-
摘要:
晚白垩世拉萨板块与羌南-保山板块陆陆碰撞事件是青藏高原形成与演化研究的热点。西藏阿索地区的晚白垩世竟柱山组和马莫勒组是阿索地区该时期最具代表性的沉积记录。目前有关其形成时代及沉积环境的研究非常薄弱,限制了对于区域构造背景等方面的认识。对西藏阿索地区的晚白垩世竟柱山组的形成时代、沉积环境进行了研究。碎屑锆石LA-ICP-MS U-Pb定年结果表明,竟柱山组碎屑锆石样品中的最小单颗粒锆石年龄为89±5 Ma,阿索地区竟柱山组南部侵入的闪长岩岩脉获得了88 Ma的锆石U-Pb年龄,进一步表明竟柱山组的沉积时代应在90 Ma左右。结合该地区同时代马莫勒组的研究成果,认为竟柱山组沉积于冲积扇环境,而马莫勒组为辫状河-三角洲环境。在沉积物源方面,竟柱山组物源更偏向汇聚环境下的岛弧,而马莫勒组则具有更复杂的物源。竟柱山组和马莫勒组作为拉萨-羌塘板块碰撞造山作用在地表的沉积响应,共同记录了晚白垩世的地壳抬升过程。
Abstract:The continent-continent collision between Lhasa plate and Qiangtang-Baoshan plate has been a spotlight in the study of Tibetan Plateau's formation and evolution.In Asa area, Late Cretaceous Jingzhushan Formation and Mamole Formation are the most representative deposits in that time.However, the limited research on their ages and sedimentary environment has limited the understanding of the regional tectonic background.This paper reports the studies on the age and sedimentary environment of the Late Cretaceous Jingzhushan Formation in Asa of Tibet.The detrital zircon LA-ICP-MS U-Pb dating results show that the smallest single grain zircon obtained from the Jingzhushan Formation yields age of 89±5 Ma.The diorite dyke intruding into the south part of Jingzhushan Formation gives a zircon U-Pb age of 88 Ma, which further indicates that the sedimentary age of the Jingzhushan Formation in this area should be around 90 Ma.Combined with the research results of the contemporary Mamole Formation in this area, it is suggested that the Jingzhushan Formation was deposited in the alluvial fan environment, while the Mamole Formation in the braided river-delta environment.In terms of sediment sources, the source of Jingzhushan Formation tends to be an island arc provenance under converging environment, while the Mamole Formation has a more complicated source.The Jingzhushan Formation and the Mamole Formation, as the sedimentary response of the Lhasa-Qiangtang plate collision orogeny on the surface, jointly record the crustal uplift process in the Late Cretaceous.
-
Key words:
- Tibet /
- Late Cretaceous /
- detrital zircom /
- Jingzhushan Formation /
- sedimentary environment /
- zircon U-Pb dating
-
图 1 拉萨板块构造划分图[29](a)和西藏尼玛县阿索地区地质简图(b)
Figure 1.
