Petrogenesis of the Early Paleozoic Jiergalangtu pluton in Inner Mongolia:Constraints from geochronology, geochemistry and Nd-Hf isotopes
-
摘要:
兴蒙造山带北缘断续分布的早古生代岩浆岩带,对古生代构造格局恢复及造山带演化研究具有重要意义。阿巴嘎旗北部吉尔嘎郎图岩体位于该岩浆岩带中段,为带内最大的早古生代复式侵入体。LA-ICP-MS锆石U-Pb定年表明,吉尔嘎郎图岩体早期花岗闪长岩单元成岩年龄为455.0~495.6Ma。在主量元素组成上,岩体SiO2含量中等(59.49%~68.22%),贫铁、镁,K2O/Na2O值(0.64~0.85)小于1,A/CNK=0.96~1.09,整体具有亚碱、弱过铝特征。稀土及微量元素方面,岩体富Cs、Rb、Th、U、Pb,亏损Ba、Sr、P及高场强元素Nb、Ta等,稀土元素总量中等,具有弱负Eu异常(δEu=0.52~0.82)。Sr-Nd-Hf同位素分析结果显示,岩体具有亏损的同位素组成,(87Sr/86Sr)i=0.7053~0.7034,εNd(t)=0.39~4.29,2件Hf同位素样品εHf(t)均为正值,分别为εHf(t)=7.6~10.8和εHf(t)=3.7~7.9。岩石地球化学、年代学及Sr-Nd-Hf同位素综合分析表明,吉尔嘎郎图岩体是早古生代古亚洲洋沿苏左旗-锡林浩特一线向北俯冲背景下,遭受了俯冲板片析出流体交代作用影响的新生下地壳部分熔融的产物,后期由于弧后拉张、贺根山洋盆打开与主体岛弧带分离,最终随着古亚洲洋的整体闭合,形成了与俯冲带彼此分隔的格局。
Abstract:Early Paleozoic granites are distributed on the northern margin of Xingmeng orogenic belt discretely, and the genesis of these granites has important implications for the reconstruction of regional Paleozoic tectonic setting and orogenic evolution. Jier-galangtu pluton outcropped in northern Abag Banner and located in the middle of the early Paleozoic granite belt is the biggest com-posite pluton in the granite belt. Zircon LA-ICP-MS U-Pb dating shows that the early stage of the pluton was emplaced during 455.0~495.6Ma. Geochemically, the Jiergalangtu granites show moderate SiO2 values (59.49%~68.22%) and depletion of magnesium and iron, with K2O/Na2O ratios less than 1 (0.64~0.85) and A/CNK values being 0.96~1.09; in addition, most of the samples present subalkaline and weak per-aluminous signature. The trace element data of these rocks display enrichment of Cs, Rb, Th, U, Pb and depletion of Ba, Sr, P and HFSE such as Nb, Ta, the pluton exhibits indistinct negative europium anomalies(δEu=0.04~0.25) with moderate total REE content. Jiergalangtu pluton shows depleted isotopic compositions, (87Sr/86Sr)i=0.7053~0.7034, εNd(t)=0.39~4.29, and both samples for Hf isotopic analysis have positive εHf(t) values, being 7.6~10.8 and 3.7~7.9 respectively. Integrated geochemical, geochronology and Sr-Nd-Hf isotopic data suggest that the Jiergalangtu granites were generated in early Paleozoic and resulted from the subduction of Paleo-Asian Ocean along Sunid-Xilinhot. The granites were formed by partial melting of juvenile crust which was modified by subduction slab fluids. The back-arc extension and opening of Hegenshan Ocean possibly resulted in the separation of Jiergalagntu pluton from predominant Sunid-Xilinhot island arc. Along with the closure of Paleo-Asian Ocean, the pluton ultimately occurred on the northern margin of Xingmeng orogenic belt and was separated from the subduction zone by He-genshan ophiolite complex.
-
-
图 8 吉尔嘎郎图岩体构造判别图解(图例同图 4)
Figure 8.
