Zircon U-Pb ages and geochemistry of the Early Creta-ceous intrusive rocks in the north of Zabuye salt lake area, Tibet, and their geological significance
-
摘要:
中冈底斯带在早白垩世发生的大规模岩浆爆发事件的成因模式仍然存在争议。对中冈底斯带扎布耶茶卡北部区域岩浆岩的野外特征、锆石U-Pb年龄、全岩地球化学特征进行研究,结果表明,扎布耶茶卡北部岩体主要侵位于142Ma和100Ma,2期岩浆作用均包含中酸性岩体和辉长岩脉体。第一期(约142Ma)岩体属I型偏铝质高钾钙碱性系列花岗质岩体,第二期(约100Ma)岩体为偏铝质高钾钙碱性系列闪长质岩体。2期中酸性岩体均富集Rb、Ba、Th、U等大离子亲石元素,相对亏损Nb、Ta等高场强元素,并显示强烈的壳-幔岩浆混合特征。结合前人研究资料,扎布耶茶卡北部第一期花岗质岩体及辉长岩脉为南向俯冲的班公湖-怒江洋壳板片回转引起的岩浆作用;第二期闪长质岩体及辉长岩脉为班公湖-怒江洋壳板片断离的岩浆作用的响应。该研究成果为班公湖-怒江洋的南向俯冲、板片回转和板片断离演化模式提供了岩浆作用证据。
-
关键词:
- 中冈底斯带 /
- LA-ICP-MS锆石U-Pb年龄 /
- 全岩地球化学 /
- 班公湖-怒江洋演化
Abstract:The genetic model of the widely distributed magmatism in the Mid-Gangdise belt of Tibet during Early Cretaceous is still controversial. The authors conducted field observation, zircon U-Pb dating and geochemical studies of the intrusions from Zabuye salt lake in the Mid-Gangdise belt. Zircon U-Pb age dating suggests that the the intrusion of Zabuye salt lake magma occurred in two periods (142Ma and 100Ma), and both have intermediate to acidic plutons and gabbro dikes. The first phase plutons are I-type metaluminous and high-k calcalkaline series granitic rocks, whereas the second phase plutons belong to metaluminous high-k calcalkaline series dioritic intrusions. Both intermediate to acidic plutons show enrichment of LILE (Rb, Ba, Th and U) and depletion of HFSE (Nb, Ta), with strong magma mixing characters.The data collected from previous researchers show that the first phase granitic plutons and gabbro dike were induced by the roll-back of the subducted Bangong-Nujiang Oceanic slab, while the second phase plutons and dike resulted from the oceanic slab break-off. The results obtained by the authors provide evidence for the southern direction subduction, roll-back and break-off of the Bangong-Nujiang Oceanic slab.
-
自2007年在珠江口盆地神狐海域钻探发现天然气水合物以来,南海北部深水区的水合物勘探不断取得重大发现和进展[1-3]。琼东南盆地是我国重要的油气资源产区,其深水区广泛存在指示天然气水合物发育的地质、地球物理和地球化学标志,被认为蕴藏着丰富的天然气水合物资源[4-6]。2017年5月神狐海域天然气水合物成功试采后,琼东南盆地深水区再次成为天然气水合物勘探的热点研究区之一[7-10]。
前人从水合物的地震反射特征[11]、气体来源[12]、孔隙水地球化学特征[13]和流体输导与逸散体系[14-16]等方面,对琼东南盆地深水区水合物成藏条件进行了研究。地震反射资料显示西沙海域沉积层中发育典型的似海底反射(BSRs),且叠前地震道集上BSRs下伏的游离气层具有三类振幅随偏移距的变化(AVO)响应特征[11]。琼东南盆地沉积物酸解烃测试结果和高异常段的同位素分析表明:琼东南盆地气态烃甲烷以热解成因为主,部分高值区域可能混有过成熟气或煤成气。深部热解气能够为天然气水合物的形成提供气体来源[12]。同时,西沙西南海底麻坑内柱样的地球化学分析发现了指示水合物分解的关键证据:孔隙水Cl-浓度降低,伴随δ18O值的升高,推断西沙西南麻坑区具有良好的水合物勘探前景[13]。琼东南盆地深水区的中新世—上新世地层中发育多边形断层,多边形断层、管状和底辟构造作为琼东南盆地裂后热沉降阶段的泄压通道,使大量流体近似垂直向上运移, 为天然气水合物形成提供了充足气源[14]。另外,位于琼东南盆地南部以及中建南盆地区域的大规模麻坑群指示了研究区内存在活跃的流体运移和渗漏[15, 16]。
然而,已有的研究主要侧重于天然气水合物成藏条件的单个因素,缺乏对水合物成藏条件的系统性研究。本文以琼东南盆地西南深水区为例,采用天然气水合物成藏系统的思路,从气源供给来源、运聚通道类型、地球物理指示等方面对研究区的天然气水合物成藏前景进行分析,最后指出有利勘探区带和目标体。
1. 区域地质背景