表 1 拉萨板块晚白垩世地层时代
Table 1. Late Cretaceous deposition dating in Lhasa block
研究地区 沉积时代 方法 参考文献 尼玛盆地南部 < 99 Ma 火山凝灰岩锆石U-Pb [5] 尼玛盆地南部 90~100 Ma 火山凝灰岩锆石U-Pb、碎屑锆石 [18] 尼玛盆地南部 塞诺曼期 植物孢粉化石 [19] 改则扎西错东南 79 Ma(YSG) 碎屑锆石 [20] 革吉唐杂 92~96 Ma 圆笠虫化石、碎屑锆石 [21] 阿索马莫勒 < 99 Ma 碎屑锆石 [22] 日土县班公湖西 96~73 Ma 软体动物化石、石英ERS测年、磁性地层学 [23] 比如盆地 约83 Ma 安山岩K-Ar [24] 措勤虾格子 < 96 Ma,约91 Ma 火山凝灰岩锆石U-Pb、碎屑锆石 [25] 措勤塔惹增 晚白垩世 珊瑚化石 [26] 表 2 西藏尼玛县阿索乡山嘎勒上白垩统竟柱山组碎屑锆石测年数据
Table 2. Detrital zircon U-Pb dating data of Upper Cretaceous Jingzhushan Formation in the Shangale,Asa,Nima County,Tibet
测点号 含量/10 -6 Th/U 同位素比值 年龄/Ma Th U Pb 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ 207Pb/ 206Pb 1σ 207Pb/ 235U 1σ 206Pb/ 238U 1σ 最佳年龄 1σ N17T3-01 86.69 112.68 2.71 0.77 0.04851 0.00319 0.13182 0.00863 0.01971 0.00028 124 120 126 8 126 2 126 2 N17T3-02 61.59 124.1 2.78 0.5 0.04842 0.00269 0.13145 0.00727 0.01969 0.00027 120 99 125 7 126 2 126 2 N17T3-03 119.63 229.16 5.12 0.52 0.04859 0.0018 0.13192 0.00486 0.01969 0.00025 128 62 126 4 126 2 126 2 N17T3-04 136.11 230.96 5.28 0.59 0.04862 0.00176 0.13225 0.00477 0.01972 0.00025 130 61 126 4 126 2 126 2 N17T3-05 155.87 257.1 56.56 0.61 0.07651 0.00127 1.97729 0.03384 0.18741 0.00219 1108 17 1108 12 1107 12 1108 17 N17T3-06 94.26 197.66 4.35 0.48 0.04856 0.00193 0.13118 0.00519 0.01959 0.00025 127 68 125 5 125 2 125 2 N17T3-07 99.05 99 2.54 1 0.04848 0.00374 0.13174 0.01012 0.0197 0.00028 123 145 126 9 126 2 126 2 N17T3-08 78.62 128.93 2.94 0.61 0.04851 0.00358 0.13108 0.00961 0.01959 0.00029 124 136 125 9 125 2 125 2 N17T3-09 86.58 142.21 3.29 0.61 0.04851 0.00298 0.13165 0.00805 0.01968 0.00027 124 112 126 7 126 2 126 2 N17T3-10 166.48 237.41 5.59 0.7 0.04841 0.00186 0.13111 0.00502 0.01964 0.00025 119 65 125 5 125 2 125 2 N17T3-11 112.73 181.11 4.02 0.62 0.04781 0.00312 0.12366 0.00802 0.01876 0.00026 90 118 118 7 120 2 120 2 N17T3-12 74.92 192.05 8.29 0.39 0.05108 0.00152 0.27383 0.00816 0.03887 0.00048 244 46 246 7 246 3 246 3 N17T3-13 149.18 239.88 5.57 0.62 0.04944 0.0023 0.13408 0.0062 0.01967 0.00026 169 83 128 6 126 2 126 2 N17T3-14 327.51 442.12 8.11 0.74 0.04802 0.00141 0.09988 0.00293 0.01508 0.00019 100 46 97 3 96 1 96 1 N17T3-15 135.81 211.27 4.41 0.64 0.04827 0.00235 0.11798 0.00572 0.01773 0.00023 113 85 113 5 113 1 113 1 N17T3-17 132.76 299.6 9.16 0.44 0.04954 0.00157 0.18651 0.0059 0.0273 0.00033 173 51 174 5 174 2 174 2 N17T3-18 137.27 244.13 5.26 0.56 0.04832 0.00223 0.12253 0.00564 0.01839 0.00024 115 80 117 5 117 2 117 2 N17T3-20 73.84 135.03 3.08 0.55 0.0483 0.00309 0.1314 0.00836 0.01973 0.00027 114 117 125 8 126 2 126 2 N17T3-21 296.02 237.04 26.81 1.25 0.05611 0.00114 0.63113 0.01295 0.08157 0.00098 457 25 497 8 505 6 505 6 N17T3-22 227.3 379.85 7.91 0.6 0.04632 