表 1 吉尔嘎郎图岩体LA-ICP-MS锆石U-Th-Pb定年结果
Table 1. LA-ICP-MS zircon U-Th-Pb dating results of the Jiergalangtu granite pluton
点号 含量/10-6 Th/U 同位素比值 表面年龄/Ma Pb U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 206Pb/238U 1σ 207Pb/235U 1σ 样品:15DX41;岩性:花岗闪长岩 15DX41-01 12 138 0.48 0.6772 0.0235 0.08183 0.00086 0.06002 0.00202 507 5 525 18 15DX41-03 18 207 0.58 0.6672 0.0190 0.08043 0.00084 0.06016 0.00162 499 5 519 15 15DX41-04 19 240 0.47 0.6311 0.0249 0.07689 0.00082 0.05953 0.00220 478 5 497 20 15DX41-05 16 179 0.52 0.6713 0.0172 0.08243 0.00088 0.05906 0.00146 511 5 522 13 15DX41-06 14 162 0.53 0.6656 0.0171 0.08161 0.00088 0.05915 0.00147 506 5 518 13 15DX41-07 29 346 0.65 0.6295 0.0242 0.07763 0.00080 0.05881 0.00223 482 5 496 19 15DX41-08 28 325 0.54 0.6336 0.0164 0.07951 0.00081 0.05780 0.00141 493 5 498 13 15DX41-09 27 296 0.67 0.6709 0.0191 0.08061 0.00091 0.06036 0.00150 500 6 521 15 15DX41-10 27 299 0.67 0.6657 0.0184 0.08110 0.00084 0.05953 0.00157 503 5 518 14 15DX41-11 24 280 0.61 0.6343 0.0165 0.07817 0.00080 0.05885 0.00148 485 5 499 13 15DX41-12 31 356 0.64 0.6618 0.0170 0.08116 0.00085 0.05914 0.00140 503 5 516 13 15DX41-15 20 231 0.60 0.6529 0.0158 0.08004 0.00082 0.05916 0.00138 496 5 510 12 15DX41-17 25 289 0.63 0.6490 0.0247 0.07872 0.00085 0.05980 0.00218 488 5 508 19 样品:15DX44;岩性:花岗闪长岩 15DX44-02 12 145 0.59 0.6153 0.0150 0.07662 0.00087 0.05824 0.00137 476 5 487 12 15DX44-03 12 141 0.54 0.6145 0.0182 0.07695 0.00083 0.05792 0.00165 478 5 486 14 15DX44-04 10 123 0.60 0.6147 0.0263 0.07756 0.00087 0.05748 0.00243 482 5 487 21 15DX44-05 11 136 0.56 0.6213 0.0164 0.07822 0.00087 0.05761 0.00148 485 5 491 13 15DX44-06 15 177 0.56 0.6214 0.0208 0.07827 0.00084 0.05758 0.00189 486 5 491 16 15DX44-07 12 153 0.52 0.6182 0.0315 0.07695 0.00083 0.05826 0.00291 478 5 489 25 15DX44-08 18 220 0.63 0.6174 0.0132 0.07775 0.00089 0.05759 0.00113 483 6 488 10 15DX44-09 17 206 0.62 0.6223 0.0262 0.07767 0.00097 0.05811 0.00228 482 6 491 21 15DX44-10 14 169 0.56 0.6243 0.0160 0.07746 0.00086 0.05846 0.00138 481 5 493 13 15DX44-11 15 178 0.58 0.6111 0.0137 0.07764 0.00083 0.05709 0.00121 482 5 484 11 15DX44-13 17 213 0.64 0.6129 0.0243 0.07630 0.00087 0.05826 0.00194 474 5 485 19 15DX44-15 12 156 0.63 0.6095 0.0180 0.07595 0.00086 0.05820 0.00164 472 5 483 14 15DX44-16 13 161 0.57 0.6094 0.0137 0.07722 0.00087 0.05724 0.00122 480 5 483 11 15DX44-17 16 211 0.52 0.5988 0.0149 0.07661 0.00082 0.05669 0.00136 476 5 476 12 15DX44-18 20 259 0.54 0.6007 0.0136 0.07657 0.00092 0.05690 0.00118 476 6 478 11 15DX44-19 19 244 0.54 0.6049 0.0180 0.07631 0.00118 0.05749 0.00156 474 7 480 14 样品:15DX50;岩性:英云闪长岩 15DX50-02 15 205 0.23 0.5702 0.0115 0.07343 0.00081 0.05631 0.00104 457 5 458 9 15DX50-06 9 131 0.17 0.5776 0.0217 0.07356 0.00081 0.05694 0.00215 458 5 463 17 15DX50-07 18 229 0.67 0.5708 0.0239 0.07318 0.00183 0.05658 0.00185 455 11 459 19 15DX50-08 12 163 0.42 0.5655 0.0245 0.07276 0.00082 0.05637 0.00225 453 5 455 20 15DX50-09 19 266 0.26 0.5804 0.0183 