华光凹陷位于琼东南盆地南部坳陷带,西邻莺歌海盆地,北靠陵南低凸起,南部和东部分别是广乐隆起区和西沙隆起区。研究区主要位于华光凹陷和西沙群岛的西部地区,海底地貌变化较大,受广乐隆起和西沙隆起古地貌的影响,西南和东北方向海底地势较高(图 1a)。华光凹陷区域上构造分带为西部洼陷、华西断垒带、东部洼陷、南部斜坡区和东部凸起区。其中西部洼陷以一条北东向断裂和一条北东东向断裂为界;华西断垒带受两条北东向大断裂分割控制形成;东部洼陷的内部发育了若干条北东向小断裂,形成多个断鼻构造;南部斜坡带以一条北东向大断裂和一条北西向断裂与东部洼陷相邻(图 1b)[17]。华光凹陷构造演化可划分为3个阶段:古新世—早渐新世早期裂陷阶段、晚渐新世持续裂陷阶段和拗陷阶段。古新世—早渐新世早期裂陷阶段发育基底卷入正断层;晚渐新世持续裂陷阶段发育盖层滑脱正断层;拗陷阶段断层活动弱,发育小规模的正断层和多边形断层[18]。华光凹陷拗陷期充填下中新统三亚组、中中新统梅山组、上中新统黄流组、上新统莺歌海组和第四系乐东组,为一套厚的半深海-深海相碎屑夹碳酸盐岩沉积(图 1c)。地层总体呈由西北向东南逐渐减薄的趋势。
2. 天然气水合物稳定条件
天然气水合物是在高压低温环境下主要由甲烷等低分子量气体与水分子结合形成的固态物质。天然气水合物的形成受到地温梯度、孔隙压力、气体组分及孔隙水盐度等物理-化学条件的影响。琼东南盆地南部深水区热流值为70~80mW/m2,平均地温梯度约为38~45℃/km,为中等地温梯度[19, 20],而神狐海域2007年钻探的5个站位温度原位测量的地温梯度为45~67.7℃/km[21]。适宜的地温梯度,为水合物形成创造了非常有利的物理条件。华光凹陷水深为400~1500m,绝大多数地区超过600m,海底温度约为2~5℃,海底压力为6~15MPa。由于天然气水合物一般形成于海底之下1000m以浅的地层中,因此华光凹陷深部存在的异常高孔隙流体压力带对水合物的相平衡没有直接的影响。位于华光凹陷北部的崖13气田CH4 含量约为85%, 非烃类气体CO2含量为8.73%~11.5%,N2含量较低。采用该气体组分,地温梯度取40℃/km,应用CSMHYD程序计算的热成因和生物成因天然气水合物热力学相平衡表明:生物成因甲烷水合物分布于水深约大于600m的海底, 稳定带最大厚度约320m;热成因天然气水合物分布于水深约大于550m的海区, 稳定带最大厚度约345m。因此,华光凹陷具备水合物形成并富集的稳定条件。
3. 天然气水合物的气源条件
形成天然气水合物的气源主要包括热分解成因气和微生物成因气。琼东南盆地华光凹陷发育始新统湖相、渐新统崖城组海陆过渡相-半封闭浅海相和上新统—第四纪半深海-深海相3套有利的泥质烃源岩。前二者为成熟烃源岩,可以为天然气水合物的形成提供热解成因气, 后者为生物气源岩。
琼东南盆地深水区始新统湖相、渐新统崖城组海陆过渡相-半封闭浅海相两套主力烃源岩的规模大,热演化程度高,生烃潜力巨大。有机碳(Ro)的热演化分析表明:这两套高成熟的主力烃源岩,生烃门限为3800~4200m。崖城组沉积中心位于凹陷的西北部,地层最厚2800m,洼陷区厚度为1000~1800m,厚度自西北向东南逐渐变薄,其中崖城组二段的烃源岩最厚可达450m,分布范围广,且大部分已经进入主生气阶段[22](图 2)。沉积物酸解烃测试和同位素分析显示凹陷内海底浅表层检测到的气态烃甲烷以热解成因为主,部分高值区域可能混有过成熟气或煤成气[12]。这表明热解成因气完全有可能运移至浅层的水合物稳定带,并形成水合物。盆地模拟表明:琼东南盆地烃源岩(古近系始新统湖相泥岩—渐新统崖城组海陆过渡相煤系地层)第1期生排烃高峰在陵水—三亚期,第2期生排烃高峰在莺歌海期至今[23]。第2期生排烃高峰时,华光凹陷整体已经处于半深海-深海环境,大部分区域满足水合物形成的温度和压力条件。可以说“圈闭”的形成与深层主力烃源岩生排烃史匹配关系较好,有利于热解成因气在水合物稳定带内的聚集成藏。
图 2. 琼东南盆地华光凹陷崖二段泥岩和烃源岩Ro平面分布图(据文献[22]修改)Figure 2. Distribution of source rock maturity and mudstone thickness of the 2nd Member of Yacheng Formation of Huaguang Depression of Qiongdongnan Basin(modified from Huang et al., 2015)微生物成因气是由多种(微)生物化学作用所形成的天然气,气体成分以甲烷为主(通常含量大于98%)。生物气的生成上限温度为80~85℃,主产气带温度为25~65℃,主生气阶段埋藏深度位于550~2000m[24, 25]。琼东南盆地经历了海陆过渡→滨浅海→浅海→半深海的沉积环境演变过程;大致从渐新世起逐渐接受海侵,中新世晚期至上新世早期出现半深海环境。琼东南盆地西南部从中新世就开始进入深水沉积环境。来自越南隆起和海南岛双物源供给使得华光凹陷上新统—第四纪快速沉积了较厚的泥岩,这为生物气的形成提供了充足的物质基础[26, 27]。华光凹陷上新统—第四纪海相泥岩埋藏较浅,热力作用相对较微弱,处于生物化学作用带内[25]。表层沉积物的有机碳含量(TOC)为0.8%~1.5%[28],高于一般水合物富集区沉积物中的总有机碳含量(通常高于0.5%)[29],具有较好的生物气生烃潜力,是形成水合物的主要生物气来源。
4. 天然气水合物成藏的地球物理特征
4.1 BSR特征
似海底反射(BSR)是近平行于海底的地震反射,通常认为BSR为一定温压条件控制下含天然气水合物沉积层的底界面。其在地震剖面上具有典型的识别特征:(1)可见到BSR与地层斜交的现象;(2)振幅强度变化较大,横向上可在一定范围内追踪;(3) BSR反射波与海底反射波的极性相反;BSR附近层位存在明显的速度倒转现象。但BSR与水合物的关系并非一一对应,也就是说没有BSR的地区也可能存在水合物,有BSR的地区不一定存在水合物。另外,BSR的连续追踪和准确识别与频宽关系密切,适合的频宽使得识别效果清晰、稳定和突出[30]。
地震剖面揭示研究区400~1500m的水深范围内存在指示天然气水合物的似海底反射(图 3)。BSR位于海底以下200~370ms。海底浅层沉积物速度按照1600m/s计算,区内BSR位于海底以下160~296m,平均埋深约230m,且BSR的埋深随水深的增加而增加。BSR之上发现振幅空白带,空白发射的时间厚度大约为60~120ms。BSR均位于第四纪以来的沉积层中,显示与深水浊流水道和块体流沉积有着良好的空间匹配关系。以图 4测线为例,其上可识别出多期深水水道和块体流沉积。深水水道在地震剖面上具有典型的下切反射,内部呈现弱-强振幅相互叠置,连续性好的地震相。水道和块体流沉积以及周缘的断裂、海底的麻坑组成了含气流体运移网络。BSR1位于T20界面附近,与水道充填地层单元斜交。BSR1下伏断层的断点十分清晰明确,并延伸至T40界面。T20界面之上识别出具有杂乱、弱振幅地震反射特征的块体流(MTD)。根据块体流底界面深度估算,MTD位于水合物稳定带内。BSR2位于浊流水道之上,同时与该MTD的底部吻合,具有振幅较强、连续性好、平行于海底且极性与海底相反的反射特征。