0.00139 0.11434 0.00341 0.0179 0.00023 14 40 110 3 114 1 114 1 N17T3-23 143.56 207.19 4.65 0.69 0.04905 0.00185 0.12731 0.00475 0.01882 0.00025 150 62 122 4 120 2 120 2 N17T3-24 77.15 194.46 3.73 0.4 0.04812 0.00216 0.11525 0.00511 0.01737 0.00025 105 74 111 5 111 2 111 2 N17T3-25 86.67 163.78 3.79 0.53 0.05294 0.00265 0.14701 0.00726 0.02014 0.00031 326 84 139 6 129 2 129 2 N17T3-26 197.07 249.68 6.41 0.79 0.05101 0.00158 0.14638 0.00451 0.02081 0.00027 241 47 139 4 133 2 133 2 N17T3-27 158.94 227.57 5.28 0.7 0.0465 0.00166 0.12354 0.00437 0.01926 0.00025 24 52 118 4 123 2 123 2 N17T3-28 427.25 763.65 17.75 0.56 0.05032 0.00107 0.14018 0.00301 0.0202 0.00024 210 28 133 3 129 2 129 2 N17T3-29 78.66 108.18 2.7 0.73 0.04989 0.00271 0.14233 0.00762 0.02069 0.00032 190 95 135 7 132 2 132 2 N17T3-30 277.03 381.58 48.9 0.73 0.06183 0.00109 0.8954 0.01614 0.10501 0.00124 668 20 649 9 644 7 644 7 N17T3-31 341.84 516.55 10.93 0.66 0.04785 0.00124 0.11704 0.00304 0.01774 0.00022 92 38 112 3 113 1 113 1 N17T3-32 144.08 353.59 98.15 0.41 0.09038 0.00252 2.8884 0.07248 0.23178 0.00282 1434 54 1379 19 1344 15 1434 54 N17T3-33 91.21 243.11 5.35 0.38 0.05039 0.00182 0.13766 0.00493 0.01981 0.00027 213 58 131 4 126 2 126 2 N17T3-34 105.25 243.11 5.47 0.43 0.04923 0.00163 0.13638 0.00448 0.02009 0.00026 159 53 130 4 128 2 128 2 N17T3-35 160.5 258.93 98.35 0.62 0.1068 0.0018 4.59933 0.07981 0.31229 0.00368 1746 16 1749 14 1752 18 1746 16 N17T3-36 366.34 778.94 28.76 0.47 0.05323 0.00111 0.23611 0.00498 0.03216 0.00039 339 27 215 4 204 2 204 2 N17T3-37 126.02 239.02 5.41 0.53 0.04767 0.00207 0.12942 0.00554 0.01969 0.00028 83 70 124 5 126 2 126 2 N17T3-38 145.04 155.63 4.02 0.93 0.04835 0.00209 0.13412 0.00573 0.02011 0.00028 116 73 128 5 128 2 128 2 N17T3-39 51.81 138.27 11.78 0.37 0.05711 0.00137 0.60316 0.01454 0.07658 0.00095 496 32 479 9 476 6 476 6 N17T3-40 222.52 350.14 7.89 0.64 0.04797 0.00158 0.1242 0.00406 0.01878 0.00025 98 52 119 4 120 2 120 2 N17T3-41 35.21 52.23 1.15 0.67 0.04263 0.00482 0.10772 0.01205 0.01832 0.00037 143 170 104 11 117 2 117 2 N17T3-44 449.45 725.1 16.93 0.62 0.05011 0.00127 0.13682 0.00347 0.0198 0.00025 200 36 130 3 126 2 126 2 N17T3-45 565.77 600.68 14.79 0.94 0.04927 0.00133 0.12914 0.00348 0.01901 0.00024 161 40 123 3 121 2 121 2 N17T3-46 81.88 101.65 2.56 0.81 0.04811 0.00384 0.12784 0.00998 0.01927 0.00031 105 179 122 9 123 2 123 2 N17T3-47 57.04 526.81 11.4 0.11 0.04854 0.00126 0.14168 0.00369 0.02117 0.00026 126 38 135 3 135 2 135 2 N17T3-48 112.82 521.35 16.15 0.22 0.05238 0.00142 0.21507 0.00584 0.02978 0.00038 302 39 198 5 189 2 189 2 N17T3-49 289.04 482 114.08 0.6 0.07832 0.00139 2.12804 0.03885 0.19703 0.00233 1155 19 1158 13 1159 13 1155 19 N17T3-50 54.31 545.39 