0.07407 0.00081 0.05684 0.00172 461 5 465 15 15DX50-10 25 334 0.43 0.5715 0.0101 0.07311 0.00083 0.05670 0.00089 455 5 459 8 15DX50-11 9 121 0.48 0.5697 0.0165 0.07279 0.00080 0.05676 0.00160 453 5 458 13 15DX50-12 26 374 0.15 0.5675 0.0107 0.07299 0.00084 0.05639 0.00099 454 5 456 9 15DX50-13 22 290 0.43 0.5680 0.0245 0.07323 0.00091 0.05625 0.00238 456 6 457 20 15DX50-14 22 303 0.47 0.5717 0.0106 0.07289 0.00082 0.05688 0.00100 454 5 459 9 15DX50-15 18 253 0.33 0.5703 0.0131 0.07300 0.00078 0.05666 0.00120 454 5 458 11 15DX50-16 22 294 0.42 0.5761 0.0099 0.07272 0.00079 0.05745 0.00091 453 5 462 8 表 2 吉尔嘎郎图岩体主量、微量和稀土元素含量
Table 2. Major, trace and rare earth element concentrations of the Jiergalangtu pluton
样号岩性 15DX43 15DX50-1 15DX50-2 15DX41 15DX44 15DX45 15DX46 15DX47 15DX48 英云闪长岩 花岗闪长岩 SiO2 59.49 68.22 64.43 62.80 66.27 65.68 65.68 65.13 64.92 TiO2 1.56 0.64 0.69 0.84 0.69 0.70 0.75 0.75 0.73 Al2O3 15.88 14.92 17.07 16.05 15.19 15.18 15.33 15.48 15.30 Fe2O3 3.09 1.68 1.73 1.84 2.39 2.52 2.11 1.69 2.99 FeO 5.00 2.54 2.79 3.63 2.08 2.52 2.69 3.02 2.01 MnO 0.14 0.07 0.08 0.10 0.08 0.10 0.09 0.05 0.09 MgO 2.77 1.28 1.36 2.26 1.46 1.74 1.62 1.67 1.62 CaO 4.23 2.63 2.89 4.20 2.11 1.99 2.01 2.73 3.12 Na2O 3.73 3.80 4.26 3.66 4.04 4.16 4.25 3.93 3.79 K2O 2.42 2.44 3.51 2.35 3.45 3.28 3.08 3.01 3.09 P2O5 0.18 0.52 0.36 0.19 0.17 0.16 0.18 0.18 0.17 LOI 0.95 1.91 0.96 1.68 1.83 1.68 1.92 2.02 1.95 ALK 6.15 6.24 7.77 6.01 7.49 7.44 7.33 6.94 6.88 A.R. 1.88 2.10 2.27 1.84 2.53 2.53 2.46 2.23 2.19 A/CNK 0.96 1.09 1.06 0.99 1.07 1.08 1.10 1.05 1.00 A/NK 1.81 1.68 1.58 1.87 1.46 1.46 1.48 1.59 1.60 Sc 27.70 15.60 17.30 17.50 17.90 19.00 18.70 17.70 18.00 V 243 60 64 105 72 76 80 79 80 Cr 22.90 17.30 19.10 32.50 18.60 21.00 20.60 21.60 26.30 Co 18.60 7.66 8.21 13.40 8.53 8.98 9.28 9.57 9.50 Ni 29.10 9.68 11.40 20.40 11.70 12.20 12.10 12.70 13.20 Cu 59.70 15.20 18.80 25.40 17.90 118.00 21.30 152.00 20.40 Zn 92.00 58.60 61.30 61.60 55.30 148.00 61.90 46.20 60.10 Ga 19.90 19.70 20.70 18.90 18.20 19.20 18.70 19.00 18.50 Cs 7.08 5.94 5.80 4.59 3.67 7.49 4.20 3.82 5.41 Rb 123 111 145 86 140 136 118 124 140 Ba 238 288 562 240 443 547 393 412 350 Th 6.37 11.20 8.04 11.90 10.60 10.10 9.58 10.30 11.10 U 1.07 1.70 1.31 0.97 1.97 1.58 1.64 1.80 1.32 Nb 19.40 11.60 12.10 10.50 11.90 11.20 12.90 12.30 12.10 Ta 1.08 0.69 0.71 0.62 0.80 0.74 0.82 0.77 0.82 Pb 13.10 17.80 19.10 15.10 21.60 83.60 16.50 13.70 17.20 Sr 206 157 183 245 197 296 156 193 205 Nd 30.00 29.20 26.30 32.90 27.20 29.30 27.80 28.50 30.20 Zr 223 324 316 260 234 256 264 259 277 Hf 5.70 8.32 7.56 6.55 6.26 6.82 6.80 6.71 7.23 La 17.90 27.50 23.90 32.30 23.80 26.70 23.40 24.90 26.50 Ce 44.70 66.00 57.60 52.80 56.40 63.20 53.70 57.80 55.40 Pr 6.64 7.38 6.53 8.53 6.75 7.42 6.82 7.14 7.58 Sm 7.70 5.97 5.36 6.59 5.85 6.26 6.03 6.11 6.67 Eu 1.34 1.25 1.42 1.37 1.21 1.40 1.24 1.26 1.27 Gd 8.00 5.98 5.18 6.56 6.20 6.50 6.00 6.67 6.97 Tb 1.38 0.93 0.75 1.04 0.98 1.03 1.02 1.05 1.07 Dy 8.26 5.18 3.79 6.03 5.68 5.78 5.89 