东昆仑它温查汉西花岗闪长斑岩年代学、岩石学、地球化学特征及其成矿意义

杨涛, 赵辛敏, 张洲远, 杜亚龙, 李智明, 宋忠宝, 张乐, 张斌, 王晓鹏, 姜安定, 詹小弟, 王宇. 东昆仑它温查汉西花岗闪长斑岩年代学、岩石学、地球化学特征及其成矿意义[J]. 地质通报, 2017, 36(7): 1147-1157.
引用本文: 杨涛, 赵辛敏, 张洲远, 杜亚龙, 李智明, 宋忠宝, 张乐, 张斌, 王晓鹏, 姜安定, 詹小弟, 王宇. 东昆仑它温查汉西花岗闪长斑岩年代学、岩石学、地球化学特征及其成矿意义[J]. 地质通报, 2017, 36(7): 1147-1157.
YANG Tao, ZHAO Xinmin, ZHANG Zhouyuan, DU Yalong, LI Zhiming, SONG Zhongbao, ZHANG Le, ZHANG Bin, WANG Xiaopeng, JIANG Anding, ZHAN Xiaodi, WANG Yu. Chronological, petrologic and geochemical characteristics of Tawenchahanxi granitic diorite porphyry in East Kunlun Mountains and its metallogenic significance[J]. Geological Bulletin of China, 2017, 36(7): 1147-1157.
Citation: YANG Tao, ZHAO Xinmin, ZHANG Zhouyuan, DU Yalong, LI Zhiming, SONG Zhongbao, ZHANG Le, ZHANG Bin, WANG Xiaopeng, JIANG Anding, ZHAN Xiaodi, WANG Yu. Chronological, petrologic and geochemical characteristics of Tawenchahanxi granitic diorite porphyry in East Kunlun Mountains and its metallogenic significance[J]. Geological Bulletin of China, 2017, 36(7): 1147-1157.

东昆仑它温查汉西花岗闪长斑岩年代学、岩石学、地球化学特征及其成矿意义

  • 基金项目:
    中国地质调查局项目《青海省岩浆岩时空分布与成矿作用研究》(编号:1212011121089)
详细信息
    作者简介: 杨涛(1985-), 男, 硕士, 工程师, 从事金属矿产勘查和矿床地质研究。E-mail:yangtao008@163.com
    通讯作者: 李智明(1963-), 男, 博士, 教授级高级工程师, 从事矿床学和区域成矿规律研究。E-mail:1741838982@qq.com
  • 中图分类号: P595;P597+.3

Chronological, petrologic and geochemical characteristics of Tawenchahanxi granitic diorite porphyry in East Kunlun Mountains and its metallogenic significance

More Information
  • 它温查汉西铁多金属矿床是东昆仑祁漫塔格成矿带新发现的又一典型矽卡岩型矿床。利用LA-ICP-MS锆石U-Pb定年方法,获得矿区主要成矿岩体花岗闪长斑岩的成岩年龄为236.0±2.3Ma,该结果与前人利用40Ar-39Ar法获得的矽卡岩型磁铁矿矿石中白云母229.9±3.5Ma的等时线年龄一致。花岗闪长斑岩为过铝质高钾钙碱性系列,成因类型属于I型;微量元素配分型式表现为轻稀土元素和高场强元素富集、重稀土元素和大离子亲石元素亏损、中等负Eu异常的特征。花岗闪长斑岩形成于晚古生代-早中生代构造-岩浆旋回的碰撞-后碰撞阶段,与区域上大规模的幔源岩浆底侵及其与壳源岩浆的混合作用有关。

  • 加载中
  • 图 1  东昆仑祁漫塔格地区地质矿产分布略图(据参考文献[4, 7]修改)

    Figure 1. 

    图 2  它温查汉西矿区(基岩推断)地质、物探综合图(据参考文献修改)

    Figure 2. 

    图 3  化学成分QAP和TAS分类图[10-11]

    Figure 3. 