11.43 0.1 0.05006 0.00164 0.14154 0.0046 0.0205 0.00027 198 51 134 4 131 2 131 2 N17T3-51 141.26 131.06 33.14 1.08 0.07382 0.00146 1.92203 0.0388 0.18881 0.00228 1037 22 1089 13 1115 12 1037 22 N17T3-52 246.49 489.45 11.81 0.5 0.04782 0.00135 0.13849 0.00392 0.021 0.00027 90 43 132 3 134 2 134 2 N17T3-53 242.86 555.68 10.37 0.44 0.05056 0.0017 0.11375 0.00379 0.01631 0.00022 221 52 109 3 104 1 104 1 N17T3-54 223.96 278.59 29.94 0.8 0.05829 0.00121 0.68561 0.01446 0.08529 0.00103 541 26 530 9 528 6 528 6 N17T3-55 132.71 193.05 8.87 0.69 0.04605 0.00337 0.13997 0.01008 0.02205 0.00029 162 133 9 141 2 141 2 N17T3-56 51.57 107 2.43 0.48 0.04754 0.00286 0.12824 0.00747 0.01956 0.00029 77 134 123 7 125 2 125 2 N17T3-57 66.48 109.31 2.52 0.61 0.04706 0.00316 0.12551 0.00831 0.01934 0.00033 52 113 120 7 123 2 123 2 N17T3-58 138.84 200.5 12.26 0.69 0.05368 0.01403 0.13222 0.03445 0.01786 0.00037 358 485 126 31 114 2 114 2 N17T3-59 59.43 112.34 2.52 0.53 0.04895 0.00265 0.12995 0.00696 0.01925 0.00029 145 94 124 6 123 2 123 2 N17T3-61 449.7 1157.08 23.2 0.39 0.05067 0.00149 0.12487 0.00367 0.01787 0.00023 226 44 119 3 114 1 114 1 N17T3-62 333.29 774.76 15.72 0.43 0.04858 0.00123 0.11879 0.00302 0.01773 0.00022 128 37 114 3 113 1 113 1 N17T3-63 121.67 230.71 4.99 0.53 0.04395 0.00168 0.11238 0.00428 0.01854 0.00025 73 57 108 4 118 2 118 2 N17T3-64 25.71 38.51 12.03 0.67 0.04605 0.05667 0.08833 0.10858 0.01391 0.0008 1395 86 101 89 5 89 5 N17T3-65 166.09 267.32 6.38 0.62 0.04778 0.00188 0.1322 0.00514 0.02006 0.00028 88 63 126 5 128 2 128 2 N17T3-66 122.78 173.44 4.67 0.71 0.05111 0.00215 0.15422 0.00642 0.02188 0.00031 246 70 146 6 140 2 140 2 N17T3-67 92.53 133.19 3.25 0.69 0.05003 0.00247 0.13721 0.00671 0.01989 0.0003 196 86 131 6 127 2 127 2 N17T3-68 166.88 252.54 5.95 0.66 0.04555 0.00183 0.12234 0.00489 0.01948 0.00027 26 57 117 4 124 2 124 2 N17T3-69 313.09 498.94 10.84 0.63 0.04621 0.00164 0.11649 0.00411 0.01828 0.00025 9 49 112 4 117 2 117 2 N17T3-70 177.07 426.13 9.48 0.42 0.04882 0.00149 0.13253 0.00404 0.01969 0.00026 139 47 126 4 126 2 126 2 N17T3-71 94.65 126.95 3.09 0.75 0.04952 0.00323 0.1334 0.00857 0.01953 0.00033 173 115 127 8 125 2 125 2 N17T3-72 116.52 217.37 4.76 0.54 0.04977 0.00207 0.12734 0.00524 0.01856 0.00026 184 70 122 5 119 2 119 2 N17T3-73 140.95 147.13 36.13 0.96 0.07847 0.00173 1.98617 0.04441 0.18355 0.00228 1159 25 1111 15 1086 12 1159 25 N17T3-74 96.22 183.35 4.31 0.52 0.05008 0.0023 0.13896 0.0063 0.02012 0.00029 199 78 132 6 128 2 128 2 N17T3-75 137.98 292.08 53.1 0.47 0.07317 0.00157 1.55685 0.03395 0.1543 0.0019 1019 25 953 13 925 11 1019 25 N17T3-76 227.6 507.93 10.33 0.45 0.05083 0.00152 0.1236 0.00369 0.01763 0.00023 233 45 118 3 113 1 113 1 N17T3-77 33.38 