6.02 6.21 Y 44.90 28.80 21.70 33.80 32.90 32.00 34.60 34.20 35.80 Ho 1.70 1.06 0.76 1.22 1.21 1.19 1.23 1.23 1.30 Er 4.46 2.94 2.38 3.37 3.34 3.30 3.50 3.43 3.57 Tm 0.65 0.46 0.46 0.51 0.52 0.53 0.54 0.53 0.56 Yb 4.38 3.22 3.41 3.45 3.64 3.48 3.78 3.75 3.91 Lu 0.65 0.50 0.50 0.53 0.56 0.54 0.57 0.57 0.60 ∑REE 137.76 157.57 138.34 157.20 143.34 156.63 141.52 148.96 151.81 (La/Yb)N 2.76 5.76 4.73 6.31 4.41 5.17 4.17 4.48 4.57 (La/Sm)N 1.46 2.90 2.80 3.08 2.56 2.68 2.44 2.56 2.50 (Gd/Yb)N 1.47 1.50 1.23 1.53 1.37 1.51 1.28 1.44 1.44 δEu 0.52 0.64 0.82 0.64 0.61 0.67 0.63 0.60 0.57 注:主量元素含量单位为%,微量和稀土元素为10-6 表 3 吉尔嘎郎图岩体Sr-Nd同位素组成
Table 3. Sr-Nd isotopic compositions of the Jiergalangtu pluton
样品 年龄/Ma 87Rb/86Sr 87Sr/86Sr ISr 147Sm/144Nd 143Nd/144Nd INd εNd TDM2/Ga 英云闪长岩 455 1.729026 0.716229 0.705024 0.155079 0.512617 0.512465 0.39 0.91 15DX43 花岗闪长岩 15DX41 496 1.018378 0.711614 0.704416 0.126671 0.512518 0.512106 2.10 1.05 15DX44 479 2.058181 0.717598 0.703551 0.136012 0.512527 0.512100 1.55 1.08 15DX45 479 1.330244 0.714350 0.705271 0.135113 0.512503 0.512079 1.14 1.12 15DX46 479 2.190845 0.718361 0.703409 0.137171 0.512671 0.512241 4.29 0.86 15DX47 479 1.860551 0.716545 0.703847 0.135577 0.512528 0.512103 1.60 1.08 15DX48 479 1.977821 0.717384 0.703885 0.139672 0.512529 0.512091 1.37 1.10 表 4 吉尔嘎郎图岩体锆石Hf同位素分析结果
Table 4. Zircon Hf isotopic compositions of the Jiergalangtu pluton
点号 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ (176Hf/177Hf)i ε Hf(t) 2σ TDM2/Ma fLu/Hf 样号:15DX41;岩性:花岗闪长岩 1 496 0.043114 0.001060 0.282787 0.000021 0.282778 10.8 0.7 867 -0.97 2 496 0.042802 0.001037 0.282696 0.000023 0.282687 7.6 0.8 1157 -0.97 3 496 0.039795 0.000977 0.282696 0.000019 0.282687 7.6 0.7 1157 -0.97 4 496 0.043458 0.001064 0.282754 0.000021 0.282744 9.6 0.7 974 -0.97 5 496 0.054542 0.001314 0.282708 0.000022 0.282696 7.9 0.8 1127 -0.96 6 496 0.063863 0.001545 0.282735 0.000018 0.282720 8.8 0.6 1050 -0.95 7 496 0.047100 0.001158 0.282720 0.000020 0.282710 8.4 0.7 1083 -0.97 8 496 0.044092 0.001094 0.282732 0.000018 0.282722 8.8 0.6 1045 -0.97 9 496 0.042020 0.001041 0.282738 0.000020 0.282728 9.0 0.7 1025 -0.97 10 496 0.032544 0.000879 0.282744 0.000018 0.282736 9.3 0.6 1000 -0.97 11 496 0.041902 0.001155 0.282709 0.000019 0.282698 8.0 0.7 1120 -0.97 12 496 0.042077 0.001107 0.282723 0.000017 0.282713 8.5 0.6 1073 -0.97 13 496 0.051465 0.001314 0.282728 0.000027 0.282716 8.6 0.9 1064 -0.96 14 496 0.034851 0.000871 0.282697 0.000019 0.282689 7.6 0.7 1150 -0.97 样号:15DX44;岩性:花岗闪长岩 1 479 0.038740 0.000941 0.282654 0.000019 0.282646 5.7 0.7 1310 -0.97 2 479 0.041968 0.001031 0.282649 0.000019 0.282639 5.5 0.7 1330 -0.97 3 479 0.053168 0.001273 0.282625 0.000021 0.282613 4.6 0.7 1413 -0.96 4 479 0.045373 0.001100 0.282644 0.000025 0.282634 5.3 0.9 1346 -0.97 5 479 0.062300 0.001467 0.282644 0.000026 0.282631 5.2 0.9 1358 -0.96 6 479 0.034609 0.000838 0.282670 0.000020 0.282663 6.3 0.7 1256 -0.97 7 479 0.040315 0.000981 0.282645 0.000024 0.282636 5.4 0.8 1341 -0.97 8 479 0.041025 0.000976 0.282598 0.000022 0.282589 3.7 0.8 1491 -0.97 9 479 0.043097 0.001049 0.282709 0.000020 0.282700 7.6 0.7 1138 -0.97 10 479 0.046036 0.001094 0.282605 0.000023 0.282595 3.9 0.8 1472 -0.97 11 479 0.036262 0.000951 0.282660 0.000019 0.282651 5.9 0.7 1292 -0.97 12 479 0.035780 0.000908 0.282713 0.000019 0.282705 7.9 0.7 1120 -0.97 13 479 0.035579 0.000907 0.282672 0.000020 0.282663 6.4 0.7 1253 -0.97 -