4.2 流体输导和渗漏系统
断层通常被视为最基本的聚集型流体运移通道,其他的通道还包括底辟构造、气烟囱、不整合面、高渗透层和古构造脊等类型。与周围的沉积地层相比,这些通道具有较强的渗流能力,有助于含气流体的运移。在运移通道的作用下,不仅可以将深部的热成因气,而且可以将浅部的微生物成因气运移到天然气水合物稳定带,从而促进水合物的富集与成藏。通过地震解释发现,研究区存在多种类型的流体输导系统,包括构造断层、泥底辟、气烟囱和多边形断层等。大规模的构造断层主要发育在华光凹陷古近系中;而新近系为拗陷沉降阶段,断裂微弱,但发育了一定数目的浅层断裂、泥底辟构造和多边形断层,并可以观察到大量规模较小的气烟囱。
泥底辟在二维反射地震剖面上呈现出垂向延伸的杂乱模糊或者空白反射,其顶部或两侧的同相轴呈现上拉的强振幅特征。研究区发现的泥底辟根部位于古近系的泥源层,其顶部埋藏深度不一(图 5)。以过研究区中部的地震剖面为例(图 5a和5b),该剖面上可以清楚地识别出一系列泥底辟。埋藏较浅的底辟,其顶部距海底垂向距离约为350m,较深的约为600m。其中MD2(泥底辟)活动强烈,之上可见呈锥状的泥火山构造;两侧地层向外减薄,应为泥火山喷发时形成的泥流层。泥底辟可作为深部烃源岩生成的天然气向浅层水合物稳定域穿层运移的输导通道。此外在梅山组和黄流组泥岩中发育的多边形断层也是华光凹陷裂后热沉降阶段重要的输导通道类型[14]。部分多边形断层延伸到泥底辟的顶部[31],泥底辟和多边形断层为含气流体提供了垂向的运移通道,对华光凹陷热沉降阶段含气流体的运移、天然气水合物的富集成藏具有重要的意义。
同时研究区上新世(5.5Ma)以来的地层中广泛发育变形滑塌体,其形成可能与天然气水合物的分解有关。变形滑塌体上部为滑坡构造,地震同相轴较为连续;下部发生变形,大部分演化为弱振幅-杂乱反射的块体流(MTD)沉积,具有明显的双层结构,在这些变形滑塌体中发育一系列的正断层。由于滑脱断层切入第四系,且与海底相连通,一些流体也可能会沿着滑脱断层逃逸至海底形成指示流体逸散的麻坑。地震反射剖面和多波束地形图揭示华光凹陷和其南部的广乐隆起上广泛发育麻坑,麻坑表面宽度在几十米到数百米之间,并与断层、气烟囱、泥底辟、声空白声混浊、强反射等多种地震反射异常伴生[15, 16]。GC14站位的重力活塞柱样孔隙水和δ18 O的分析表明:位于研究区东南部的某麻坑翼部有天然气水合物的发育[13]。因此,第四纪滑移体中的滑脱断层可能更多地表现为含气流体的逃逸通道。
5. 天然气水合物成藏模式和有利勘探区带探讨
盆地模拟的研究结果表明,琼东南盆地西部的乐东-陵水凹陷在渐新世崖城期就已经大面积形成超压(压力系数>1.27),华光凹陷仅局部形成小范围的低幅超压。陵水组三段末期华光凹陷广泛形成超压,至梅山组早期发生小幅泄压。此后再次经历增压,并逐渐与乐东-陵水凹陷合并为一个超压系统。华光凹陷现今超压顶面和油气运移顶面都具有西浅东深特征, 超压顶界面的埋深为2500~3000m[32, 33]。晚中新世(10.5Ma)以来,由于深部烃源岩逐渐过成熟且烃类裂解作用增强,琼东南盆地西部地区地层压力增压-泄压的旋回演化中,西部各个凹陷都形成了多边形断层、气烟囱和泥底辟等泄压现象。华光凹陷晚中新世泥岩中形成的多边形断层应该是热解天然气向浅部大规模泄压释放的证据。这一时期发生的天然气运移和聚集对热解成因水合物的形成具有重要意义,是研究区这类水合物富集成藏的关键时期。异常高压为含气流体的运移提供了强大的动力,有助于天然气自深部向浅部运移。
在满足天然气水合物形成的基本稳定条件下,其富集成藏还需要气源条件、输导条件和储集空间。华光凹陷断裂主要集中发育于古近纪构造层之中,而新近纪凹陷以拗陷为主,断裂活动微弱。断裂体系的缺乏不仅导致深部烃源层直接与浅层水合物稳定带沟通较为困难,而且从已形成的油气藏中逸散出来的天然气也难以达到水合物稳定带。可以说拗陷期内输导体系的发育与否对水合物的成藏起到十分重要的作用。显然,泥底辟构造作为直接沟通深部烃源与浅层沉积物的桥梁,是天然气垂向穿层运移的主要通道,影响着研究区内天然气水合物藏的分布。同时,位于泥底辟上部的多边形断层、气烟囱和构造断层是构成输导网络的重要组成部分,在含气流体运移中起到“接力”的作用。
华光凹陷在上新世(5.5Ma)以来的地层中均可识别出典型的深水浊积水道,其中位于华光凹陷西部的更新世曲流水道呈SW—NE向展布,应与来自中南半岛的浊流侵蚀有关,水道轴部为强振幅反射,推测为富砂质沉积[34]。西部第四系沉积物粒度分析发现,琼东南盆地华光凹陷浅表层沉积物局部含砂率可达45%~48%[28]。相对周围的泥岩沉积,这些深水浊流水道具有较好的孔隙度和渗透率。这些高渗透地层能够起到流体运移通道的作用,既能够将烃类气体运移至水合物稳定带之内,也可以作为高饱和度天然气水合物赋存的有利场所。
综合分析后认为华光凹陷西部地区是天然气水合物勘探的有利方向(图 6)。这主要是因为盆地西部地区靠近①号断裂,物源充足。晚中新世以来快速沉降的巨厚半深海细粒沉积物不仅为生物成因气的形成提供了物质基础,而且地层超压为含气流体的运移提供了强大的动力。同时快速深埋也使得西部次洼内的渐新世成熟—过熟烃源岩大量生气或裂解。这些热解天然气和生物气都能沿着泥底辟、气烟囱和多边形断层向上垂向运移至水合物稳定带,形成天然气水合物,其中深水浊流水道是寻找高饱和度水合物的有利目标体。
6. 结论
(1) 研究区内形成天然气水合物的气源包括始新统湖相、渐新统崖城组海陆过渡相-半封闭浅海相生成的热解天然气和上新统—第四系半深海-深海相生成的生物成因气。发生在莺歌海沉积期的第2期生排烃高峰,为热解成因气水合物的形成提供了充足的气源。
(2) 主要的流体输导系统包括构造断层、泥底辟、气烟囱和多边形断层等。泥底辟与其伴生断裂及多边形断层等构成了天然气水合物成藏的重要气源供给输导系统。研究区内BSR的平均埋深约230m,均位于第四纪以来的沉积层中,且显示出与深水浊流水道和块体流沉积有着良好的空间匹配关系。
(3) 西部地区是天然气水合物勘探的有利方向,其中深水浊流水道是寻找高饱和度水合物的有利目标体。盆地西部地区靠近①号断裂,物源充足。晚中新世以来快速沉降的巨厚半深海细粒沉积物不仅为生物成因气的形成提供了物质基础,而且地层超压为含气流体的运移提供了强大的动力。同时快速深埋也使得西部次洼内的渐新世成熟—过熟烃源岩大量生气或裂解。热解天然气和生物气沿着泥底辟、气烟囱和多边形断层向上垂向运移,最终形成天然气水合物。
-
图 1 青藏高原构造单元划分(a)和中冈底斯早白垩世岩浆岩分布及年龄(b, 据参考文献[8]修改)
Figure 1.
图 2 研究区地质简图及采样位置[20]
Figure 2.