62.5 22.89 0.53 0.10495 0.0024 4.35924 0.10067 0.3012 0.00381 1713 24 1705 19 1697 19 1713 24 N17T3-78 131.46 201.41 4.62 0.65 0.04849 0.00194 0.12635 0.005 0.0189 0.00026 123 67 121 5 121 2 121 2 N17T3-79 113.5 208.97 4.91 0.54 0.04533 0.00192 0.12467 0.00524 0.01994 0.00028 3 61 119 5 127 2 127 2 N17T3-80 253.02 499.32 11.27 0.51 0.0474 0.00144 0.12629 0.00384 0.01932 0.00025 69 47 121 3 123 2 123 2 N17T3-81 64.52 116.83 6.53 0.55 0.04605 0.00892 0.12541 0.0242 0.01975 0.00035 331 120 22 126 2 126 2 N17T3-83 154.91 269.86 6.13 0.57 0.04939 0.00193 0.12906 0.00501 0.01895 0.00026 166 65 123 5 121 2 121 2 N17T3-84 60.12 90.43 17.62 0.66 0.0692 0.00186 1.52225 0.04095 0.15952 0.00207 905 34 939 16 954 12 905 34 N17T3-85 62.08 138.43 3.13 0.45 0.04943 0.00243 0.13403 0.00652 0.01966 0.00029 168 85 128 6 126 2 126 2 N17T3-86 76.52 169.86 3.87 0.45 0.04677 0.00219 0.12776 0.00591 0.01981 0.00029 37 72 122 5 126 2 126 2 N17T3-87 55.55 111.94 2.45 0.5 0.0452 0.0028 0.11714 0.00717 0.01879 0.0003 9 101 112 7 120 2 120 2 N17T3-88 938.36 690.34 20.05 1.36 0.04813 0.00134 0.13526 0.00378 0.02038 0.00026 106 42 129 3 130 2 130 2 N17T3-89 125.81 218.7 4.58 0.58 0.04755 0.00198 0.11525 0.00477 0.01758 0.00025 77 66 111 4 112 2 112 2 N17T3-90 143.86 259.72 6.25 0.55 0.05428 0.00192 0.15041 0.00528 0.02009 0.00028 383 54 142 5 128 2 128 2 N17T3-91 60.71 57.48 1.23 1.06 0.04286 0.00475 0.09417 0.01034 0.01593 0.00031 131 170 91 10 102 2 102 2 N17T3-92 53.46 122.94 2.67 0.43 0.04708 0.00266 0.1219 0.00681 0.01877 0.00029 53 93 117 6 120 2 120 2 N17T3-93 103.78 140.44 3.33 0.74 0.04613 0.00247 0.12187 0.00646 0.01916 0.00029 4 84 117 6 122 2 122 2 N17T3-94 204.38 358.62 7.87 0.57 0.0502 0.00177 0.12749 0.00448 0.01842 0.00025 204 56 122 4 118 2 118 2 N17T3-95 269.21 350.6 8.59 0.77 0.04997 0.00221 0.13202 0.00577 0.01916 0.00028 194 74 126 5 122 2 122 2 N17T3-96 68.06 48.74 8.53 1.4 0.06299 0.0022 1.05006 0.03646 0.12088 0.00169 708 50 729 18 736 10 736 10 N17T3-97 171.83 211.83 5.27 0.81 0.0519 0.0022 0.14011 0.00588 0.01958 0.00028 281 70 133 5 125 2 125 2 N17T3-98 112.4 128.13 3 0.88 0.048 0.00268 0.12057 0.00667 0.01821 0.00028 99 95 116 6 116 2 116 2 N17T3-99 68.15 144.39 3.33 0.47 0.04962 0.00244 0.13636 0.00663 0.01993 0.0003 177 85 130 6 127 2 127 2 注:测试单位为中国地质大学(北京)科学研究院实验中学 -
[1] 尹安. 喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长[J]. 地球学报, 2001, (3): 193-230. doi: 10.3321/j.issn:1006-3021.2001.03.001
[2] 许志琴, 杨经绥, 侯增谦, 等. 青藏高原大陆动力学研究若干进展[J]. 中国地质, 2016, 43(1): 5-46. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201601001.htm
[3] Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan plateau?[J]. Geology, 1997, 25(8): 719-722. doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
