Ascertainment of the Mesoproterozic Caiziyuan ophiolitic mélange on the western margin of the Yangtze Block and its geological significance
-
摘要:
对扬子陆块西缘会理关河-通安地区菜子园蛇绿混杂岩进行了厘定。菜子园蛇绿混杂岩主要以强烈剪切变形的基质和洋板构造岩块混杂堆积为特征。基质主要有变质粉砂岩、板岩、硅质板岩、片岩、千枚岩等。洋板构造岩块由蛇纹岩、辉长岩、玄武岩、硅质岩、大理岩等组成,部分地区玄武岩保留枕状构造,各岩块之间为构造接触关系。菜子园蛇绿混杂岩中桃树湾辉长岩和玄武岩具有轻稀土元素亏损、类似N-MORB(正常洋中脊玄武岩)的稀土元素配分模式,相对于N-MORB富集大离子亲石元素,亏损Nb、Ta高场强元素,极低的Nb/U(9.74)、Nb/Th(3.02)和V/Ti(0.1)平均值,具典型MORB-like玄武岩(前弧玄武岩-FAB)地球化学特征,认为可能形成于洋内弧环境。桃树湾辉长岩LA-ICP-MS锆石U-Pb同位素定年表明,辉长岩的年龄为1375±7Ma(MSWD=1.2,n=21),可能代表菜子园-通安洋洋壳初始俯冲的时间。菜子园蛇绿混杂岩的厘定,对重新认识通安群(通安组)的属性,研究扬子陆块西缘古-中元古代地层系统、地质演化、岩浆作用、构造定位,重新划分扬子陆块基底大地构造单元,以及探索全球Columbia超大陆裂解到Rodinia超大陆汇聚的演化过程等都具有重要意义。
Abstract:The Caiziyuan ophiolitic mélange along the Guanhe-Tongan area on the western margin of the Yangtze Block have been ascertained by the authors. The Caiziyuan ophiolitic mélange is characterized by the strong shearing deformation of the matrix and the oceanic tectonic rocks. The substrate is mainly composed of metamorphic siltstone, slate, siliceous slate, schist and phyllite, whereas the oceanic tectonic rock consists of serpentine, gabbro, basalt, siliceous rock and marble, with some basalts retaining the pillow structure. The relationship between the tectonic rocks is tectonic contact. The gabbro and basalt from the Caiziyuan ophiolitic mélange exhibit LREE loss, similar to the N-MORB rare earth element distribution model, relative to the N-MORB enrichment of large ion lithophile elements (LILE), and depletion of Nb and Ta, extremely low Nb/U ratio (averagely 9.74), Nb/Th ratio (averagely 3.02) and V/Ti ratio (averagely 0.1), showing typical MORB-like geochemical features of basalt and suggesting probable formation in an intra-oceanic arc environment. LA-ICP-MS zircon U-Pb dating shows that the age of the Taoshuwan gabbro is 1375±7Ma (MSWD=1.2, n=21), which may represent the time of the initial subduction of the Caiziyuan-Tongan oceanic crust. The ascertainment of the Caiziyuan ophiolitic mélange has the great scientific significance for further understanding of the properties of the Tongan Group (or Tongan Formation), studying the Paleo-Mesoproterozoic stratigraphic system, geological evolution, magmatism, and tectonic orientation of the western Yangtze Block, re-dividing the basement tectonic unit and exploring the evolution from the global Columbia supercontinent breakup to the Rodinia supercontinent convergence.
-
-
图 5 菜子园蛇绿岩球粒陨石标准化稀土元素配分图(a)和微量元素蛛网图(b)(标准化数据据参考文献[28])
Figure 5.
