Hydrocarbon generation potential and gas genesis of Cretaceous source rocks in Hesigewula Sag, western margin of Great Khingan
-
摘要:
大兴安岭西缘贺斯格乌拉凹陷为新发现凹陷,其潜在烃源岩的生烃潜力及天然气成因尚未有过系统研究。对该凹陷3口参数井及部分煤田探井白垩系160块岩心样品进行有机岩石学、有机地球化学等分析,结合构造、沉积特征,系统分析了该凹陷白垩系泥岩生烃潜力,探讨了贺地1井天然气的成因类型。贺斯格乌拉凹陷下白垩统暗色泥岩有机质丰度较高,腾格尔组一段一般泥岩TOC平均为2.20%,腾格尔组二段TOC平均为3.67%;以Ⅱ1—Ⅱ2型有机质为主;成熟度较低,目前处于未熟-低熟阶段。贺地1井天然气甲烷碳同位素较轻,含量为-70.5‰~-68.2‰,结合甲烷氢同位素特征,认为该井天然气为生物成因气,二氧化碳还原与乙酸发酵混合生成。因所采岩心样品普遍浅于1000 m,推测凹陷深部(大于2000 m)已进入到生油高峰期,具有一定的油气勘探潜力。
Abstract:The Hesigewula Sag on the western margin of the Great Khingan is a newly-discovered sag where the hydrocarbon generation potential of its potential source rocks has not been systematically studied.Based on the analysis of organic petrology and organic geochemistry of 160 core samples from three parameter wells and some coalfield exploration wells in the Hesigewula Sag, and combined with tectonic and sedimentary characteristics, the hydrocarbon generation potential of Cretaceous mudstone in the Hesigewula Sag is systematically analyzed.The genetic types of natural gas in Well Hedi 1 are also discussed.The total organic carbon of Lower Cretaceous dark mudstone in Hesigewula Sag is high.The average TOC of K1bt1mudstone is 2.20% and the K1bt2 is 3.67%.The type of the organic matter is Ⅱ1-Ⅱ2.The degree of thermal evolution is relatively low, and it is at the stage of immature-low maturity.The carbon isotope of methane in Well Hedi 1 is relatively light, with contents ranging from -70.5‰ to -68.2‰.Combined with the hydrogen isotope characteristics of methane, it is considered that the natural gas in Well Hedi 1 is biogenic gas, which is produced by the mixture of carbon dioxide reduction and acetic acid fermentation.Because the core samples are generally collected less than 1000 meters at depth, it is presumed that the deep part of the depression(more than 2000 meters) has entered the peak period of oil generation, which has a certain exploration potential.
-
-
图 1 二连盆地贺斯格乌拉地区构造单元[4]
Figure 1.
表 1 腾一段与腾二段氢指数分布
Table 1. Hydrogen index distribution of K1bt1and K1bt2
地层 腾二段 腾一段 HI/(mg·g-1) 309(84) 519.5(72) 24~727 16~1014 注: 309(84), 309为均值; 84为样品数; 24~727,24为最小值; 727为最大值;腾一段类似 表 2 贺地1井天然气稳定碳氢同位素特征
Table 2. Characteristics of stable carbon and hydrogen isotopes of natural gas in well Hedi 1
采样地点及深度 δ13CCH4/‰ δDCH4/‰ 贺地1井 712 m -70.5 -290 716 m -68.2 -281 -
[1] 李世臻, 周新桂, 王丹丹, 等. 内蒙古突泉盆地突参1井原油地球化学特征与油源分析[J]. 地质通报, 2015, 34(10): 1946-1951. doi: 10.3969/j.issn.1671-2552.2015.10.019 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20151018&flag=1
[2] 刘卫彬, 李世臻, 周新桂, 等. 大兴安岭西缘新发现具有油气远景的中生界凹陷[J]. 中国地质, 2018, 45(3): 634-635. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201803019.htm
[3] 陈树旺, 公繁浩, 杨建国, 等. 松辽盆地外围油气基础地质调查工程进展与未来工作方向[J]. 中国地质调查, 2016, 3(6): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC201606001.htm