[1] Wu F Y, Jahn B M, Wilde S, et al. Phanerozoic Crustal Growth:UPb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China[J]. Tectonophysics, 2000, 328(1/2):89-113. http://www.academia.edu/13775026/Phanerozoic_crustal_growth_U_Pb_and_Sr_Nd_isotopic_evidence_from_the_granites_in_northeastern_China
[2] Jahn B M, Capdevila R, Liu D Y, et al. Sources of Phanerozoic gran-itoids in the transect Bayanhongor-Ulaan Baatar, Mongolia:geo-chemical and Nd isotopic evidence, and implications for Phanerozo-ic crustal growth[J]. Journal of Asian Earth Sciences, 2004, 23(5):629-653. doi: 10.1016/S1367-9120(03)00125-1
[3] Hong D W, Zhang J S, Wang T, et al. Continental Crustal Growth and the Supercontinental Cycle:Evidence from the Central Asian Orogenic Belt[J]. Journal of Asian Earth Science, 2004, 23:799-813. doi: 10.1016/S1367-9120(03)00134-2
[4] Wang T, Jahn B M, Kovach P V, et al. Nd-Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt[J]. Lithos, 2009, 110(1/4):359-372. http://www.academia.edu/13775013/Nd_Sr_isotopic_mapping_of_the_Chinese_Altai_and_implications_for_continental_growth_in_the_Central_Asian_Orogenic_Belt
[5] Badarch G, Cunningham W D, Windley B F. A new terrane subdi-vision for Mongolia:implications for the Phanerozoic crustal growth of Central Asia[J]. Journal of Asian Earth Sciences, 2002, 21(1):87-110. doi: 10.1016/S1367-9120(02)00017-2
[6] Khain E V, Bibikova E V, Salnikova E B, et al. The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic:New Geochro-nologic Data and Palaeotectonic Reconstructions[J]. Precambrian Research, 2003, 122(1/4):329-358. http://www.academia.edu/7788237/International_Geology_Review_Asia_a_frontier_for_a_future_supercontinent_Amasia_PLEASE_SCROLL_DOWN_FOR_ARTICLEpage_terms-and-conditions_REVIEW_ARTICLE_Asia_a_frontier_for_a_future_supercontinent_Amasia
[7] Windley B F, Alexeiev D, Xiao W, et al. Tectonic models for accre-tion of the Central Asian Orogenic Belt[J]. Journal of the Geological Society, London, 2007, 164(12):31-47. http://www.wenkuxiazai.com/doc/3073b39752d380eb62946d9a.html
[8] Kröner A, Windley B F, Badarch G. Accretionary Growth and Crust-formation in the Central Asian Orogenic Belt and Compari-son with the Arabian-Nubian Shield[J]. Geological Society of Amer-ica Memoir, 2007, 200:181-209. doi: 10.1130/2007.1200(11)
[9] Kröner A, Kovach V, Belousova E, et al. Reassessment of Continen-tal Growth during the Accretionary History of the Central Asian Orogenic Belt[J]. Gondwana Research, 2014, 25(1):103-125. doi: 10.1016/j.gr.2012.12.023