    图 图版Ⅰ  a.残留体构造;b.斑状结构;c.角闪石、绿泥石、绿帘石;d.叶腊石、滑石、硅灰石;e.斜长石环带;f.磷灰石、锆石;g.岩心纵断面;h.岩心横断面。a~f为正交偏光。Q—石英;Pl—斜长石;Bt—黑云母;Am—角闪石;Chl—绿泥石;Ep—绿帘石;Tlc—滑石;Prl—叶腊石;Zrn—锆石;Ap—磷灰石;Wo—硅灰石

    Figure 图版Ⅰ. 

    图 4  花岗岩SiO2-K2O判别图解(底图据参考文献[12])

    Figure 4. 

    图 5  花岗岩微量元素配分模式图(标准化值据参考文献[18])

    Figure 5. 

    图 6  花岗闪长斑岩锆石阴极发光图像、分析点位及206Pb/238U年龄

    Figure 6. 

    图 7  花岗闪长斑岩体锆石U-Pb谐和图(a)和206Pb/238U年龄图谱(b)

    Figure 7. 

    图 8  微量元素Yb-Ta(a)和(Yb+Ta)-Rb(b)构造环境判别图解[25]

    Figure 8. 

    表 1  花岗岩体主量、微量和稀土元素分析结果及特征值

    Table 1.  Chemical analytical data of major, trace and rare earth elements for the granite mass in the mine, and their characteristic element ratios

    样品
    编号
    ZK254
    08-H1
    ZK254
    08-H2
    ZK254
    08-H3
    ZK254
    08-H4
    ZK254
    08-H5
    SiO2 67.46 65.36 65.57 69.14 67.34
    Al2O3 15.1 14.96 15.41 14.19 15.26
    Fe2O3 0.94 0.83 1.29 0.79 0.9
    FeO 2.58 2.94 3.02 2.45 2.71
    CaO 2.35 2.92 3.63 2.66 3.36
    MgO 1.83 1.65 1.93 1.6 1.62
    K2O 4.32 4.23 3.17 3.93 3.59
    Na2O 2.67 3.01 3.01 2.53 2.86
    TiO2 0.46 0.5 0.52 0.44 0.48
    P2O5 0.1 0.12 0.12 0.1 0.11
    MnO 0.04 0.05 0.05 0.06 0.05
    H2O+ 1.42 1.6 1.36 1.12 0.82
    LOS 2.02 3.31 2.12 1.98 1.59
    Cu 1440 833 3340 1350 258
    Pb 22.2 23 22.5 31 23.7
    Mo 3.02 2.67 3.21 3.31 2.4
    Cr 22.2 17.5 20.3 19.5 23.8
    Ni 13.2 6.97 14.1 14 15.7
    Co 9.94 9.25 13.6 9.67 10.8
    Rb 339 442 249 245 278
    Sr 239 242 237 207 262
    Ba 556 541 431 466 521
    Nb 9.8 10.8 10.5 10.1 10.5
    Ta 0.65 0.72 0.7 0.68 0.7
    Zr 84.4 144 147 119 146
    Hf 2.91 4.1 4.17 3.52 4.24
    U 6.75 6.9 5.99 6.21 6.94
    Th 27.1 26.2 23.9 26.9 27
    Rb/Sr 1.42 1.83 1.05 1.18 1.06
    K/Rb 127.43 95.70 127.31 160.41 129.14
    Sr/Ba 0.43 0.45 0.55 0.44 0.50
    Nb/Ta 15.08 15.00 15.00 14.85 15.00
    Th/U 4.01 3.80 3.99 4.33 3.89
    La 32.8 35.2 32.9 31.1 34.6
    Ce 58.0 66.2 60.1 53.2 62.8
    Pr 5.95 6.80 6.33 5.59 6.52
    Nd 19.1 23.5 21.0 18.1 21.2
    Sm 3.36 4.08 3.65 3.13 3.74
    Eu 0.78 0.76 0.82 0.70 0.87
    Gd 2.79 3.42 3.32 2.72 3.32
    Tb 0.43 0.49 0.50 0.39 0.49
    Dy 2.52 2.80 2.92 2.31 2.96
    Ho 0.49 0.56 0.58 0.45 0.59
    Er 1.34 1.54 1.62 1.33 1.64
    Tm 0.22 0.24 0.25 0.20 0.26
    Yb 1.40 1.49 1.73 1.39 1.76
    Lu 0.22 0.24 0.28 0.22 0.29
    Y 12.3 13.8 14.4 11.9 15.2
    ΣREE 129.4 147.32 136 120.83 141.04
    LREE 119.99 136.54 124.8 111.82 129.73
    HREE 9.41 10.78 11.2 9.01 11.31
    LREE/HREE 12.75 12.67 11.14 12.41 11.47
    LaN/YbN 16.81 16.95 13.64 16.05 14.10
    δEu 0.76 0.61 0.71 0.72 0.74
    δCe 0.94 0.98 0.96 0.92 0.96
      注:主量元素含量单位为%,微量和稀土元素为10-6
    下载: 导出CSV