表 1 菜子园蛇绿混杂岩辉长岩锆石U-Th-Pb定年分析测试结果
Table 1. Results of zircon U-Th-Pb dating of gabbro from the Caiziyuan ophiolitic mélange
测点编号 同位素含量/10-6 Th/U 同位素比值1σ 同位素年龄/Ma 1σ 谐和度/% 232Th 238U 207Pb*/206Pb* 207Pb*/235U 206Pb*/238U 207Pb/206Pb 207Pb/235U 206Pb/238U TSW1-1-1 71.05 61.29 1.16 0.08705 0.00080 2.85150 0.04482 0.23879 0.00344 1362 14 1369 12 1380 18 103 TSW1-1-2 438.06 163.81 2.67 0.08762 0.00069 2.85817 0.03715 0.23813 0.00282 1374 11 1371 10 1377 15 117 TSW1-1-3 222.79 87.57 2.54 0.09002 0.00096 2.92960 0.05399 0.23838 0.00481 1426 17 1390 14 1378 25 107 TSW1-1-4 231.39 221.49 1.04 0.08767 0.00047 2.85858 0.03820 0.23743 0.00343 1375 12 1371 10 1373 18 103 TSW1-1-5 107.85 94.64 1.14 0.08941 0.00065 2.28274 0.02861 0.18664 0.00210 1413 11 1207 9 1103 11 101 TSW1-1-6 230.29 168.52 1.37 0.08818 0.00060 2.56513 0.02635 0.21258 0.00196 1386 9 1291 8 1243 10 111 TSW1-1-7 567.23 243.48 2.33 0.08722 0.00042 2.80729 0.04506 0.23502 0.00378 1365 14 1357 12 1361 20 99 TSW1-1-8 251.65 163.86 1.54 0.08791 0.00042 2.42149 0.03877 0.20087 0.00317 1381 9 1249 12 1180 17 101 TSW1-1-9 531.36 262.70 2.02 0.08687 0.00039 2.85573 0.04210 0.23932 0.00341 1358 13 1370 11 1383 18 100 TSW1-1-10 587.53 310.96 1.89 0.08801 0.00045 2.87859 0.05838 0.23754 0.00440 1383 17 1376 15 1374 23 100 TSW1-1-11 448.98 355.08 1.26 0.08742 0.00043 2.86034 0.05033 0.23842 0.00411 1370 15 1372 13 1378 21 100 TSW1-1-12 1435.63 336.17 4.27 0.08713 0.00041 2.84768 0.04217 0.23846 0.00332 1363 13 1368 11 1379 17 100 TSW1-1-13 1150.39 209.80 5.48 0.08718 0.00054 2.83777 0.04733 0.23784 0.00383 1365 14 1366 13 1375 20 100 TSW1-1-14 2082.73 397.83 5.24 0.06798 0.00056 1.31921 0.01601 0.14196 0.00166 868 11 854 7 856 9 102 TSW1-1-15 1120.34 385.77 2.90 0.08749 0.00049 2.86264 0.03604 0.23921 0.00293 1371 11 1372 9 1383 15 100 TSW1-1-16 301.89 153.85 1.96 0.08896 0.00056 2.90166 0.05645 0.23867 0.00501 1403 18 1382 15 1380 26 101 TSW1-1-17 260.35 69.43 3.75 0.08869 0.00085 2.93837 0.06711 0.24274 0.00618 1398 22 1392 17 1401 32 100 TSW1-1-18 260.35 69.43 3.75 0.08714 0.00052 2.84040 0.03558 0.23832 0.00306 1364 11 1366 9 1378 16 100 TSW1-1-19 231.39 221.49 1.04 0.08814 0.00054 2.84174 0.03720 0.23489 0.00347 1386 13 1367 10 1360 18 102 TSW1-1-20 466.52 299.62 1.56 0.08850 0.00052 2.96898 0.04750 0.24375 0.00404 1393 14 1400 12 1406 21 99 TSW1-1-21 222.79 87.57 2.54 0.08822 0.00148 2.84032 0.08644 0.23677 