表 1 扎布耶茶卡北部侵入岩LA-ICP-MS锆石U-Th-Pb定年结果
Table 1. LA-ICP-MS zircon U-Th-Pb data of the intrusive rocks in the north of Zabuye salt lake area
测点编号 Th/U 元素含量/10-6 同位素比值 年龄/Ma 238U 232Th 206Pb 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 208Pb/232Th 1σ 207Pb/235U 1σ 206Pb/238U 1σ D4246,二长花岗岩 3 0.69 246 170 4.6 0.0489 0.0013 0.1525 0.0041 0.0226 0.0003 0.0073 0.0004 144 4 144 2 4 0.92 212 194 4.0 0.0493 0.0020 0.1502 0.0059 0.0221 0.0004 0.0065 0.0006 142 5 141 2 5 0.71 292 208 5.0 0.0489 0.0015 0.1522 0.0048 0.0226 0.0004 0.0065 0.0004 144 4 144 2 6 0.61 191 116 3.6 0.0489 0.0028 0.1499 0.0083 0.0223 0.0005 0.0071 0.0010 142 7 142 3 8 0.75 187 140 3.4 0.0491 0.0015 0.1500 0.0046 0.0222 0.0003 0.0072 0.0006 142 4 141 2 10 0.50 427 214 7.3 0.0488 0.0011 0.1473 0.0034 0.0219 0.0003 0.0071 0.0005 140 3 140 2 14 0.73 167 122 2.9 0.0488 0.0014 0.15 0.004 0.022 0.00033 0.0070 0.00036 142 4 142 2 15 1.06 172 184 2.9 0.0488 0.0023 0.15 0.007 0.023 0.00043 0.0070 0.00062 144 6 144 3 D4830,二长花岗岩 1 0.84 213 179 4.1 0.0491 0.0011 0.1636 0.0039 0.0242 0.0003 0.0085 0.0004 154 3 154 2 2 0.76 112 85 2.3 0.0488 0.0025 0.1604 0.0080 0.0238 0.0005 0.0083 0.0008 151 7 152 3 3 0.51 196 101 3.4 0.0489 0.0021 0.1592 0.0066 0.0236 0.0004 0.0079 0.0006 150 6 150 3 4 0.72 232 167 4.3 0.0491 0.0012 0.1584 0.0038 0.0234 0.0003 0.0080 0.0004 149 3 149 2 5 0.58 224 131 4.1 0.0492 0.0012 0.1587 0.0040 0.0234 0.0003 0.0083 0.0005 150 4 149 2 6 0.79 244 194 4.6 0.0494 0.0012 0.1646 0.0040 0.0242 0.0004 0.0090 0.0005 155 3 154 2 7 0.62 300 186 5.5 0.0489 0.0011 0.1576 0.0036 0.0234 0.0003 0.0084 0.0005 149 3 149 2 8 0.94 373 353 6.3 0.0490 0.0013 0.1506 0.0041 0.0223 0.0003 0.0075 0.0006 142 4 142 2 9 0.65 192 125 3.6 0.0491 0.0014 0.1607 0.0046 0.0238 0.0004 0.0082 0.0006 151 4 151 2 10 0.49 451 219 8.0 0.0488 0.0010 0.1560 0.0033 0.0232 0.0003 0.0080 0.0005 147 3 148 2 11 0.67 127 85 2.3 0.0489 0.0015 0.1585 0.0048 0.0235 0.0004 0.0086 0.0004 149 4 150 2 12 2.04 306 620 5.6 0.0490 0.0015 0.1514 0.0044 0.0224 0.0003 0.0058 0.0004 143 4 143 2 15 0.61 343 210 6.2 0.0492 0.0010 0.1611 0.0036 0.0238 0.0003 0.0079 0.0004 152 3 151 2 16 0.78 117 91 2.3 0.0495 0.0016 0.1648 0.0053 0.0241 0.0004 0.0087 0.0006 155 5 154 2 17 0.65 154 99 2.9 0.0494 0.0013 0.1639 0.0045 0.0241 0.0004 0.0091 0.0006 154 4 153 2 19 0.75 197 148 3.7 0.0493 0.0013 0.1626 0.0043 0.0239 0.0004 0.0083 0.0006 153 4 152 2 20 0.68 274 184 5.4 0.0490 0.0018 0.1669 0.0059 0.0247 0.0004 0.0077 0.0009 157 5 157 3 D4392,花岗闪长岩 1 0.58 106 62 1.9 0.0489 0.0016 0.1565 0.0050 0.0232 0.0004 0.0054 0.0002 148 4 148 2 2 0.67 119 79 2.0 0.0486 0.0021 0.1518 0.0063 0.0227 0.0004 0.0048 0.0003 144 6 144 3 3 0.79 77 60 1.6 0.0493 0.0031 0.1705 0.0104 0.0251 0.0006 0.0074 0.0007 160 9 160 3 4 0.73 63 46 1.2 0.0489 0.0034 0.1493 0.0101 0.0221 0.0005 0.0065 0.0006 141 9 141 3 5 0.61 98 59 1.7 0.0488 0.0020 0.1526 0.0060 0.0227 0.0004 0.0063 0.0004 144 5 145 2 6 0.64 102 66 1.7 0.0488 0.0021 0.1441 0.0061 0.0214 0.0004 0.0062 0.0005 137 5 137 2 9 0.62 91 57 1.5 0.0490 0.0018 0.1499 0.0054 0.0222 0.0004 0.0054 0.0003 142 5 141 2 10 0.63 190 120 3.0 0.0489 0.0020 0.1499 0.0061 0.0222 0.0004 0.0043 0.0004 142 5 142 3 11 0.61 71 44 1.2 0.0488 0.0033 0.1467 0.0095 0.0218 0.0005 0.0063 0.0007 139 8 139 3 13 0.77 115 89 2.0 0.0494 0.0020 0.1552 0.0062 0.0228 0.0004 0.0077 0.0004 147 5 145 3 14 0.62 89 55 1.6 0.0491 0.0017 0.1521 0.0053 0.0225 0.0004 0.0076 0.0004 144 5 143 2 16 0.74 183 135 3.1 0.0491 0.0014 0.1492 0.0043 0.0221 0.0003 0.0075 0.0004 141 4 141 2 17 0.79 132 104 2.3 0.0489 0.0035 0.1501 0.0104 0.0223 0.0006 0.0079 0.0011 142 9 142 3 20 0.59 74 44 1.3 0.0503 0.0039 0.1545 0.0115 0.0223 0.0006 0.0074 0.0009 146 10 142 4 D4001,闪长岩 1 0.79 534 425 8.1 0.0472 0.0009 0.1244 0.0025 0.0191 0.0003 0.0058 0.0002 119 2 122 2 2 0.96 353 339 4.3 0.0498 0.0013 0.1055 0.0027 0.0154 0.0002 0.0049 0.0001 102 2 98 1 D4001,闪长岩 3 0.47 3435 1595 52 0.0483 0.0008 0.1260 0.0022 0.0189 0.0003 0.0020 0.0001 120 2 121 2 4 0.96 246 237 3.2 0.0473 0.0014 0.1062 0.0033 0.0163 0.0002 0.0050 0.0001 102 3 104 2 5 0.99 353 