    表 2  花岗闪长斑岩LA-ICP-MS锆石U-Th-Pb同位素测试结果

    Table 2.  LA-ICP-MS U-Th-Pb analytical results of zircons from granitic diorite porphyry

    样点号 含量/10-6 232Th/238U 同位素比值及误差 表面年龄/Ma
    232Th 238U 207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    208Pb/
    232Th
    207Pb/
    206Pb
    207Pb/
    235U
    206Pb/
    238U
    208Pb/
    232Th
    1 436.00 636.60 0.68 0.05182 0.00366 0.26550 0.01599 0.03760 0.00081 0.01308 0.00105 275.990 162.943 239.090 12.832 237.932 5.046 262.592 21.029
    2 197.32 477.58 0.41 0.05360 0.00321 0.27458 0.01651 0.03731 0.00063 0.01263 0.00093 353.760 135.170 246.347 13.150 236.122 3.907 253.617 18.653
    3 418.45 600.93 0.70 0.05281 0.00238 0.27595 0.01335 0.03772 0.00077 0.01385 0.00115 320.430 101.840 247.440 10.626 238.692 4.806 277.956 22.947
    4 505.90 971.63 0.52 0.05320 0.00420 0.27485 0.02075 0.03750 0.00090 0.01381 0.00115 344.500 179.608 246.563 16.527 237.304 5.618 277.272 22.963
    5 409.63 764.47 0.54 0.05245 0.00307 0.26947 0.01394 0.03782 0.00088 0.01162 0.00070 305.615 133.315 242.268 11.148 239.314 5.439 233.414 13.973
    6 584.06 1050.52 0.56 0.05243 0.00217 0.27265 0.01368 0.03756 0.00098 0.01199 0.00066 305.615 94.433 244.814 10.915 237.680 6.074 240.969 13.137
    7 285.57 544.35 0.52 0.05328 0.00229 0.27714 0.01279 0.03768 0.00075 0.01159 0.00063 338.945 98.138 248.388 10.173 238.407 4.676 232.862 12.620
    8 397.22 499.06 0.80 0.05277 0.00471 0.26957 0.02340 0.03711 0.00133 0.01083 0.00063 320.430 203.680 242.352 18.720 234.890 8.295 217.663 12.607
    9 309.62 376.88 0.82 0.05369 0.00421 0.26951 0.02329 0.03619 0.00147 0.00963 0.00068 366.720 179.608 242.302 18.626 229.165 9.117 193.709 13.628
    10 556.06 963.28 0.58 0.05333 0.00340 0.27133 0.01539 0.03753 0.00096 0.01038 0.00064 342.650 144.425 243.757 12.289 237.531 5.985 208.712 12.861
    11 412.66 605.31 0.68 0.05223 0.00223 0.25775 0.01032 0.03623 0.00047 0.00984 0.00053 294.505 98.133 232.855 8.331 229.443 2.897 198.000 10.645
    12 391.21 497.89 0.79 0.05169 0.00428 0.25600 0.02039 0.03643 0.00090 0.00941 0.00057 272.285 186.088 231.439 16.487 230.640 5.612 189.260 11.344
    13 389.97 629.54 0.62 0.05239 0.00300 0.26863 0.01453 0.03759 0.00060 0.00999 0.00052 301.910 131.463 241.599 11.629 237.897 3.733 200.825 10.428
    14 469.67 644.38 0.73 0.05175 0.00422 0.26013 0.02210 0.03701 0.00153 0.01040 0.00074 275.990 187.013 234.772 17.807 234.277 9.485 209.023 14.895
    15 678.53 1048.71 0.65 0.05322 0.00203 0.27685 0.01034 0.03785 0.00062 0.01003 0.00050 338.945 85.178 248.156 8.220 239.463 3.856 201.775 9.920
    16 433.07 623.32 0.69 0.05309 0.00314 0.26947 0.01748 0.03742 0.00157 0.01018 0.00063 331.540 135.168 242.272 13.981 236.844 9.730 204.726 12.605
    17 672.37 1044.12 0.64 0.05294 0.00256 0.27233 0.01176 0.03785 0.00083 0.00992 0.00048 327.835 109.248 244.558 9.386 239.515 5.146 199.610 9.526
    18 303.65 360.57 0.84 0.05357 0.00470 0.26684 0.01976 0.03718 0.00139 0.01000 0.00059 353.760 198.123 240.164 15.837 235.320 8.629 201.076 11.850
    19 270.72 460.95 0.59 0.05221 0.00420 0.26839 0.02133 0.03756 0.00103 0.00955 0.00055 294.505 189.790 241.406 17.079 237.678 6.401 192.161 10.986
    下载: 导出CSV
  • [1]