0.00478 1387 30 1366 23 1370 25 102 TSW1-1-22 531.36 262.70 2.02 0.08672 0.00049 2.83336 0.04602 0.23733 0.00363 1354 14 1364 12 1373 19 101 TSW1-1-23 448.98 355.08 1.26 0.08810 0.00045 2.82713 0.05287 0.23369 0.00423 1385 16 1363 14 1354 22 100 TSW1-1-24 1150.39 209.80 5.48 0.08726 0.00050 2.81149 0.04111 0.23543 0.00357 1366 13 1359 11 1363 19 100 TSW1-1-25 466.52 299.62 1.56 0.08820 0.00048 2.92795 0.04735 0.24116 0.00402 1387 14 1389 12 1393 21 117 注:所有测试年龄值通过普通Pb矫正,当年龄值大于1000Ma, 谐和度=100×(207Pb/206Pb年龄)/(206Pb/238U年龄);当年龄值小于1000Ma, 谐和度=100×(207Pb/235U年龄)/(206Pb/238U年龄) 表 2 菜子园蛇绿岩桃树湾辉长岩锆石Lu-Hf同位素组成
Table 2. Zircon Lu-Hf compositions of the gabbro from the Caiziyuan ophiolitic mélange
测点 年龄/Ma 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ 176Hf/177Hfi εHf(t) 2σ TDM/Ma fLu/Hf TSW1-1-1 1374 0.142985 0.003629 0.282351 0.000040 0.282257 12.3 2.04 1367 -0.89 TSW1-1-2 1386 0.105167 0.003333 0.282332 0.000043 0.282245 12.2 2.03 1383 -0.90 TSW1-1-3 1365 0.134789 0.004159 0.282357 0.000047 0.282250 11.9 2.31 1378 -0.87 TSW1-1-4 1381 0.076700 0.002483 0.282289 0.000034 0.282224 11.3 1.76 1415 -0.93 TSW1-1-5 1358 0.073617 0.002288 0.282297 0.000029 0.282238 11.3 1.60 1395 -0.93 TSW1-1-6 1383 0.131034 0.004074 0.282358 0.000034 0.282251 12.3 1.82 1374 -0.88 TSW1-1-7 1370 0.107289 0.003293 0.282326 0.000031 0.282240 11.7 1.67 1392 -0.90 TSW1-1-8 1363 0.135503 0.003991 0.282345 0.000031 0.282242 11.5 1.73 1391 -0.88 TSW1-1-9 1365 0.106092 0.003060 0.282336 0.000037 0.282257 12.1 2.01 1368 -0.91 TSW1-1-10 1371 0.168431 0.004436 0.282365 0.000053 0.282250 12.0 2.29 1377 -0.87 TSW1-1-11 1403 0.109892 0.003384 0.282332 0.000036 0.282242 12.5 1.79 1386 -0.90 TSW1-1-12 1398 0.119579 0.003598 0.282357 0.000031 0.282262 13.1 1.80 1357 -0.89 TSW1-1-13 1385 0.098754 0.002957 0.282321 0.000035 0.282244 12.1 1.81 1385 -0.91 TSW1-1-14 1387 0.138157 0.003440 0.282341 0.000038 0.282251 12.4 1.87 1375 -0.90 表 3 菜子园蛇绿岩主量、微量和稀土元素分析结果
Table 3. Analytical results of the major, trace and rare earth elements of the Caiziyuan ophiolite
样品编号 TSW1-1
辉长岩TSW1-2
辉长岩TSW1-3
辉长岩TSW1-4
辉长岩TSW2-1
蛇纹岩NJS1-2
方辉橄榄岩NJS1-3