[10] 肖文交, 舒良树, 高俊, 等.中亚造山带大陆动力学过程与成矿作用[J].新疆地质, 2008, 26(1):4-8. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGJB200903011.htm
[11] Xiao W J, Windley B F, Hao J, et al. Accretion Leading to Colli-sion and the Permian Solonker Suture, Inner Mongolia, China:Termination of the Central Asian Orogenic Belt[J]. Tectonics, 2003, 22(6):1069-1090. https://www.researchgate.net/publication/235685627_Tectonic_models_for_accretion_of_the_Central_Asian_Orogenic_Belt._J_Geol_Soc_Lond
[12] Li J Y. Permian Geodynamic Setting of Northeast China and Adja-cent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J]. Journal of Asian Earth Sciences, 2006, 26(3/4):207-224. http://www.doc88.com/p-9813441728763.html
[13] Jian P, Liu D Y, Kröner A, et al. Time scale of the early to mid-Pa-leozoic orogenic cycle of the longlived Central Asian Orogenic Belt, Inner Mongolia of China:implications for continental growth[J]. Lithos, 2008, 101(3/4):233-259. https://es.scribd.com/document/247838083/Porphyry-Copper-Deposit-Model
[14] 徐备, 赵盼, 鲍庆中, 等.兴蒙造山带前中生代构造单元划分初探[J].岩石学报, 2014, 30(7):1841-1857. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201407001.htm
[15] Xu B, Charvet J, Chen Y, et al. Middle Paleozoic convergent oro-genic belts in western Inner Mongolia (China):framework, kine-matics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt[J]. Gondwana Research, 2013, 23(4):1342-1364. doi: 10.1016/j.gr.2012.05.015
[16] 陈斌, 赵国春, Wilde S.内蒙古苏尼特左旗南两类花岗岩同位素年代学及其构造意义[J].地质论评, 2001, 47(4):361-367. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200104005.htm
[17] 石玉若, 刘敦一, 张旗, 等.内蒙古苏左旗白音宝力道Adakite质岩类成因探讨及其SHRIMP年代学研究[J].岩石学报, 2005, 21(1):143-150. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501015.htm
[18] 王树庆, 辛后田, 胡晓佳, 等.内蒙古乌兰敖包图早古生代侵入岩年代学、地球化学特征及地质意义[J].中国地质大学学报-地球科学, 2016, 41(4):555-569. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201604001.htm
[19] Zhang W, Jian P, Kröner A, et al. Magmatic and metamorphic de-velopment of an early to mid-Paleozoic continental margin arc in the southernmost Central Asian Orogenic Belt, Inner Mongolia, China[J]. Journal of Asian Earth Sciences, 2013, 72(4):63-74. https://www.researchgate.net/profile/Ping_Jian/publications
[20] 秦亚, 梁一鸿, 邢济麟, 等.内蒙古正镶白旗地区早古生代O型埃达克岩的厘定及其意义[J].地学前缘, 2013, 20(5):106-114. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201305008.htm
[21] 杨文麟, 骆满生, 王成刚, 等.兴蒙造山系新元古代-古生代沉积盆地演化[J].地球科学-中国地质大学学报, 2014, 39(8):1155-1168. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201408017.htm
[22] 赵利刚, 冉皞, 张庆红, 等.内蒙古阿巴嘎旗奥陶纪岩体的发现及地质意义[J].世界地质, 2012, 31(3):451-461. http://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201203003.htm
[23] 李红英, 周志广, 李鹏举, 等.内蒙古东乌珠穆沁旗晚奥陶世辉长岩地球化学特征及其地质意义[J].地质论评, 2016, 62(2):300-316. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201602005.htm
[24] Li Y L, Zhou H W, Brouwer F M, et al. Early Paleozoic to middle Triassic bivergent accretion in the Central Asian Orogenic Belt:in-sights from zirco U-Pb dating of ductile shear zones in central In-ner Mongolia, China[J]. Lithos, 2014, 205(9):84-111.