[4] Li S Z, Liu W B, Wang D D, et al. Discovery of Hesigewula Sag on the western margin of Da Hinggan Mountains in China and its significance in petroleum geology[J]. China Geology, 2019, 2: 440-458. http://www.sciencedirect.com/science/article/pii/S2096519220300033
[5] 李思田, 李宝芳, 杨士恭, 等. 中国东北部晚中生代断陷型煤盆地的沉积作用和构造演化[J]. 地球科学, 1982, (3): 275-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX198203027.htm
[6] 李思田, 杨士恭, 吴冲龙, 等. 中国东北部晚中生代裂陷作用和东北亚断陷盆地系[J]. 中国科学(B辑), 1987, (2): 185-195. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198702009.htm
[7] 云金表, 罗笃清, 李玉喜. 东北地区中生代断陷盆地群构造演化与成油关系探讨[J]. 石油勘探与开发, 1994, (6): 40-45, 115. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK406.007.htm
[8] 周荔青, 刘池阳. 中国东北油气区晚侏罗世-早白垩世断陷油气成藏特征[J]. 中国石油勘探, 2004, (2): 20-25, 1-2. doi: 10.3969/j.issn.1672-7703.2004.02.003
[9] 张文浩, 张交东, 周新桂, 等. 中国东北地区东部盆地油气资源前景展望[J]. 地质通报, 2020, 39(2/3)): 307-318. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2020020313&flag=1
[10] 田在艺, 韩屏. 东北地区中新生代含油气盆地构造分析与形成机制[J]. 河北地质学院学报, 1992, (5): 463-472. https://www.cnki.com.cn/Article/CJFDTOTAL-HBDX199205000.htm
[11] 卢双舫, 张敏. 油气地球化学[M]. 北京: 石油工业出版社, 2008: 198-226.
[12] 孟庆任, 胡健民, 袁选俊, 等. 中蒙边界地区晚中生代伸展盆地的结构、演化和成因[J]. 地质通报, 2002, (Z1): 224-231. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20020464&flag=1
[13] 陈建平, 赵长毅, 何忠华. 煤系有机质生烃潜力评价标准探讨[J]. 石油勘探与开发, 1997, (1): 1-5, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199701000.htm
[14] 李苗苗, 马素萍, 夏燕青, 等. 泌阳凹陷核桃园组湖相烃源岩微观形态特征与形成机制[J]. 岩性油气藏, 2014, 26(3): 45-50. doi: 10.3969/j.issn.1673-8926.2014.03.008
[15] 龚大兴, 林金辉, 唐云凤, 等. 上扬子地台北缘古生界海相烃源岩有机地球化学特征[J]. 岩性油气藏, 2010, 22(3): 31-37. doi: 10.3969/j.issn.1673-8926.2010.03.007
[16] 邬立言, 顾信章. 热解技术在我国生油岩研究中的应用[J]. 石油学报, 1986, 7(2): 13-19. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB198602002.htm
[17] 戴金星, 陈英. 中国生物气中烷烃组分的碳同位素特征及其鉴别标志[J]. 中国科学(B辑), 1993, (3): 303-310. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199303011.htm
[18] 陈英, 戴金星. 关于生物气研究中几个理论及方法问题的研究[J]. 石油实验地质, 1994, 16(3): 209-219. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD403.001.htm
[19] 何家雄, 冼仲猷, 陈伟煌, 等. 莺-琼盆地生物气及生物-低成熟过渡带气特征与勘探前景[J]. 中国海上油气(地质), 2002, 16(1): 27-32. doi: 10.3969/j.issn.1673-1506.2002.01.008
[20] Whiticar M J, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation-isotope evidence[J]. Geochimica et Cosmochimica Acta, 1986, 50(5): 693-709. doi: 10.1016/0016-7037(86)90346-7
[21] Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochimica et Cosmochimica Acta, 1980, 44(5): 649-661. doi: 10.1016/0016-7037(80)90155-6
[22] 沈平, 徐永昌, 王先彬, 等. 气源岩和天然气地球化学特征及成气机理研究[M]. 兰州: 甘肃科学技术出皈社, 1991, 1: 66-1.
[23] 帅燕华, 张水昌, 赵文智, 等. 陆相生物气纵向分布特征及形成机理研究——以柴达木盆地涩北一号为例[J]. 中国科学(D辑), 2007, (1): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200701004.htm
[24] 辛碧霄, 陈一俊. 生物气成因机制与勘探前景[J]. 当代化工, 2018, 47(9): 1928-1931. doi: 10.3969/j.issn.1671-0460.2018.09.046
-