玄武岩SiO2 51.22 49.53 49.02 51.27 39.72 36.89 46.53 TiO2 1.51 0.72 0.31 0.81 0.06 0.02 0.41 Al2O3 12.09 14.73 15.51 15.11 1.17 0.38 14.38 Fe2O3 3.15 3.53 3.16 3.17 7.75 13.40 3.15 FeO 7.55 7.95 7.10 7.55 2.45 2.85 9.50 MnO 0.42 0.26 0.20 0.20 0.11 0.07 0.23 MgO 9.32 9.69 10.50 8.11 36.57 33.95 10.42 CaO 9.95 7.50 8.02 6.87 0.08 1.84 7.76 Na2O 2.51 3.25 2.81 3.92 0.12 0.13 2.58 K2O 0.55 0.53 1.43 1.01 0.02 0.01 0.95 P2O5 0.11 0.05 0.02 0.05 0.02 0.01 0.03 烧失量 1.48 2.18 1.86 1.91 11.84 10.38 4.04 总计 99.85 99.92 99.93 99.98 99.92 99.93 99.97 Mg# 67.66 67.01 71.11 64.51 90.05 84.15 66.32 FeO* 9.33 10.00 8.94 9.35 8.47 13.40 11.08 Sc 46.30 42.80 41.60 52.80 3.83 3.13 34.90 V 448.0 275.0 179.0 315.0 36.7 29.8 200.0 Cr 724.0 395.0 638.0 152.0 1053.0 1412.0 887.0 Co 48.5 44.5 42.3 44.1 96.2 154.0 52.4 Ni 188.0 141.0 155.0 87.4 1673.0 1824.0 173.0 Ga 10.40 6.64 5.76 8.69 1.91 1.24 7.40 Rb 14.40 17.20 49.90 34.90 1.05 0.45 26.60 Sr 132.00 168.00 215.00 188.00 1.63 53.50 141.00 Y 32.80 16.90 9.42 24.20 1.98 2.60 14.80 Nb 2.60 1.03 0.37 1.21 0.92 0.50 0.54 Sb 0.47 0.81 2.28 1.64 1.86 5.40 0.98 Cs 0.56 0.74 2.42 1.58 0.26 0.42 0.72 Ba 430.00 98.40 122.00 231.00 9.22 28.40 114.00 La 5.14 1.61 1.00 2.66 2.09 1.47 1.94 Ce 13.50 3.61 2.15 6.61 3.92 2.95 4.14 Pr 1.89 0.57 0.41 0.92 0.48 0.33 0.64 Nd 8.39 3.12 1.54 4.53 2.00 1.58 3.18 Sm 2.81 1.12 0.69 1.80 0.31 0.18 1.01 Eu 0.87 0.36 0.28 0.70 0.13 0.09 0.96 Gd 3.39 1.82 0.79 2.64 0.37 0.47 1.48 Tb 0.78 0.42 0.23 0.57 0.07 0.08 0.34 Dy 5.44 2.87 1.60 3.76 0.40 0.46 2.51 Ho 1.11 0.56 0.37 0.82 0.06 0.09 0.50 Er 3.97 1.84 1.12 2.68 0.24 0.17 1.72 Tm 0.56 0.34 0.20 0.37 0.04 0.04 0.29 Yb 3.75 2.08 0.97 2.76 0.17 0.23 1.80 Lu 0.54 0.31 0.18 0.37 0.04 0.04 0.25 Ta 0.28 0.19 0.34 0.34 0.22 0.14 0.07 Th 0.55 0.29 0.11 0.54 0.77 0.29 0.12 U 0.14 0.09 0.04 0.13 0.24 0.12 0.05 Zr 100.00 44.30 18.20 55.20 15.90 4.87 23.30 Hf 2.98 1.56 0.67 1.60 0.38 0.15 0.75 δEu 0.86 0.76 1.15 0.98 1.15 0.92 2.39 La/Nb 1.98 1.56 2.68 2.20 2.28 2.92 3.62 Zr/Nb 38.46 43.01 48.79 45.62 17.34 9.68 43.47 Nb/Th 4.72 3.52 3.42 2.26 1.19 1.72 4.32 Ta/U 2.04 2.03 9.19 2.51 0.92 1.11 1.51 Nb/Th 4.72 3.52 3.42 2.26 1.19 1.72 4.32 Ti/Y 275.94 255.01 196.62 199.39 190.72 43.80 165.64 (La/Yb)N 1.37 0.56 0.74 0.69 8.62 4.53 0.77 (La/Sm)N 1.64 0.93 0.93 0.95 4.34 5.24 1.24 注:主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] 张旗.中国蛇绿岩研究概述[J].岩石学报, 1995, 30(增刊):1-9. http://www.wenkuxiazai.com/doc/6e64b91d2b160b4e767fcf89-2.html
[2] 倪志耀, 王仁民, 袁建平.元古宙蛇绿岩研究中有关问题的讨论[J].地球科学进展, 1999, 14(5):468-474. http://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ199905008.htm
[3] 刘肇昌, 李凡友, 钟康惠, 等.扬子地台西缘构造演化与成矿[M].成都:电子科技大学出版社, 1996:5-165.