[4] Kapp P, Yin A, Harrison T M, et al. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet[J]. Geological Society of America Bulletin, 2005, 117(7): 865. doi: 10.1130/B25595.1
[5] Kapp P, DeCelles P G, Gehrels G E, et al. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet[J]. Geological Society of America Bulletin, 2007, 119(7/8): 917-933. http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=gsabull&resid=119/7-8/917
[6] DeCelles P G, Kapp P, Ding L, et al. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain[J]. Geological Society of America Bulletin, 2007, 119(5/6): 654-680. http://adsabs.harvard.edu/abs/2006AGUFM.T31E..01D
[7] Ding L, Xu Q, Yue Y, et al. The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin[J]. Earth and Planetary Science Letters, 2014, 392: 250-264. doi: 10.1016/j.epsl.2014.01.045
[8] Wu H, Chen J, Wang Q, et al. Spatial and temporal variations in the geochemistry of Cretaceous high-Sr/Y rocks in Central Tibet[J]. American Journal of Science, 2019, 319: 105-121. doi: 10.2475/02.2019.02
[9] Luo A, Wang M, Li C, et al. Petrogenesis of early Late Cretaceous Asa-intrusive rocks in central Tibet, western China: post-collisional partial melting of thickened lower crust[J]. International Journal of Earth Sciences, 2019, 108(6): 1979-1999. doi: 10.1007/s00531-019-01744-4
[10] 潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm
[11] Zhu D, Li S, Cawood P A, et al. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 2016, 245: 7-17. doi: 10.1016/j.lithos.2015.06.023
[12] Fan J, Li C, Wang M, et al. Reconstructing in space and time the closure of the middle and western segments of the Bangong-Nujiang Tethyan Ocean in the Tibetan Plateau[J]. International Journal of Earth Sciences, 2018, 107(1): 231-249. doi: 10.1007/s00531-017-1487-4
[13] 周亚楠, 邵瑞琦, 姜南, 等. 拉萨地块保吉地区晚侏罗世-早白垩世地层磁组构特征[J]. 地质通报, 2019, 38(4): 522-535. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20190405&flag=1
[14] 夏邦栋, 张开均, 孔庆友. 青藏高原内部三条磨拉石带的确定及其构造意义[J]. 地学前缘, 1999, 6(3): 173-180. doi: 10.3321/j.issn:1005-2321.1999.03.017
[15] Kapp P, DeCelles P G, Leier A L, et al. The Gangdese retroarc thrust belt revealed[J]. GSA Today, 2007, 17(7): 4. doi: 10.1130/GSAT01707A.1
[16] Leier A L, DeCelles P G, Kapp P, et al. Lower Cretaceous Strata in the Lhasa Terrane, Tibet, with Implications for Understanding the Early Tectonic History of the Tibetan Plateau[J]. Journal of Sedimentary Research, 2007, 77(10): 809-825. doi: 10.2110/jsr.2007.078
[17] 西藏自治区地质矿产局. 西藏自治区岩石地层[M]. 武汉: 中国地质大学出版社, 1997.
[18] Lai W, Hu X, Garzanti E, et al. Initial growth of the Northern Lhasaplano, Tibetan Plateau in the early Late Cretaceous(ca. 92 Ma)[J]. Geological Society of America Bulletin, 2019, 131(11/12): 1823-1836.
