太古宙与现代的巨大差异:太古宙可能有板块构造吗?

张旗, 焦守涛. 太古宙与现代的巨大差异:太古宙可能有板块构造吗?[J]. 地质通报, 2021, 40(9): 1403-1409.
引用本文: 张旗, 焦守涛. 太古宙与现代的巨大差异:太古宙可能有板块构造吗?[J]. 地质通报, 2021, 40(9): 1403-1409.
ZHANG Qi, JIAO Shoutao. The great differences between the Archean and modern times: Could there have been plate tectonics in the Archean?[J]. Geological Bulletin of China, 2021, 40(9): 1403-1409.
Citation: ZHANG Qi, JIAO Shoutao. The great differences between the Archean and modern times: Could there have been plate tectonics in the Archean?[J]. Geological Bulletin of China, 2021, 40(9): 1403-1409.

太古宙与现代的巨大差异:太古宙可能有板块构造吗?

  • 基金项目:
    中国科学院地质与地球物理研究所岩石圈演化国家重点实验室项目《镁铁-超镁铁岩大数据研究》(编号:81300001)、国家重点研发计划项目《基于地质云的地质灾害基础信息提取与大数据分析挖掘》(编号:2018YFC1505501)、《基于"地质云"平台的深部找矿知识挖掘》(编号:2016YFC0600510)、国家自然科学基金项目《大数据环境下的滑坡危险性评估模型构建方法研究》(批准号:41872253)和中国地质调查局项目《国家地质大数据汇聚与管理》(编号:DD20190318)
详细信息
    作者简介: 张旗(1937-), 男, 研究员, 岩石学和地球化学专业。E-mail: zq1937@126.com
  • 中图分类号: P534.2;P541

The great differences between the Archean and modern times: Could there have been plate tectonics in the Archean?

  • 太古宙出露的岩石(如TTG、科马提岩、绿岩带)大多与现代不同,故"将今论古"的思想不适合推演到太古宙,也不能把太古宙TTG对比为现今的埃达克岩。TTG与俯冲无关,也不是地壳加厚形成的,而可能是在停滞盖层构造背景下初始地壳内富钠玄武岩部分熔融形成的。地球演化是一个不断散热的过程,太古宙属于热球阶段,元古宙以后可能才进入冷球阶段。因此,太古宙可能主要表现为停滞盖层构造,元古宙以后可能才出现板块构造。板块热俯冲的可能性很小,只有当岩石圈足够冷且具有一定的刚性和浮力时,板块才可能俯冲;而查明板块构造的地质记录(如蛇绿岩、蓝片岩、混杂堆积、深海沉积等)才能知道板块构造启动的时间。

  • 加载中
  • 图 1  俄罗斯Aldan地盾的高级区与绿岩带分布图[1-2]

    Figure 1. 

    图 2  地质演化时代与板块构造判别标志[2, 14]

    Figure 2. 

  • [1]

    Salop L I. Two types of Precambrian structures: Gneisses, folded ovals and gneiss domes[J]. Int. Geol. Rev., 1972, 14: 1209-1228. doi: 10.1080/00206817209475823

    [2]

    翟明国. 华北前寒武纪成矿系统与重大地质事件的联系[J]. 岩石学报, 2013, 29(5): 1759-1773. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305023.htm

    [3]

    Martin H. Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas[J]. Geology, 1986, 14: 753-756. doi: 10.1130/0091-7613(1986)14<753:EOSAGG>2.0.CO;2

    [4]

    Martin H. Adakitic magmas: modern analogues of Archean granitoids[J]. Lithos, 1999, 46: 411-429. doi: 10.1016/S0024-4937(98)00076-0

    [5]

    Drummond M S, Defant M J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparison[J]. Journal of Geophysics Research, 1990, 95: 21503-21521. doi: 10.1029/JB095iB13p21503

    [6]

    Foley S, Tiepolo M, Vanucci R. Growth of early continental crust controlled by melting of amphibolite in subduction zones[J]. Nature, 2002, 417: 837-840. doi: 10.1038/nature00799

    [7]

    Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite[J]. Nature, 2003, 425: 605-609. doi: 10.1038/nature02031

    [8]

    Smithies R H, Champion D C. Adakite, TTG and Archaean crustal evolution[C]//Geophysical Research Abstracts, 2003, 5: 01630.

    [9]

    Steenfelt A, Garde A A, Moyen J F. Mantle wedge involvement in the petrogenesis of Archaean grey gneisses in West Greenland[J]. Lithos, 2005, 79: 207-228. doi: 10.1016/j.lithos.2004.04.054

    [10]

    Smithies R H, Champion D C. The Archaean high-Mg dioritesuite: Links to tonalite-trondhjemite-granodiorite magmatism and implications for Early Archaean crustal growth[J]. Journal of Petrology, 2000, 41: 1653-1671. doi: 10.1093/petrology/41.12.1653

    [11]

    Condie K C. TTGs and adakites: are they both slab melts?[J]. Lithos, 2005, 80: 33-44. doi: 10.1016/j.lithos.2003.11.001

    [12]

    张旗, 翟明国. 太古宙TTG岩石是什么含义?[J]. 岩石学报, 2012, 28(11): 3446-3456. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201211004.htm

    [13]

    Palin R M, Santosh M, Cao W, et al. Secular metamorphic change and the onset of plate tectonics[J]. Earth-Science Reviews, 2020, https://doi.org/10.1016/j.earscirev.2020.103172. https://doi.org/10.1016/j.earscirev.2020.103172.