[4] 赵彻终, 刘肇昌, 李凡友.会理-东川元古代海相火山岩带的特征与形成环境[J].矿物岩石, 1999, 19(2):17-24. http://www.cqvip.com/QK/94361X/199902/3581291.html
[5] 吴根耀.从关键地质事件看华南的前寒武系划分[J].地层学杂志, 2006, 30(3):271-286. http://www.cqvip.com/QK/92920X/2006003/22468024.html
[6] 耿元生, 杨崇辉, 王新社, 等.扬子地台西缘变质基底演化[M].北京:地质出版社, 2008:1-202.
[7] 李继亮, 张绍宗.通安-小关河元古代碰撞缝合线的发现及其地质意义[J].地质科学, 1987, 1:81-85.
[8] 王康明, 阚泽忠.扬子地台西缘对Rodinia形成期地质响应[J].华南地质与矿产, 2001, 4:22-27. doi: 10.3969/j.issn.1007-3701.2001.04.007
[9] 王冬兵, 孙志明, 尹福光, 等.扬子陆块西缘河口群的时代:来自火山岩LA-ICP-MS U-Pb年龄的证据[J].地层学杂志, 2012, 36(3):630-635.
[10] 耿元生, 柳永清, 高林志, 等.扬子克拉通西南缘中元古代通安组的形成时代[J].地质学报, 2012, 86(9):1479-1490.
[11] 任光明, 庞维华, 孙志明, 等.扬子西缘会理地区通安组角闪岩锆石U-Pb定年及其地质意义[J].矿物岩石, 2014, 34(2):33-39. http://www.cqvip.com/QK/94361X/201402/50254765.html
[12] 庞维华, 任光明, 孙志明, 等.扬子地块西缘古-中元古代地层划分对比研究:来自通安组火山岩锆石U-Pb年龄证据[J].中国地质, 2015, 42(4):921-936. http://d.wanfangdata.com.cn/Periodical_zgdizhi201504010.aspx
[13] 阚泽忠, 乔正福.四川会理-河口地区褶皱基底的双层结构[J].四川地质学报, 1999, 19(3):204-209. http://www.cqvip.com/QK/83117X/199903/4000819224.html
[14] 尹福光, 孙志明, 任光明, 等.上扬子陆块西南缘早-中元古代造山运动的地质记录[J].地质学报, 2012, 86(12):1917-1932. doi: 10.3969/j.issn.0001-5717.2012.12.005
[15] 牟传龙, 林仕良, 余谦.四川会理-会东及邻区中元古代昆阳群沉积特征及演化[J].沉积与特提斯地质, 2000, 20(1):44-50. http://cqvip.com/qk/98500A/200001/4155825.html
[16] 宋彪, 张玉海, 万渝生, 等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评, 2002, 48:26-30. http://www.cqvip.com/QK/91067X/2002S1/1004250435.html
[17] Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257-A homogeneous natural reference material for the ion microprobe UPb analysis of zircon[J].Geostandards and Geoanalytical Research, 2008, 32:247-265. doi: 10.1111/ggr.2008.32.issue-3
[18] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal Petrology, 2010, 51:537-571. doi: 10.1093/petrology/egp082
[19] Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical geology, 2002, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X
[20] 侯可军, 李延河, 田有荣. LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4):481-492. http://mall.cnki.net/magazine/Article/KCDZ200904009.htm
[21] Sláma J, Kosler J, Condon D J, et al. Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249:1-35. doi: 10.1016/j.chemgeo.2007.11.005
[22] Coleman R G. Ophiolites-Ancient oceanic lithosphere, Berlin, Heidelberg[M].New York:Springer-Verlag, 1977.