    杨经绥, 许志琴, 李海兵, 等.东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J].岩石矿物学杂志, 2005, 24(5): 369-380. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200505004.htm

    [2]

    朱迎堂, 田景春, 白生海, 等.青海省石炭纪-三叠纪岩相古地理[J].古地理学报, 2009, 11(4): 384-392. http://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200904005.htm

    [3]

    袁万明, 莫宣学, 喻学慧, 等.东昆仑印支期区域构造背景的花岗岩记录[J].地质论评, 2000, 46(2): 203-211. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200002012.htm

    [4]

    李荣社, 计文化, 杨永成, 等.昆仑山及邻区地质[M].北京:地质出版社, 2008: 1-400.

    [5]

    Liu H T. Petrology, geochemistry and geochronology of Late Triassic volcanics, Kunlun orogenic belt, western China: Implications for tectonic setting and petrogenesis[J]. Geochemical Journal, 2005, 39 (1):1-20. doi: 10.2343/geochemj.39.1

    [6]

    Yuan C, Sun M, Xiao W J, et al. Garnet-bearing tonalitic porphyry from East Kunlun, Northeast Tibetan Plateau: Implications for adakite and magmas from the MASH Zone[J]. International Journal of Earth Sciences, 2009, 98(6):1489-1510. doi: 10.1007/s00531-008-0335-y

    [7]

    丰成友, 王松, 李国臣, 等.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义[J].岩石学报, 2012, 28(2): 665-678. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201202025.htm

    [8]

    Anderson T. Correlation of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79. https://www.researchgate.net/publication/222924679_Correction_of_common_lead_in_U-Pb_analyses_that_do_not_report_204Pb

    [9]

    Ludwig K R. User' s Manual for Isoplot3.0: A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, (4):1-66.

