 37.690 3.820 LL-42 方铅矿 18.259 15.639 38.539 1.168 9.560 38.150 3.860 LL-45 方铅矿 18.262 15.636 38.548 1.168 9.550 38.140 3.870 表 4 噜鲁铅锌矿床铅同位素组成统计对比
Table 4. Statistics of Pb isotopic compositions of various rock units in the area
统计对象 样品个数 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 会泽铅锌矿 95 18.251~18.530 15.439~15.855 38.487~39.433 天桥铅锌矿 33 18.378~18.601 15.519~15.811 38.666~39.571 栖霞~茅口组 2 18.189~18.759 15.609~16.522 38.493~38.542 黄龙组 2 15.656~16.675 18.136~18.167 38.204~38.236 摆佐组 8 18.120~18.673 15.500~16.091 38.235~39.685 大埔组 5 18.397~18.828 15.537~16.499 38.463~39.245 灯影组 10 18.198~18.517 15.699~15.987 38.547~39.271 昆阳群 27 17.781~20.993 15.582~15.985 37.178~40.483 会理群 6 18.094~18.615 15.630~15.827 38.274~38.932 峨眉山玄武岩 16 18.175~19.019 15.528~15.662 38.380~39.928 -
[1] 袁波, 毛景文, 闫兴虎, 等.四川大梁子铅锌矿成矿物质来源与成矿机制:硫、碳、氢、氧、锶同位素及闪锌矿微量元素制约[J].岩石学报, 2014, 30(1):209-220. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201401016.htm
[2] 张铖, 张振亮, 黄智龙, 等.会泽铅锌矿床Pb、Zn成矿物质来源探讨[J].甘肃地质, 2008, 4:26-31. http://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200804007.htm
[3] 白俊豪, 黄智龙, 周家喜, 等.云南金沙厂铅锌矿床硫同位素地球化学特征[J].矿物学报, 2013, (2):256-264. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201302019.htm
[4] 高建国, 秦德先.滇中铅锌矿床成矿控制因素及成矿预测[J].云南地质, 1995, 15(1):68-80. http://www.cnki.com.cn/Article/CJFDTOTAL-YNZD601.006.htm
[5] 秦德先, 孟清.滇中铅锌矿床地球化学与成因研究[J].地质科学, 1994, 29(1):29-40. http://cdmd.cnki.com.cn/Article/CDMD-10674-1016229389.htm
[6] 秦德先, 高建国, 田毓龙.滇中铅锌矿床地质研究[M].昆明:云南科技出版社, 1998.
[7] 高建国.宜良大兑冲沉积-改造型铅锌矿床特征及成因[J].昆明理工大学学报, 1996, 21(3):18-24. http://www.cnki.com.cn/Article/CJFDTOTAL-KMLG603.003.htm
[8] Liu X K, Gao J G, Chang H, et al. Distribution, characteristics and genesis of lead-zinc deposits in central Yunnan Provice[J]. Advanced Material Research, 2013:2240-2243.
[9] 陈福坤, 李秋立, 李潮峰, 等.高精度质谱计在同位素地球化学的应用前景[J].地球科学-中国地质大学学报, 2005, 30(6):639-645. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200506000.htm
[10] 李秋立, 陈福坤, 王秀丽, 等.超低本底化学流程和单颗粒云母Rb-Sr等时线定年[J].科学通报, 2006, 51(3):321-325. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200603012.htm
[11] Spirakis C S, Heyl A V. Evaluation of proposed precipitation mechanisms for Mississippi Valley-type deposits[J]. Ore Geol. Rev., 1995, 10:1-17.
[12] Nakai S, Halliday A N, Kesler S E, et al. Rb-Sr dating of sphalerites from Mississippi Valley-type ore deposits[J]. Geochimica et Cosmochimica Acta, 1993, 57:417-427. doi: 10.1016/0016-7037(93)90440-8
[13] 黄智龙, 陈进, 韩润生.云南会泽超大型铅锌矿床地球化学及成因-兼论峨眉山玄武岩与铅锌成矿的关系[M].北京:地质出版社, 2004.
[14] 蔺志永, 王登红, 张长青.四川宁南跑马铅锌矿床的成矿时代及其地质意义[J].中国地质, 2010, 37(2):488-196. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201002024.htm
[15] 包广萍, 崔银亮, 高建国.滇东北茂租铅锌矿床热液方解石稀土元素地球化学特征[J].矿物学报, 2013(4):681-685. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB201304039.htm
[16] 李文博, 黄智龙, 许德如, 等.铅锌矿床Rb-Sr定年研究综述[J].大地构造与成矿学, 2002, 26(4):436-441. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200204014.htm
[17] Lange S, Chaudhuri S, Clauer N. Strontium isotopic evidence for the origin of barites and sulfïdes from the Mississippi Valley-type ore deposits in southeast Missouri. Econ Geol[J]. Economic Geology, 1985, 80(3):775-776. doi: 10.2113/gsecongeo.80.3.775
[18] 田世洪, 杨竹森, 侯增谦, 等.玉树地区东莫扎抓和莫海拉亨铅锌矿床Rb-Sr和Sm-Nd等时线年龄及其地质意义[J].矿床地质, 2010, 28(6):747-758. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200906003.htm
[19] 黄华, 张长青, 周云满, 等云南保山金厂河铁铜铅锌多金属矿床Rb-Sr等时线测年及其地质意义[J].矿床地质, 2014, 33(1):123-136. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201401008.htm
[20] 刘建明, 赵善仁.成矿流体活动的同位素定年方法评述[J].地球物理学进展, 1998, 13(3):46-55. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ803.004.htm
[21] Liu H, Xia B, Zhang Y. Zircon SHRIMP dating of sodium alkaline rocks from Maomaogou area of Huili County in Panxi, SW China and its geological implications[J]. Science Bulletin, 2004, 49(16):1750-1757. doi: 10.1007/BF03184310
[22] 吴越. 川滇黔地区MVT铅锌矿床大规模成矿作用的时代与机制[D]. 中国地质大学(北京)博士学位论文, 2013.