[23] El-Sayed M M, Furnes H, Mohamed F H. Geochemical constraints on the tectonomagmatic evolution of the late Precambrian Fawakhir ophiolite, Central Eastern Desert Egypt[J]. African Earth Sci., 1999, 29:515-533. doi: 10.1016/S0899-5362(99)00113-X
[24] Floyd P A, Winchester J A. Magma type and tectonic setting discrimination using immobile elements[J]. Earth Planet. Sci. Lett., 1975, 27:211-218. doi: 10.1016/0012-821X(75)90031-X
[25] Boynton W V. Geochemistry of the rare earth elements. meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elservier, 1984:63-114.
[26] Sun S, McDonough W F, Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society, London, Special Publications 1989, 42:313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[27] Peng S B, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton:implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21:577-594. doi: 10.1016/j.gr.2011.07.010
[28] 沈渭洲, 高剑锋, 徐士进, 等.四川石棉蛇绿岩的地球化学特征及其构造意义[J].地质论评, 2003, 49(1):17-27. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=...
[29] Hugh R R, Hugh R. Using Geochemical Data:Evaluation, Presentation, Interpretation. England:Longman Scientific & Technical[M]. New York:Wiley & Sons, 1993:1-384
[30] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the NbZr-Y diagram[J]. Chemical Geology, 1986, 56:207-218. doi: 10.1016/0009-2541(86)90004-5
[31] Pearce J A. Supra-Subduction zone ophiolites:The search for modern analogues[J]. Geological Society of America Special Papers, 2003:269-294. https://pubs.geoscienceworld.org/books/chapter-pdf/967911/i0-8137...
[32] 肖庆辉, 李廷栋, 潘桂棠, 等.识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别[J].中国地质, 2016, 43(3):721-737. doi: 10.12029/gc20160303
[33] Ishizuka O, Tani K, Reagan M. KIzu-Bonin-Mariana forearc Crust as a modern ophiolite Analogue[J]. Elements, 2014, 10:115-120. doi: 10.2113/gselements.10.2.115
[34] Pearce J A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust[J]. Lithos, 2008:100:14-48. doi: 10.1016/j.lithos.2007.06.016
[35] Furnes H, Dilek Y. Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites:A global synthesis[J]. Earth-Science Reviews, 2017, 166:1-37. doi: 10.1016/j.earscirev.2017.01.001
[36] Dunning G R, Pedersen R B. U-Pb ages of ophiolites and arcrelated plutons of the Norwegian Caledonides:Implications for the development of lapetus[J]. Contributions to Mineralogy and Petrology, 1988, 98:13-23. doi: 10.1007/BF00371904
[37] 谢琪, 张宗命".川中微型大陆"与四川盆地形成[J].四川地质学报, 1982, Z1:46-59.
[38] 熊小松, 高锐, 张季生, 等.四川盆地东西陆块中下地壳结构存在差异[J].地球物理学报, 2015, 58(7):2413-2423. doi: 10.6038/cjg20150718
[39] 姜继圣.黄陵变质地区的同位素地质年代及地壳演化[J].长春地质学院学报, 1986, 3:1-11.
[40] Peng S B, Kusky T M, Jiang X F, et al. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton:Implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 2012, 21:577-594. doi: 10.1016/j.gr.2011.07.010
[41] Qiu X F, Ling W L, Liu X M, et al. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research, 2011, 191:101-119. doi: 10.1016/j.precamres.2011.09.011
① 任光明, 庞维华, 尹福光, 等. 扬子地块西缘格伦维尔造山过程、南华裂谷作用及其成矿效应综合研究报告. 成都地质调查中心, 2014.
② 四川省地质局第一区测队. 1: 20万会理幅区域地质调查报告. 1970.
③ 阚泽忠, 李振江, 冷政文, 等. 1: 5万关河幅区域地质调查报告. 四川省地质矿产局, 1995.
-