[19] 贾共祥, 杜凤军, 刘伟. 西藏尼玛一带上白垩统竟柱山组的厘定及其意义[J]. 地质调查与研究, 2007, 30(3): 172-177. doi: 10.3969/j.issn.1672-4135.2007.03.003
[20] Li S, Guilmette C, Ding L, et al. Provenance of Mesozoic clastic rocks within the Bangong-Nujiang suture zone, central Tibet: Implications for the age of the initial Lhasa-Qiangtang collision[J]. Journal of Asian Earth Sciences, 2017, 147: 469-484. doi: 10.1016/j.jseaes.2017.08.019
[21] 叶加鹏, 胡修棉, 孙高远, 等. 革吉最高海相层约束班怒残留海消亡时间(~94 Ma)[J]. 科学通报, 2019, 64(15): 1620-1636. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201915007.htm
[22] 罗安波, 王明, 曾孝文, 等. 藏北尼玛县阿索乡上白垩统马莫勒组的建立及其意义[J]. 地质通报, 2018, 37(8): 1529-1540. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20180817&flag=1
[23] 李华亮, 高成, 李正汉, 等. 西藏班公湖地区竟柱山组时代及其构造意义[J]. 大地构造与成矿学, 2016, 40(4): 663-673. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201604004.htm
[24] 和钟铧, 杨德明, 王天武, 等. 西藏比如盆地竟柱山组沉积-火山岩形成环境及构造意义[J]. 沉积与特提斯地质, 2006, (01): 8-12. doi: 10.3969/j.issn.1009-3850.2006.01.002
[25] Sun G, Hu X, Sinclair H D, et al. Late Cretaceous evolution of the Coqen Basin(Lhasa terrane) and implications for early topographic growth on the Tibetan Plateau[J]. Geological Society of America Bulletin, 2015, 127(7/8): 1001-1020. . http://smartsearch.nstl.gov.cn/paper_detail.html?id=af010386a9e85c5726a1b2ef6701fe64
[26] 黄建国, 马德胜, 龙胜清. 西藏塔惹增地区上白垩统竟柱山组的厘定及其意义[J]. 贵州地质, 2014, 31(3): 206-209+240. doi: 10.3969/j.issn.1000-5943.2014.03.008
[27] Wu F, Ji W, Liu C, et al. Detrital zircon U-Pb and Hf isotopic data from the Xigaze fore-arc basin: Constraints on Transhimalayan magmatic evolution in southern Tibet[J]. Chemical Geology, 2010, 271(1): 13-25. http://igg.cas.cn/xwzx/yjcg/201004/W020100406359092055092.pdf
[28] 黄童童. 班公湖-怒江缝合带中西段晚中生代构造演化的地球化学制约[D]. 中国科学院大学(中国科学院广州地球化学研究所)硕士学位论文, 2017.
[29] 朱弟成, 潘桂棠, 王立全, 等. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论[J]. 地质通报, 2008, 27(9): 1535-1550. doi: 10.3969/j.issn.1671-2552.2008.09.013 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080913&flag=1
[30] 王立全, 潘桂棠, 朱弟成, 等. 西藏冈底斯带石炭纪-二叠纪岛弧造山作用: 火山岩和地球化学证据[J]. 地质通报, 2008, 27(9): 1509-1534. doi: 10.3969/j.issn.1671-2552.2008.09.012 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20080912&flag=1
[31] 康志强, 许继峰, 董彦辉, 等. 拉萨地块中北部白垩纪则弄群火山岩: Slainajap洋南向俯冲的产物?[J]. 岩石学报, 2008, 24(2): 303-314. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802012.htm
[32] 朱弟成, 莫宣学, 赵志丹, 等. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J]. 岩石学报, 2008, 24(3): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200803001.htm
[33] BouDagher-Fadel M K, Hu X, Price G D, et al. Foraminiferal Biostratigraphy and Palaeoenvironmental Analysis of the Mid-cretaceous Limestones in the Southern Tibetan Plateau[J]. Journal of Foraminiferal Research, 2017, 47(2): 188-207. doi: 10.2113/gsjfr.47.2.188
[34] 张泽明, 丁慧霞, 董昕, 等. 冈底斯岩浆弧的形成与演化[J]. 岩石学报, 2019, 35(2): 275-294. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201902001.htm
[35] 郑有业, 许荣科, 何来信, 等. 西藏狮泉河蛇绿混杂岩带——一个新的多岛弧盆系统的厘定及意义[J]. 沉积与特提斯地质, 2004, 24(1): 13-20. doi: 10.3969/j.issn.1009-3850.2004.01.002
[36] 徐梦婧. 青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化[D]. 吉林大学博士学位论文, 2014.