    [10]

    Streckeisen A L. Classification of the common igneous rocks by means of their chemical composition: A provisional attmpt[J]. Neues Jahrbuch fur Mineralogie, Monatshefte, 1976, 1: 1-15. http://www.worldcat.org/title/classification-of-the-common-igneous-rocks-by-means-of-their-chemical-composition-a-provisional-attempt/oclc/770403037

    [11]

    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth Science Reviews, 1994, 37: 215-224. doi: 10.1016/0012-8252(94)90029-9

    [12]

    Rickwood P C. Boundary lines within petrologic diagrams which use oxides major and minor elements[J]. Lithos, 1989, 22: 247-263. doi: 10.1016/0024-4937(89)90028-5

    [13]

    Wolf M B, London D. Apatite dissolution into peraluminoushaplogranite melts: An experimental study of solubilities and mechanism[J]. Geochim. Cosmochim. Acta., 1994, 58:4127-4145. doi: 10.1016/0016-7037(94)90269-0

    [14]

    Chappell B W, White A J. Two contrasting granite types: 25years later[J]. Australian Journal of Earth Sciences, 2001, 48(4): 489-499. doi: 10.1046/j.1440-0952.2001.00882.x

    [15]

    Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective[J]. Rev. Geophy., 1995, 33: 267-309. doi: 10.1029/95RG01302

    [16]

    Barth M G, McDonough W F, Rndnick R I. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3/4): 197-213. http://www.sciencedirect.com/science/article/pii/S0009254199001734

    [17]

    Miller C, Schuster R, Klotzli U, et al. Postcollisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-NdPb-O isotopic constraints for mantle source characteristics and petrogenesis[J]. Jour. Petrol., 1999, 40: 1399-1424. doi: 10.1093/petroj/40.9.1399

    [18]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean BasinsSoc. London Spcc. Pub., 1989, 42: 313-345.

    [19]

    吴荣新.锆石阴极发光和U-Pb年龄特征研究[J].安徽理工大学学报(自然科学版), 2008, 28(4): 1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-HLGB200804003.htm

    [20]

    田承盛, 丰成友, 李军红, 等.青海它温查汉铁多金属矿床40Ar-39Ar年代学研究及意义[J].矿床地质, 2013, 32(1): 169-176. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kcdz201301015&dbname=CJFD&dbcode=CJFQ

    [21]

    Kemp A S, Hawkesworth C J, Foster G L, et al. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotope in zircon[J]. Science, 2007, 315: 980-983. doi: 10.1126/science.1136154

    [22]

    Collins W J, Richards S W. Geodynamic significance of S-type granite in circum-Pacific orogens[J]. Geology, 2008, 36(7): 559-562. doi: 10.1130/G24658A.1

    [23]

    张旗.大陆花岗岩的地球动力学意义[J].岩石矿物学杂志, 2014, 33(4): 785-795. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW201404016.htm

    [24]

    肖龙, Rapp R, 许继峰.深部过程对埃达克质岩石成分的制约[J].岩石学报, 2004, 20(2): 219-228. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402003.htm

    [25]

    Pearce J A, Harris N B W, Tindle A J. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour. Petrol., 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    [26]

    莫宣学, 罗照华, 邓晋福, 等.东昆仑造山带花岗岩及地壳生长[J].高校地质学报, 2007, 13(3):403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200703005.htm

    [27]

    罗照华, 柯珊, 曹永清, 等.东昆仑印支晚期幔源岩浆活动[J].地质通报, 2002, 21(6): 292-297. http://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200206002.htm

    王军, 曹成德, 汪成萍, 等. 青海省格尔木市那陵格勒河西M5异常区多金属矿调查评价报告. 2014.

    王秉璋, 王涛, 陈发彬, 等. 青海省东昆仑祁漫塔格火成岩类成矿作用及找矿靶区优选报告. 2012.

  • 加载中

(9)

(2)

计量
  • 文章访问数:  837
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2016-10-05
修回日期:  2017-05-09
刊出日期:  2017-07-25

目录