349 4.7 0.0473 0.0012 0.1090 0.0027 0.0167 0.0002 0.0054 0.0001 105 3 107 1 6 0.88 715 628 13 0.0472 0.0008 0.1504 0.0027 0.0231 0.0003 0.0053 0.0001 142 2 147 2 7 0.99 446 442 6.0 0.0465 0.0010 0.1079 0.0025 0.0168 0.0002 0.0055 0.0001 104 2 108 1 8 0.78 1513 1170 25 0.0490 0.0007 0.1423 0.0022 0.0211 0.0003 0.0069 0.0002 135 2 134 2 9 0.93 228 212 3.0 0.0490 0.0015 0.1126 0.0035 0.0167 0.0002 0.0052 0.0002 108 3 107 2 10 0.15 602 93 9.1 0.0486 0.0020 0.1283 0.0050 0.0192 0.0003 0.0054 0.0004 123 5 122 2 11 1.01 286 289 3.6 0.0461 0.0030 0.0976 0.0061 0.0154 0.0003 0.0049 0.0001 95 6 98 2 12 0.55 225 124 3.2 0.0481 0.0016 0.1147 0.0038 0.0173 0.0003 0.0057 0.0002 110 3 111 2 13 0.99 233 232 3.1 0.0496 0.0017 0.1121 0.0037 0.0164 0.0002 0.0053 0.0002 108 3 105 2 14 1.04 475 494 6.3 0.0473 0.0011 0.1061 0.0026 0.0163 0.0002 0.0053 0.0002 102 2 104 1 15 0.83 393 326 5.5 0.0468 0.0012 0.1094 0.0028 0.0169 0.0002 0.0054 0.0002 105 3 108 1 16 1.67 1103 1841 20 0.0487 0.0008 0.1516 0.0026 0.0226 0.0003 0.0068 0.0002 143 2 144 2 17 0.72 957 694 18 0.0475 0.0008 0.1489 0.0026 0.0227 0.0003 0.0071 0.0002 141 2 145 2 18 1.03 348 359 4.5 0.0483 0.0014 0.1045 0.0030 0.0157 0.0002 0.0051 0.0002 101 3 100 1 20 0.19 1178 221 21 0.0499 0.0008 0.1512 0.0025 0.0220 0.0003 0.0051 0.0002 143 2 140 2 D4921,闪长岩 2 1.00 515 517 6.3 0.0482 0.0010 0.1046 0.0022 0.0158 0.0002 0.0048 0.0002 101 2 101 1 3 0.97 281 273 3.3 0.0489 0.0021 0.1056 0.0044 0.0157 0.0003 0.0050 0.0004 102 4 100 2 4 0.70 586 414 7.2 0.0482 0.0010 0.1050 0.0022 0.0158 0.0002 0.0050 0.0002 101 2 101 1 5 1.02 266 272 3.2 0.0495 0.0014 0.1071 0.0030 0.0157 0.0002 0.0038 0.0002 103 3 100 2 6 0.94 237 224 2.9 0.0490 0.0013 0.1063 0.0029 0.0158 0.0002 0.0049 0.0003 103 3 101 1 7 1.08 254 274 3.1 0.0495 0.0013 0.1070 0.0029 0.0157 0.0002 0.0048 0.0003 103 3 100 1 8 1.05 499 524 5.5 0.0480 0.0031 0.1040 0.0064 0.0157 0.0004 0.0019 0.0002 100 6 101 2 9 0.68 435 296 4.8 0.0526 0.0032 0.1151 0.0068 0.0159 0.0004 0.0028 0.0003 111 6 102 2 10 1.15 260 300 3.3 0.0484 0.0033 0.1046 0.0068 0.0157 0.0004 0.0039 0.0006 101 6 100 2 11 1.19 180 214 2.1 0.0485 0.0031 0.1023 0.0063 0.0153 0.0003 0.0036 0.0003 99 6 98 2 12 1.06 357 381 4.4 0.0480 0.0011 0.1031 0.0024 0.0156 0.0002 0.0045 0.0002 100 2 100 1 13 1.11 107 119 1.4 0.0483 0.0048 0.1048 0.0099 0.0157 0.0005 0.0037 0.0005 101 9 101 3 15 0.73 227 166 2.7 0.0480 0.0019 0.1059 0.0041 0.0160 0.0003 0.0040 0.0002 102 4 102 2 17 1.12 312 351 3.7 0.0477 0.0012 0.1012 0.0027 0.0154 0.0002 0.0040 0.0002 98 2 98 1 18 1.04 255 267 3.2 0.0478 0.0016 0.1008 0.0033 0.0153 0.0002 0.0041 0.0003 98 3 98 2 20 0.87 196 170 2.4 0.0471 0.0015 0.1030 0.0032 0.0159 0.0003 0.0045 0.0003 100 3 101 2 D4257,辉长岩 2 1.10 275 302 4.7 0.0488 0.0011 0.1475 0.0035 0.0219 0.0003 0.0066 0.0003 140 3 140 2 4 1.01 460 466 7.7 0.0489 0.0011 0.1502 0.0035 0.0223 0.0003 0.0065 0.0003 142 3 142 2 5 1.33 486 649 8.3 0.0486 0.0010 0.1471 0.0030 0.0220 0.0003 0.0065 0.0003 139 3 140 2 6 0.83 233 193 4.1 0.0489 0.0013 0.1517 0.0039 0.0225 0.0003 0.0070 0.0004 143 3 143 2 7 1.22 271 330 4.6 0.0489 0.0017 0.1521 0.0052 0.0226 0.0004 0.0070 0.0005 144 5 144 2 8 0.61 216 132 3.8 0.0489 0.0012 0.1506 0.0038 0.0223 0.0003 0.0074 0.0004 142 3 142 2 12 1.14 208 236 3.5 0.0509 0.0012 0.1523 0.0038 0.0217 0.0003 0.0071 0.0003 144 3 139 2 15 1.01 107 109 1.9 0.0492 0.0016 0.1537 0.0051 0.0227 0.0004 0.0073 0.0004 145 4 144 2 16 1.30 238 310 4.1 0.0490 0.0012 0.1484 0.0037 0.0220 0.0003 0.0069 0.0004 140 3 140 2 17 1.03 187 192 3.2 0.0494 0.0013 0.1507 0.0041 0.0221 0.0003 0.0068 0.0004 142 4 141 2 18 0.85 354 302 6.2 0.0494 0.0011 0.1535 0.0034 0.0226 0.0003 0.0072 0.0004 145 3 144 2 D4713,辉长岩 1 1.49 765 1137 9.8 0.0482 0.0011 0.1075 0.0024 0.0162 0.0002 0.0046 0.0003 104 2 103 1 2 0.75 145 109 2.6 0.0488 0.0023 0.1529 0.0069 0.0227 0.0004 0.0068 0.0005 145 6 145 3 5 0.88 311 274 4.0 0.0475 0.0015 0.1054 0.0033 0.0161 0.0003 0.0049 0.0003 102 3 103 2 9 0.63 87 54 1.5 0.0481 0.0031 0.1469 0.0091 0.0222 0.0005 0.0070 0.0008 139 8 141 3 10 0.79 151 119 2.7 0.0495 0.0024 0.1515 0.0071 