[25] Jackson S E, Pearson N J, Griffin W L, et al. The application of la-ser ablation-inductively coupled plasma-mass spectrometry (LAICP-MS) to in situ U-Pb zircon geochronology[J]. Chemical Ge-ology, 2004, 211:47-69. doi: 10.1016/j.chemgeo.2004.06.017
[26] Wiedenbeck M, Alle P, Corfu F, et al. Three natural zircon stan-dards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostandards and Geoanalytical Research, 1995, 19(1):1-23. doi: 10.1111/ggr.1995.19.issue-1
[27] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recy-cling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zir-cons of mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2):537-571.
[28] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace el-ements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2):34-43. http://d.wanfangdata.com.cn/ExternalResource-yskwxzz201006013%5e21.aspx
[29] Ludwig K R. User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2003, 4:1-71.
[30] 耿建珍, 李怀坤, 张健, 等.锆石Hf同位素组成的LA-MC-ICPMS测定[J].地质通报, 2011, 30(10):1508-1513. doi: 10.3969/j.issn.1671-2552.2011.10.004 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20111004&journal_id=gbc
[31] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon tex-tures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1):469-500. doi: 10.2113/0530469
[32] Wright J B. A simple alkalinity ratio and its application to questions of nonorogenic granite genesis[J]. Geological Magazine, 1969, 106(4):370-384 doi: 10.1017/S0016756800058222
[33] Le Maitre R W, Bateman P, Dudek A, et al. A Classification of Ig-neous Rocks and Glossary of Terms[M]. Oxford:Blackwell, 1989.
[34] Maniar P, Piccoli P. Tectonic discrimination of granitoids[J]. Geo-logical Society of America Bulletin, 1989, 101:635-643 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[35] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120:223-253 doi: 10.1016/0009-2541(94)00140-4
[36] Boynton W V. Geochemistry of the rare earth elements:meteorite studies[C]//Henderson P. Rare Earth Elements Geochemistry. Am-sterdam:Elsevier, 1984:63-144.
[37] Condie K C. Geochemistry and tectonic setting of early Proterozo-ic supercrustal rocks in the south-western United States[J]. Journal of Geology, 1986, 94:845-864. doi: 10.1086/629091
[38] Wu G, Chen Y, Sun F, et al. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Du-obaoshan area, NE China, and their geological significance[J]. Jour-nal of Asian Earth Sciences, 2015, 97:229-250. doi: 10.1016/j.jseaes.2014.07.031
[39] Yang J H, Wu F Y, Shao J A, et al. Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China[J]. Earth and Planetary Science Letters, 2006, 246(3/4):336-352 http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200702001074.htm
[40] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tienshan (China):implications for the continental growth of Central Asia[J]. Am. J. Sci., 2004, 304:370-395. doi: 10.2475/ajs.304.4.370
[41] Chen B, Jahn B M, Tian W. Evolution of the Solonker suture zone:constraints from zircon U-Pb ages, Hf isotopic ratios and whole-rock Nd-Sr isotope compositions of subduction and colli-sion-related magmas and forearc sediments[J]. J. Asian Earth Sci., 2009, 34:245-257. doi: 10.1016/j.jseaes.2008.05.007
[42] Eizenhöfer P R, Zhao G, Sun M, et al. Geochronological and Hf isotopic variability of detrital zircons in Paleozoic strata across the accretionary collision zone between the North China craton and Mongolian arcs and tectonic implications[J]. Geological Society of America Bulletin, 2015, 65(4):487-508. http://www.academia.edu/Documents/in/Detrital_Zircon_Geochronology
[43] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimina-tion Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25(4):956-983 doi: 10.1093/petrology/25.4.956
[44] Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[C]//Coward M P, Reis A C. Colli-sion tectonics. Spec. Publ. Grol. Soc. Lond., 1986, 19:67-81.