[23] Zhou J X, Huang Z L, Zhou M F, et al. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China[J]. Ore Geology Reviews, 2013, 53(8):77-92.
[24] 韩润生, 王峰, 胡煜昭, 等.会泽型(HZT)富锗银铅锌矿床成矿构造动力学研究及年代学约束[J].大地构造与成矿学, 2014, (4):758-771. http://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201404003.htm
[25] 刘肇昌, 李凡友, 钟康惠, 等.扬子地台西缘及邻区裂谷(陷)构造与金属成矿[J].矿产勘查, 1995, (2):70-76. http://www.cnki.com.cn/Article/CJFDTOTAL-YSJS502.002.htm
[26] 高振敏.滇黔地区主要类型金矿的成矿与找矿[M].北京:地质出版社, 2002.
[27] Ohmoto H. Syst ematics of sulfur and carbon isotopes in hydrothermal ore deposits[J]. Econ. Geol., 1972, (67):551-579
[28] 柳贺昌, 林文达.滇东北铅锌银矿床规律研究[M].昆明:云南大学出版社, 1999.
[29] Claypool G E, Holser W T, Kaplan I R, et al. The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation[J]. Chemical Geology, 1980, 28:199-260. doi: 10.1016/0009-2541(80)90047-9
[30] 于津生.中国同位素地球化学研究[M].北京:科学出版社, 1997.
[31] Machel H G. Relationships between sulphate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulphide deposits[J]. Carbonates and Evaporites, 1989, 4(2):137-151. doi: 10.1007/BF03175104
[32] Czamanske G K, Rye R O. Experimentally Determined Sulfur Isotope Fractionations between Sphalerite and Galena in the Temperature Range 600 degrees to 275 degrees[J]. Economic Geology, 1974, 69(1):17-25. doi: 10.2113/gsecongeo.69.1.17
[33] Jørgensen B B, Isaksen M F, Jannasch H W. Bacterial Sulfate Reduction Above 100 degrees C in Deep-Sea Hydrothermal Vent Sediments.[J]. Science, 1993, 258(5089):1756-1757.
[34] 李连举, 刘洪滔.滇东北铅, 锌, 银矿床矿源层问题探讨[J].矿产勘查, 1999, (6):333-339. http://www.cnki.com.cn/Article/CJFDTOTAL-YSJS199906003.htm
[35] 胡耀国. 贵州银厂坡银多金属矿床银的赋存状态、成矿物质来源与成矿机制[D]. 中国科学院地球化学研究所博士学位论文, 2000.
[36] Zartman R E, Doe B R. Plumbotectonics-the model[J]. Tectonophysics, 1981, 75:135-162. doi: 10.1016/0040-1951(81)90213-4
[37] 林方成.康滇地轴东缘铅锌矿床铅同位素组成特征及其成因意义[J].沉积与特提斯地质, 1995, (19):131-137. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD500.010.htm
[38] 高子英.云南主要铅锌矿床的铅同位素特征[J].云南地质, 1997, (4):359-367. http://www.cnki.com.cn/Article/CJFDTOTAL-YNZD199704002.htm
[39] 常向阳, 朱炳泉.东川铜矿同位素地球化学研究:Ⅰ.地层年代与铅同位素化探应用[J].地球化学, 1997, (2):32-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX702.004.htm
[40] Zhou C X, Wei C S, Guo J. The source of metals in the Qilinchang Zn-Pb deposit, Northeastern Yunnan, China:Pb-Sr isotope constraints[J]. Econ. Geol., 2001, 96:583-598. doi: 10.2113/gsecongeo.96.3.583
[41] 张招崇, 王福生.峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨[J].地球科学-中国地质大学学报, 2003, 28(4):431-439. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200304012.htm
[42] Yan Z F, Huang Z L, Xu C, et al. Signatures of the source for the Emeishan flood basalts in the Ertan area:Pb isotope evidence[J]. Chinese Journal of Geochemistry, 2007, 26(2):207-213. doi: 10.1007/s11631-007-0207-3
[43] 周家喜, 黄智龙, 周国富, 等.黔西北赫章天桥铅锌矿床成矿物质来源:S、Pb同位素和REE制约[J].地质论评, 2010, 56(4):513-524. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201004005.htm