0.0222 0.0004 0.0067 0.0007 143 6 142 3 12 0.58 1030 599 14 0.0483 0.0009 0.1118 0.0022 0.0168 0.0002 0.0054 0.0003 108 2 107 1 13 0.65 237 154 2.8 0.0481 0.0019 0.1013 0.0039 0.0153 0.0003 0.0053 0.0004 98 4 98 2 14 0.51 1188 610 15 0.0482 0.0008 0.1087 0.0019 0.0164 0.0002 0.0054 0.0003 105 2 105 1 15 1.96 908 1771 11 0.0478 0.0008 0.1081 0.0020 0.0164 0.0002 0.0038 0.0002 104 2 105 1 18 0.70 173 121 2.8 0.0487 0.0018 0.1462 0.0054 0.0218 0.0004 0.0073 0.0006 139 5 139 2 19 1.37 1935 2644 23 0.0482 0.0008 0.1013 0.0018 0.0153 0.0002 0.0041 0.0003 98 2 98 1 20 0.82 239 196 3.9 0.0483 0.0021 0.1476 0.0064 0.0222 0.0004 0.0072 0.0007 140 6 141 3 表 2 扎布耶茶卡北部侵入岩全岩地球化学数据
Table 2. Chemical compositions of the studied intrusive rocks in the north of Zabuye salt lake area
样品号 D4246 二长花岗岩 D4392 D4804 D4869 D4001 D4921 D4257 D4713 年龄/Ma 142.1 73.50 142.4 98.9 100.2 141.7 98.0 岩石类型 二长花岗岩 0.25 花岗闪长岩 花岗闪长岩 花岗闪长岩 闪长岩 闪长岩 辉长岩 辉长岩 SiO2 73.55 13.20 68.40 63.35 71.25 55.79 56.64 45.60 46.18 TiO2 0.27 0.81 0.39 0.49 0.34 1.02 0.92 1.57 0.88 Al2O3 13.39 0.63 15.37 15.27 14.00 16.24 16.53 17.19 18.84 Fe2O3 1.02 0.08 1.36 1.67 1.38 2.43 2.24 7.62 4.18 FeO 0.75 0.73 1.70 2.90 1.27 5.10 5.40 6.25 4.70 MnO 0.17 1.47 0.07 0.15 0.07 0.16 0.14 0.21 0.13 MgO 0.61 3.51 1.43 2.05 1.12 4.35 4.11 4.62 5.42 CaO 1.30 4.09 3.64 3.62 2.64 7.88 8.12 10.87 15.10 Na2O 3.34 0.07 2.70 3.95 3.28 2.76 2.73 2.39 1.77 K2O 4.13 1.35 3.48 2.59 2.84 1.90 1.87 0.98 0.47 P2O5 0.08 99.70 0.09 0.13 0.09 0.19 0.23 0.12 0.20 烧失量 1.05 1.03 0.95 3.28 1.15 1.38 0.27 1.65 1.36 总量 99.66 41.99 99.58 99.44 99.45 99.20 99.21 99.06 99.22 A/CNK 1.09 84.20 1.04 0.96 1.05 0.78 0.78 0.69 0.61 La 49.61 8.70 32.77 25.94 35.78 18.53 19.64 12.78 7.30 Ce 89.18 30.00 56.16 48.02 58.24 37.08 39.05 24.74 14.22 Pr 10.16 5.05 6.33 5.95 6.28 5.04 5.23 3.44 2.05 Nd 35.22 1.25 21.26 22.06 20.02 20.72 20.97 14.36 9.05 Sm 5.81 4.63 3.54 4.25 3.01 4.44 4.55 3.39 2.21 Eu 1.29 0.75 0.93 1.15 0.92 1.21 1.22 1.24 0.78 Gd 5.34 3.81 3.49 4.25 2.93 4.35 4.56 3.59 2.31 Tb 0.84 0.76 0.59 0.76 0.46 0.76 0.77 0.64 0.44 Dy 4.40 2.22 3.01 4.04 2.29 4.09 4.09 3.44 2.36 Ho 0.86 0.38 0.61 0.83 0.48 0.81 0.81 0.67 0.46 Er 2.58 2.48 1.81 2.38 1.43 2.27 2.32 1.92 1.29 Tm 0.46 0.35 0.33 0.42 0.26 0.35 0.40 0.32 0.20 Yb 2.84 21.19 2.07 2.72 1.70 2.36 2.43 1.95 1.24 Lu 0.41 1.27 0.30 0.38 0.24 0.32 0.34 0.28 0.17 Y 24.76 2.50 17.36 22.47 13.60 21.19 22.71 18.22 11.47 Co 2.02 31.32 7.17 8.82 4.64 22.98 22.90 37.35 29.49 Cu 3.02 120.67 12.17 5.14 6.69 84.52 49.10 52.11 69.36 Zn 107.40 132.80 39.41 68.96 27.33 90.85 79.83 122.73 59.10 Rb 150.48 10.78 132.22 73.72 80.37 84.19 77.56 46.19 19.46 Zr 144.50 0.28 142.80 122.50 134.30 170.30 169.90 59.20 43.00 Nb 81.24 10.91 9.43 7.26 7.28 47.15 10.91 8.04 74.16 Mo 0.58 0.80 0.40 0.55 0.22 0.68 1.37 0.54 0.41 Hf 8.55 1.07 9.09 6.80 10.78 13.21 13.72 4.39 2.37 Ta 3.81 25.43 0.76 0.61 0.55 2.57 0.88 0.55 2.58 W 1.51 16.72 0.84 1.32 0.50 0.95 1.04 0.63 0.66 Pb 19.57 2.39 19.36 15.59 1655 11.82 12.17 7.10 8.11 Th 17.23 771.34 15.21 8.46 15.29 8.75 11.21 3.63 2.52 U 1.23 192.76 1.97 1.78 0.87 1.57 1.94 0.63 0.58 Ba 813.21 14.71 623.79 609.59 906.54 232.33 222.97 177.13 94.21 Sr 231.34 0.61 251.56 393.70 240.56 348.75 322.91 422.03 658.37 V 17.64 0.15 56.57 90.4 46.48 191.0 198.8 425.7 376.1 As 0.93 2.24 1.96 0.47 1.35 4.69 3.42 1.12 1.33 Sb 0.18 0.04 0.40 0.17 0.16 0.40 0.25 0.29 0.64 Sn 2.24 0.32 3.35 1.52 1.31 3.31 1.52 1.73 1.01 Ag 0.05 0.04 0.02 0.03 0.05 0.04 0.09 0.08 Au 0.41 0.42 3.29 0.87 2.78 0.58 0.41 17.29 注:主量元素含量单位为%,微量和稀土元素含量为10-6 表 3 西藏中冈底斯早白垩世岩浆岩的年龄及分布
Table 3. Isotopic ages of representative intrusive rocks of the Early Creataceous in the Mid-Gangdise belt, Tibet