[37] Zeng X, Wang M, Fan J, et al. Geochemistry and geochronology of gabbros from the Asa Ophiolite, Tibet: Implications for the early Cretaceous evolution of the Meso-Tethys Ocean[J]. Lithos, 2018, 320/321: 192-206. doi: 10.1016/j.lithos.2018.09.013
[38] 刘海永, 曾庆高, 王雨, 等. 西藏拉果错蛇绿混杂岩岩石学, 锆石U-Pb年龄及地球化学特征[J]. 地质通报, 2020, 39(2/3): 164-176. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2020020302&flag=1
[39] 王伟. 西藏阿索地区早白垩世中酸性侵入岩岩石成因及地质意义[D]. 吉林大学硕士学位论文, 2018.
[40] Liu Y, Wang M, Li C, et al. Late Cretaceous Tectono-Magmatic Activity in the Nize Region, Central Tibet: Evidence for Lithospheric Delamination Beneath the Qiangtang-Lhasa Collision Zone[J]. International Geology Review, 2019, 61(5): 562-583. doi: 10.1080/00206814.2018.1437789
[41] Li H, Wang M, Zeng X, et al. Slab break-off origin of 105 Ma A-type porphyritic granites in the Asa area of Tibet[J]. Geological Magazine, 2020, 155(8): 1281-1291. http://www.researchgate.net/publication/339522221_Slab_break-off_origin_of_105_Ma_A-type_porphyritic_granites_in_the_Asa_area_of_Tibet
[42] Gehrels G. Detrital Zircon U-Pb Geochronology Applied to Tectonics[J]. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 127-149. doi: 10.1146/annurev-earth-050212-124012
[43] Dickinson W R, Gehrels G E. Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 115-125. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0012821X09005469&originContentFamily=serial&_origin=article&_ts=1493864661&md5=de8d075e418b9ca85f230e9f3efcc2d9
[44] Cawood P A, Hawkesworth C J, Dhuime B. Detrital zircon record and tectonic setting[J]. Geology, 2012, 40(10): 875-878. doi: 10.1130/G32945.1
[45] Leier A L, Kapp P, Gehrels G, et al. Detrital zircon geochronology of Carboniferous-Cretaceous strata in the Lhasa terrane, Southern Tibet[J]. Basin Research, 2007, 19: 361-378. doi: 10.1111/j.1365-2117.2007.00330.x
[46] Ye J, Hu X, Sun G, et al. The disappearance of the Late Cretaceous Bangong-Nujiang residual seaway constrained by youngest marine strata in Geji area, Lhasa Terrane[J]. Chinese Science Bulletin, 2019, 64(15): 1620-1636. doi: 10.1360/N972018-01092
[47] Zhu D, Zhao Z, Niu Y, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39: 727-730. doi: 10.1130/G31895.1
[48] Dong C, Li C, Wan Y, et al. Detrital zircon age model of Ordovician Wenquan quartzite south of Lungmuco-Shuanghu Suture in the Qiangtang area, Tibet: Constraint on tectonic affinity and source regions[J]. Science China Earth Sciences, 2011, 54(7): 1034-1042. doi: 10.1007/s11430-010-4166-x
[49] Belousova E, Griffin W, O'Reilly S Y, et al. Igneous zircon: trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622. doi: 10.1007/s00410-002-0364-7
[50] 赵志丹, 刘栋, 王青, 等. 锆石微量元素及其揭示的深部过程[J]. 地学前缘, 2018, 25(6): 124-135. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806012.htm
[51] Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006
[52] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of Zircon Textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500. doi: 10.2113/0530469
[53] Grimes C B, Wooden J L, Cheadle M J, et al. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon[J]. Contributions to Mineralogy and Petrology, 2015, 2015, 170(5): 46. http://link.springer.com/content/pdf/10.1007%2Fs00410-015-1199-3.pdf
[54] Wang Q, Zhu D, Zhao Z, et al. Magmatic zircons from I-, S- and A-type granitoids in Tibet: Trace element characteristics and their application to detrital zircon provenance study[J]. Journal of Asian Earth Sciences, 2012, 53: 59-66. doi: 10.1016/j.jseaes.2011.07.027
① 王明.西藏尼则地区 1:5 万区域地质调查报告.吉林大学 2019.