    [14]

    Condie K C, Kröner A. When did plate tectonics begin? Evidence from the geologic record[J]. Geological Society of America, Special Paper, 2008, 440: 281-294. http://www.researchgate.net/publication/313576739_When_did_plate_tectonics_begin_on_planet_Earth?ev=auth_pub

    [15]

    Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite eclogite and the origin of Archean trondhjemites and tonalites[J]. Precamb. Res., 1991, 51: 1-25. doi: 10.1016/0301-9268(91)90092-O

    [16]

    Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling[J]. Journal of Petrology, 1995, 36: 891-931. doi: 10.1093/petrology/36.4.891

    [17]

    Schmidt M W, Dardon A, Chazot G, et al. The dependence of Nb and Ta rutile-melt composition and Nb/Ta fractionation during subduction processes[J]. Earth Plant. Sci. Lett., 2004, 226: 415-432. doi: 10.1016/j.epsl.2004.08.010

    [18]

    Klemme S, Prowatke S, Hametner K, et al. Partitioning of trace elements between rutile and silicate melts: implications for subduction zones[J]. Geochim. Cosmochim. Acta, 2005, 49: 2361-2371. http://www.geos.ed.ac.uk/homes/sklemme/publications/Klemme_etal_2005.pdf

    [19]

    Xiong X L, Xia B, Xu J F, et al. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle[J]. Chemical Geology, 2006, 229: 273-292. doi: 10.1016/j.chemgeo.2005.11.008

    [20]

    Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subduction lithosphere[J]. Nature, 1990, 347: 662-665. doi: 10.1038/347662a0

    [21]

    Smithies R H, Champion D C, van Kranendonk M J. Formation of Paleoarchean continental crust through infracrustal melting of enriched basalt[J]. Earth and Planetary Science Letters, 2009, 281: 298-306. doi: 10.1016/j.epsl.2009.03.003

    [22]

    Kusky T M. Accretion of the Archean Slave Province[J]. Geology, 1989, 17: 63-67. doi: 10.1130/0091-7613(1989)017<0063:AOTASP>2.3.CO;2

    [23]

    Kusky T M, Polat A. Growth of granite-greenstone terranes at convergent margins, and stabilization of Archean cratons[J]. Tectonophysics, 1999, 305: 43-73. doi: 10.1016/S0040-1951(99)00014-1

    [24]

    Kusky T M. 板块构造与地幔温度和变质属性之间的关系[J]. 中国科学: 地球科学, 2020, 50: 635-644. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202005005.htm

    [25]

    Komiya T. Material circulation through time: Chemical differentiation within the mantle and secular variation of temperature and composition of the mantle[C]//Yuen D, Maruyama S, Karoto S, et al. Superplumes: Beyond Plate Tectonics. Springer, 2007: 187-234.

    [26]

    Greber N D, Dauphas N, Bekker A, et al. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago[J]. Science, 2017, 357: 1271-1274. doi: 10.1126/science.aan8086

    [27]

    Ge R, Zhu W, Wilde S A, et al. Remnants of Eoarchean continental crust derived from a subducted proto-arc[J]. Science Advances, 2018, 4(2): eaao3159. doi: 10.1126/sciadv.aao3159

    [28]

    Deng Z, Chaussidon M, Savage P, et al. Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks[J]. Proceedings of the National Academy of Sciences, 2019, 01809164. http://www.pnas.org/highwire/filestream/843484/field_highwire_adjunct_files/0/pnas.1809164116.sapp.pdf

    [29]

    Dhuime B, Wuestefeld A, Hawkesworth C J. Emergence of modern continental crust about 3 billion years ago[J]. Nature Geoscience, 2015, 8: 552-555. doi: 10.1038/ngeo2466

    [30]

    Næraa T, Schersten A, Rosing M T, et al. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago[J]. Nature, 2012, 485: 627-630. doi: 10.1038/nature11140

    [31]

    Tang M, Chen K, Rudnick R L. Archean upper crust transition from mafic to felsic marks the onset of plate tectonics[J]. Science, 2016, 351: 372-375. doi: 10.1126/science.aad5513

    [32]

    Smit K V, Shirey S B, Hauri E H, et al. Sulfur isotopes in diamonds reveal differences in continent construction[J]. Science, 2019, 364: 383-385. http://www.onacademic.com/detail/journal_1000042302748099_26dc.html

    [33]

    Zheng Y F, Zhao G. Two Styles of plate tectonics in Earth's history[J]. Science Bulletin, 2020, 65: 329-334. doi: 10.1016/j.scib.2018.12.029