地名或岩体 定年的岩石名称 定年矿物/方法 年龄/Ma 参考文献 雄巴南东 流纹岩 SHRIMP锆石U-Pb 142.9±1.0 [8] 尼玛县南 二云母二长花岗岩 黑云母K-Ar稀释法 142±4 [38] 雄巴东 流纹岩 LA-ICP-MS锆石U-Pb 143±2 [7] 雄巴南东 英云闪长岩 LA-ICP-MS锆石U-Pb 134.3±1.7 [8] 雄巴南东 流纹质火山角砾岩 LA-ICP-MS锆石U-Pb 133.8±1.1 [8] 尼玛县南 白云母正长花岗岩 黑云母K-Ar稀释法 132±4 [38] 措勤北 英安岩 LA-ICP-MS锆石U-Pb 130±1 [7] 雄巴东 流纹岩 LA-ICP-MS锆石U-Pb 129±1 [7] 措勤北 英安岩 LA-ICP-MS锆石U-Pb 121±1 [7] 申扎 英安岩 LA-ICP-MS锆石U-Pb 114.0±0.7 [8] 申扎 英安岩 LA-ICP-MS锆石U-Pb 113.8±0.5 [8] 措勤地区 熔结凝灰岩 LA-ICP-MS锆石U-Pb 112.7±1.0 [39] 申扎地区 花岗闪长岩 LA-ICP-MS锆石U-Pb 113.6±0.7 [10] 申扎 英安岩 LA-ICP-MS锆石U-Pb 112.1±0.4 [8] 措勤北 流纹质凝灰岩 LA-ICP-MS锆石U-Pb 112±1 [7] 申扎 英安岩 LA-ICP-MS锆石U-Pb 110.9±0.5 [8] 申扎县买巴地区 石英二长岩 LA-ICP-MS锆石U-Pb 111.0±1.1 [40] 申扎县买巴地区 花岗岩 LA-ICP-MS锆石U-Pb 110.8±0.9 [40] 扎康西 粗面英安岩 LA-ICP-MS锆石U-Pb 110.2±1.1 [41] 措勤地区 熔结凝灰岩 LA-ICP-MS锆石U-Pb 108.6±1.6 [39] 扎康西 流纹岩 LA-ICP-MS锆石U-Pb 108.3±0.4 [41] 措勤北 花岗闪长岩 LA-ICP-MS锆石U-Pb 107±1 [7] 天宫尼勒 花岗闪长岩 LA-ICP-MS锆石U-Pb 102.6±1.8 [42] -
[1] Coulon C, Maluski H, Bollinger C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar-40Ar dating, petrological characteristics and geodynamical significance[J]. Earth and Planetary Science Letters, 1986, 79(3):281-302. http://www.sciencedirect.com/science/article/pii/0012821X8690186X?via%3Dihub
[2] Xu R H, Schrer U, Allègre C J. Magmatism and metamorphism in the Lhasa block (Tibet):A geochronological study[J]. Journal Geology, 1985, 93:41-57. http://www.journals.uchicago.edu/doi/abs/10.1086/628918
[3] Pearce J A, Mei H J. Volcanic rocks of the 1985 Tibet Geotraverse:Lhasa to Golmud[J]. Philosophical Transactions of the Royal Society of London, 1988, 327:169-201. doi: 10.1098/rsta.1988.0125
[4] Ding L, Kapp P, Yin A, et al. Early Tertiary volcanism in the Qiangtang terrane of central Tibet:Evidence for a transition from oceanic to continental subduction[J]. Journal of Petrology, 2003, 44:1833-1865. doi: 10.1093/petrology/egg061
[5] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. GSA Bulletin, 2007, 119:917-932. doi: 10.1130/B26033.1
[6] 潘桂棠, 莫宣学, 侯增谦, 等.冈底斯造山带的时空结构及演化[J].岩石学报, 2006, 22(3):521-533. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200603001&dbname=CJFD&dbcode=CJFQ
[7] Zhu D C, Mo X X, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268:298-312. doi: 10.1016/j.chemgeo.2009.09.008
[8] Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301:241-255. doi: 10.1016/j.epsl.2010.11.005
[9] 张亮亮, 朱弟成, 赵志丹, 等.西藏申扎早白垩世花岗岩类:板片断离的证据[J].岩石学报, 2011, 27(7):1938-1948. http://d.wanfangdata.com.cn/Periodical/ysxb98201107003
[10] 张亮亮, 朱弟成, 赵志丹, 等.西藏北冈底斯巴尔达地区岩浆作用的成因:地球化学、年代学及Sr-Nd-Hf同位素约束[J].岩石学报, 2010, 26(6):1871-1888. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100620&flag=1
[11] 张晓倩, 朱弟成, 赵志丹, 等.西藏措勤尼雄岩体的岩石成因及其对富Fe成矿作用的潜在意义[J].岩石学报, 2010, 26(6):1793-1804. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20100614&flag=1
[12] 张晓倩, 朱弟成, 赵志丹, 等.西藏措勤麦嘎岩基的锆石U-Pb年代学、地球化学和锆石Hf同位素:对中部拉萨地块早白垩世花岗岩类岩石成因的约束[J].岩石学报, 2012, 28(5):1615-34. http://www.qianluntianxia.com/journal/522/1821006.html
[13] Sui Q L, Wang Q, Zhu D C, et al. Compositional diversity of ca. 110Ma magmatism in the northern Lhasa Terrane, Tibet:Implications for the magmatic origin and crustal growth in a continen-tcontinent collision zone[J]. Lithos, 2013, 168-169:144-159. doi: 10.1016/j.lithos.2013.01.012
[14] Chen Y, Zhu D C, Zhao Z D, et al. Slab break off triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet[J]. Gondwana Research, 2014, 26(2):449-463. doi: 10.1016/j.gr.2013.06.005
[15] Wu H, Li C, Hu P Y, et al. Early Cretaceous (100~105Ma) Adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:Implications for the Bangong-Nujiang Ocean subduction and slab break-off[J]. International Geology Review, 2014, 57(9/10):1-17.
[16] Wu H, Li C, Xu M J, et al. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet:Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean[J]. Journal of Asian Earth Sciences, 2015, 97A:51-66.
[17] Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):211-280. doi: 10.1146/annurev.earth.28.1.211
[18] 朱弟成, 莫宣学, 赵志丹, 等.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点[J].地学前缘, 2009, 16(2):1-20. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200902002&dbname=CJFD&dbcode=CJFQ
[19] 朱弟成, 潘桂棠, 王立全, 等.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境[J].地质通报, 2008, 27(4):458-468. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20080403&journal_id=gbc
[20] Jackson S E, Pearson N J, Griffin W L, et al. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geology, 2004, 211(1):47-69.