[45] Gorton M P, Schandl E V. From Continents to Island Arcs:A Geo-chemical Index of Tectonic Setting for Arc-related and Withinplate Felsic to Intermediate Volcanic Rocks[J]. Canadian Mineralo-gist, 2000, 38(5):1065-1073. doi: 10.2113/gscanmin.38.5.1065
[46] Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magma[J]. Annu. Rev. Earth Planet. Sci., 1995, 23:251-285 doi: 10.1146/annurev.ea.23.050195.001343
[47] 张旗, 许继峰, 王焰, 等.埃达克岩的多样性[J].地质通报, 2004, 23(Z2):959-965. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=200409170&journal_id=gbc
[48] 张宏飞, 徐旺春, 郭建秋, 等.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据[J].岩石学报, 2007, 23(6):1347-1353. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706010.htm
[49] 邓晋福, 冯艳芳, 狄永军, 等.岩浆弧火成岩构造组合与洋陆转换[J].地质论评, 2015, 61(3):473-484. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201503001.htm
[50] Hirose K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts[J]. Ge-ology, 1997, 25(1):42-44 https://pubs.geoscienceworld.org/geology/article-pdf/25/1/42/859402/i0091-7613-25-1-42.pdf
[51] Rudnick R L, Gao S. Composition of the continental crust[C]//Holland H D, Turekian K K. The Crust. Treatise on Geochemistry 3. Elsevier-Pergamon, Oxford, 2003:1-64.
[52] Ayers J. Trace element modeling of aqueous fluid-peridotite inter-action in the mantle wedge of subduction zones[J]. Contributions to Mineralogy and Petrology, 1998, 132:390-404. doi: 10.1007/s004100050431
[53] Xu B, Zhao G C, Li J H, et al. Ages and hf isotopes of detrital zir-cons from Paleozoic strata in the Chagan Obo Temple area, Inner Mongolia:implications for the evolution of the Central Asian Oro-genic Belt[J].Gondwana Research, 2016, 43:149-163
[54] Jian P, Kröner A, Windley B F, et al. Zircon ages of the Bayank-hongor ophiolite mélange and associated rocks:time constraints on Neoproterozoic to Cambrian accretionary and collisional orogene-sis in central Mongolia[J].Precambrian Research, 2010, 177(1):162-180.
[55] Gibsher A S, Khain E V, Kotov A B, et al. Late Vendian age of the Han-Taishiri ophiolitic complex in western Mongolia[J]. Russ. Ge-ol. Geophys., 2001, 42:1110-1117. https://link.springer.com/article/10.1007/s11430-011-4175-4
[56] Štípská P, Schulmann K, Lehmann J, et al. Early Cambrian eclog-ites in SW Mongolia:evidence that the Palaeo-Asian Ocean suture extends further east than expected[J]. J. Metamorph. Geol., 2010, 28:915-933. doi: 10.1111/jmg.2010.28.issue-9
[57] Demoux A, Kröner A, Liu D Y, et al. Precambrian crystalline basement in southern Mongolia as revealed by SHRIMP zircon dating[J]. Int. J. Earth Sci., 2009, 98:1365-1380. doi: 10.1007/s00531-008-0321-4
[58] Zhou J B, Wang B, Wilde S A, et al. Geochemistry and U-Pb zir-con dating of the Toudaoqiao blueschists in the Great Xing'an Range, northeast China, and tectonic implications[J].Journal of Asian Earth Sciences, 2015, 97:197-210. doi: 10.1016/j.jseaes.2014.07.011
[59] 冯志强. 大兴安岭北段古生代构造-岩浆演化[D]. 吉林大学博士学位论文, 2015.
http://cdmd.cnki.com.cn/Article/CDMD-10183-1015593139.htm [60] 葛文春, 吴福元, 周长勇, 等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报, 2005, 50(12):1239-1247. doi: 10.3321/j.issn:0023-074X.2005.12.015
[61] 武广, 孙丰月, 赵财胜, 等.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义[J].科学通报, 2005, 50(20):2278-2288. doi: 10.3321/j.issn:0023-074X.2005.20.017
[62] Miao L C, Fan W M, Liu D Y, et al. Geochronology and geochem-istry of the Hegenshan ophiolitic complex:implications for latestage tectonic evolution of the Inner Mongolia-Daxinganling Oro-genic Belt, China[J]. Journal of Asian Earth Sciences, 2008, 32(5/6):348-370. http://www.academia.edu/11908952/Reassessment_of_continental_growth_during_the_accretionary_history_of_the_Central_Asian_Orogenic_Belt
[63] Jian P, Kröner A, Windley B F, et al. Carboniferous and Creta-ceous mafic-ultramafic massifs in Inner Mongolia (China):a SHRIMP zircon and geochemical study of the previously pre-sumed integral"Hegenshan ophiolite"[J]. Lithos, 2012, 142/143:48-66. doi: 10.1016/j.lithos.2012.03.007
[64] 黄波, 付冬, 李树才, 等.内蒙古贺根山蛇绿岩形成时代及构造启示[J].岩石学报, 2016, 32(1):158-176. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201601021.htm
① 天津华北地质勘查局. 1: 5万查干楚鲁廷阿查6幅区域地质调查报告. 2012.
-