    [34]

    Condie K C, O'Neill C, Aster R C. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth[J]. Earth and Planetary Science Letters, 2009, 282: 294-298. doi: 10.1016/j.epsl.2009.03.033

    [35]

    Brown M. Metamorphic conditions in orogenic belts: A record of secular change[J]. Int. Geol. Rev., 2007, 49: 193-234. doi: 10.2747/0020-6814.49.3.193

    [36]

    Brown M, Johnson T, Gardiner N J. Plate tectonics and the Archean Earth[J]. Annual Reviews of Earth and Planetary Sciences, 2020, 48: 12.1-12.30. doi: 10.1146/annurev-earth-071719-054845

    [37]

    Herzberg C, Condie K, Korenaga J. Thermal history of the Earth and its petrological expression[J]. Earth and Planetary Science Letters, 2010, 292: 79-88. doi: 10.1016/j.epsl.2010.01.022

    [38]

    Korenaga J. Initiation and evolution of plate tectonics on Earth: theories and observations[J]. Annual Reviewof Earth and Planetary Sciences, 2013, 41: 117-151. doi: 10.1146/annurev-earth-050212-124208

    [39]

    Moyen J F, Laurent O. Archaean tectonic systems: A view from igneous rocks[J]. Lithos, 2018, 302/303: 99-125. doi: 10.1016/j.lithos.2017.11.038

    [40]

    张旗, 王焰, 熊小林, 等. 埃达克岩和花岗岩: 挑战与机遇[M]. 北京: 中国大地出版社, 2008.

    [41]

    Lenardic A. The diversity of tectonic modes and thoughts about transitions between them[J]. Phil. Trans. R. Soc. A., 2018, 376: 20170416. doi: 10.1098/rsta.2017.0416

    [42]

    Hamilton W B. Archean magmatism and deformation were not products of plate tectonics[J]. Precambrian Research, 1998, 91: 143-179. http://www.sciencedirect.com/science/article/pii/S0301926898000424

    [43]

    Davies G F. On the emergence of plate tectonics[J]. Geology, 1992, 20: 963-966. doi: 10.1130/0091-7613(1992)020<0963:OTEOPT>2.3.CO;2

    [44]

    Arndt N T. Formation and evolution of the continental crust[J]. Geochemical Perspectives, 2014, 2(3): 436-504. http://www.researchgate.net/publication/273042540_Formation_and_Evolution_of_the_Continental_Crust

    [45]

    Stern R J. 板块构造启动的时间和机制: 理论和经验探索[J]. 科学通报, 2007, 52(5): 489-501. doi: 10.3321/j.issn:0023-074X.2007.05.001

    [46]

    Van Hunen J. Onset and evolution of plate tectonics: Geodynamical constraints[J]. Earth Systems and Environmental Sciences, 2019, https://doi.org/10.1016/13978-0-12-409548-9.10861-9. https://doi.org/10.1016/13978-0-12-409548-9.10861-9.

    [47]

    Zhai M G, Peng P. Origin of early continents and beginning of plate tectonics[J]. Science Bulletin, 2020, 65: 970-973. doi: 10.1016/j.scib.2020.03.022

    [48]

    Moyen J F, van Hunen J. Short term episodicity of Archaean subduction[J]. Geology, 2012, 40: 451-454. doi: 10.1130/G322894.1

    [49]

    Sleep N H. Evolution of the mode of convection within terrestrial planets[J]. Journal of Geophyical Research: Planets(1991-2012), 2000, 105(E7): 17563-17578. doi: 10.1029/2000JE001240

    [50]

    Frisch W, Meschede M, Blakey R. Plate tectonics[M]. Springer, 2011.

    [51]

    翟明国, 赵磊, 祝禧艳, 等. 早期大陆与板块构造启动——前沿热点介绍与展望[J]. 岩石学报, 2020, 36(8): 2249-2275. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202008002.htm

    [52]

    Peacock S M. Thermal structure and metamorphic evolution of subducting slabs[J]. American Geophysical Union, 2003, 138: 7-22.

    [53]

    赵振华. 地质历史中板块构造启动时间[J]. 大地构造与成矿学, 2017, 41(1): 1-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201701001.htm

    [54]

    Peltonen P, Kontinen A, Huhma H. Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua ophiolite, northeastern Finland[J]. Journal of Petrology, 1996, 37: 1359-1383. http://www.onacademic.com/detail/journal_1000036555276110_9787.html

    [55]

    Scott D J, Helmstaedt H, Bickle M J. Purtuniq ophiolite, Cape Smith belt, northern Quebec, Canada: A reconstructed section of early Proterozoic oceanic crust[J]. Geology, 1992, 20: 173-176. http://www.onacademic.com/detail/journal_1000039833809810_343e.html

  • 加载中

(2)

计量
  • 文章访问数:  1767
  • PDF下载数:  13
  • 施引文献:  0
出版历程
收稿日期:  2020-10-13
修回日期:  2021-04-22
刊出日期:  2021-09-15

目录