[21] Black P, Gulson B L. The age of the Mud Tank carbonatite, Strang-ways Range, Northern Territory[J]. BMR J. Aust. Geol. Geophys., 1978, 3:227-232.
[22] Griffin W L, Belousova E A, Shee S R, et al. Archean crustal evolution in the northern Yilgarn Craton:U-Pb and Hf-isotope evidence from detrital zircons[J]. Precambrian Res., 2004, 131:231-282. doi: 10.1016/j.precamres.2003.12.011
[23] Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.
[24] Ludwig K R. Isoplot/Ex Version 3.00:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publications, 2003:1-73.
[25] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 2000, 18(4):423-439.
[26] Rubatto D, Gebauer D. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe:Some Examples from the Western Alps[M]. Springer, Berlin Heidelberg, 2000, 49(16):1589-1604.
[27] Rubatto D. Zircon trace element geochemistry:Partitioning with garnet and the link between U-Pb age and metamorphism[J]. Chemical Geology, 2002, 184:123-138. doi: 10.1016/S0009-2541(01)00355-2
[28] Moeller A, O, Brien P J, Kennedy A, et al. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:An example from the ultrahigh-temperature granulites of Rogaland, SW Norway[J]. Geological Society Special Publications, 2003, 220:65-81. doi: 10.1144/GSL.SP.2003.220.01.04
[29] 宋彪, 乔秀夫.辽北辉绿岩墙(床)群及二道沟组玄武岩锆石年龄及其构造意义[J].地学前缘, 2008, 15(3):250-262. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy200803024&dbname=CJFD&dbcode=CJFQ
[30] 宋彪.用SHRIMP测定锆石U-Pb年龄的工作方法[J].地质通报, 2015, 34(10):1777-1788. doi: 10.3969/j.issn.1671-2552.2015.10.002 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20151001&journal_id=gbc
[31] Wilson M. Igneous Petrogenesis[M]. London:Allen and Unwin, 1989:1-164.
[32] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 1989, 101:635-643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[33] Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation[M]. New York:Longman Group UK Ltd, 1993:1-352.
[34] Rudnick R L, Gao S. Composition of the continental crust[C]//Rudnick R L. The Crust:Treaties on Geochemistry. Oxfor Elsevi-er Pergamon, 2003:1-64.
[35] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25:956-983. doi: 10.1093/petrology/25.4.956
[36] Boynton W V. Geochemistry of the rare earth elements:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elsevier, 1984:63-114.
[37] Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[38] 卢书炜, 任建德, 白国典, 等.西藏尼玛县南部中晚侏罗世松木果强过铝花岗岩带的发现及其意义[J].中国地质, 2006, 33(2):332-339. http://www.cnki.com.cn/Article/CJFDTotal-DIZI200602012.htm
[39] 刘伟, 李奋其, 袁四化, 等.西藏中冈底斯带措勤地区则弄群熔结凝灰岩锆石LA-ICP-MS U-Pb年龄[J].地质通报, 2010, 29(7):1009-1016. http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20100706&journal_id=gbc
[40] 张予杰, 刘伟, 朱同兴, 等.西藏申扎县买巴地区早白垩世侵入岩锆石U-Pb年龄及地球化学[J].中国地质, 2014, 41(1):50-60. http://www.cqvip.com/QK/90050X/201401/48842930.html
[41] 丁慧霞, 张泽明, 向华, 等.青藏高原拉萨地体北部早白垩世火山岩的成因及意义[J].岩石学报, 2015, 31(5):1247-1267. http://www.fxyqpx.org/ysxb/20150505.htm
[42] 黄瀚霄, 李光明, 刘波, 等.西藏仲巴县天宫尼勒矽卡岩型铜金矿床锆石U-Pb年代学和岩石地球化学特征:对成因及其成矿构造背景的指示[J].地球学报, 2012, 33(4):424-434. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DQXB201207001006.htm
[43] 韩吟文, 马振东.地球化学[M].北京:地质出版社, 2003:181-212.
[44] Wolf M B, London D. Apatite dissolution into peraluminous haplogranitic melts:An experimental study of solubilities and mechanism[J]. Geochimica et Cosmochimica Acta, 1994, 58:4127-414. doi: 10.1016/0016-7037(94)90269-0
[45] Harris N B W, Lnger S. Trace element modeling of pelite-derived granites[J]. Contributions to Mineralogy and Petrology, 1992, 110:46-56. doi: 10.1007/BF00310881
[46] Zorpi M J, Coulon C, Orsini J B. Hybridization between felsic and mafic magmas in calc-alkaline granitoids:A case-study in northern Sardinia, Italy[J]. Chemical Geology, 1991, 92:45-86. doi: 10.1016/0009-2541(91)90049-W
[47] Karsli O, Chen B, Aydin F, et al. Geochemical and Sr-Nd-Pb isotopic compositions of the Eocene Dolek and Saricicek Plutons, Eastern Turkey:Implications for magma interaction in the genesis of high-K calc-alkaline granitoids in a post-collision extensional setting[J]. Lithos, 2007, 98:67-96. doi: 10.1016/j.lithos.2007.03.005
[48] Kaygusuz A, Aydincakir K. Mineralogy, whole-rock and Sr-Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey. Evidence of magma mixing, mingling and chemical equilibration[J]. Chemie der Erde, 2009, 69:247-277. doi: 10.1016/j.chemer.2008.08.002
[49] 张招崇, 董书云, 黄河, 等.西南天山二叠纪中酸性侵入岩的地质学和地球化学:岩石成因和构造背景[J].地质通报, 2009, 28(12):1827-1839. doi: 10.3969/j.issn.1671-2552.2009.12.015 http://dzhtb.cgs.cn/ch/reader/view_abstract.aspx?flag=1&file_no=20091214&journal_id=gbc
[50] Chu M F, Chung S L, Song B, et al. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet[J]. Geology, 2006, 34(9):745-748. doi: 10.1130/G22725.1
[51] Zhang K J, Zhang Y X, Tang X C, et al. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the IndoAsian collision[J]. Earth-Science Reviews, 2012, 114(3/4):236-249.
[52] 康志强, 许继峰, 董彦辉, 等.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物?[J].岩石学报, 2008, 24(2):303-314. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200802012.htm
[53] 康志强, 许继峰, 王宝弟, 等.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?[J].岩石学报, 2010, 26(10):3106-3116. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201010022&dbname=CJFD&dbcode=CJFQ
[54] 朱弟成, 潘桂棠, 莫宣学, 等.冈底斯中北部晚侏罗世-早白垩世地球动力学环境火山岩约束[J].岩石学报, 2006, 22(3):534-546.
[55] Gutscher M A, Maury R, Eissen J P, et al. Can slab melting be caused by flat subduction?[J]. Geology, 2000, 28(6):535-538. doi: 10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
① 黄柏鑫, 叶春林, 吕志伟, 等. 西藏扎布耶茶卡北地区四幅区域地质矿产调查报告. 2017.
-