Xialu N-MORB gabbros and diabases in the Xigaze ophiolite: Record of subduction initiation of the Yarlung Zangbo Tethyan Ocean at Early Cretaceous
-
摘要:
雅鲁藏布江结合带130~120 Ma蛇绿岩分布广泛,但其形成环境存在较大争论。以日喀则地区夏鲁辉长岩及辉绿岩锆石U-Pb定年、主量及微量元素数据为基础,结合大量的日喀则蛇绿岩研究数据,分析蛇绿岩的构造环境及其动力学意义。夏鲁辉长岩LA-ICP-MS锆石U-Pb年龄为123.8±1.1 Ma(MSWD=0.97),表明其是日喀则130~120 Ma蛇绿岩残片之一。主量、微量元素特征显示,部分辉长岩样品高CaO、低SiO2及极低的K2O、Na2O含量,为异剥钙榴岩化所致,而辉绿岩无流体影响。夏鲁辉长岩与辉绿岩显示正常型大洋中脊玄武岩(N-MORB)特征,且轻稀土元素较N-MORB亏损,来自亏损地幔尖晶石二辉橄榄岩源区高程度部分熔融。日喀则130~120 Ma的蛇绿岩N-MORB型基性岩来自俯冲组分混入不均的地幔源区,表现为洋中脊玄武岩至火山弧玄武岩过渡特征,并且无陆壳物质混入,最有可能形成于洋内弧系统。综合区域地质资料,认为日喀则130~120 Ma的蛇绿岩在发育时限、岩石组合及地球化学特征上与伊豆小笠原-玻安岛-马里亚纳(IBM)弧前蛇绿岩类似,代表雅鲁藏布江新特提斯洋一次洋内俯冲的开始。
Abstract:The 130~120 Ma ophiolite is the most widely distributed in the Yarlung Zangbo suture zone, however, its formation environment remains controversial.Based on zircon U-Pb ages, whole-rock geochemical date of Xialu gabbros and diabases, and a large number of data of Xigaze ophiolite, the tectonic environment and dynamic significance of Early Cretaceous ophiolite were discussed.LA-ICP-MS zircon U-Pb dating of the Xialu gabbro yields weighted mean age of 123.8 ± 1.1 Ma(MSWD = 0.97), indicating one of the 130~120 Ma Xigaze ophiolite relics.Some gabbro samples are characterized by high Cao, low SiO2 and very low K2O and Na2O contents, which can be attributed to a rodingitization process, whereas diabases suffer from minimal affection of fluid.Xialu gabbros and diabases show N-MORB type characteristics and more depleted in light rare earth elements than normal N-MORB, suggesting high degree partial melting of a depleted mantle of spinel lherzolite source.The N-MORB basic rocks of the 130~120 Ma ophiolite in Xigaze were generated from a mantle source with inhomogeneous mixture of subduction components, and characterized by the transition from MORB to VAB, with a minimal adding of continental crust, which suggest that the Xigaze ophiolite was formed in an intra-oceanic arc system.Combined with regional geology, it is suggested that the 130~120 Ma ophiolite in Xigaze is similar to the IBM fore-arc ophiolite in development time, lithology and geochemistry, representing a subduction initiation in the Yarlung Zangbo Tethys Ocean.
-
Key words:
- Yarlung Zangbo suture zone /
- Xigaze /
- Early Cretaceous /
- intra-oceanic arc /
- fore-arc ophiolite /
- subduction initiation
-
-
表 1 夏鲁辉长岩(11XL-1)锆石LA-ICP-MS U-Th-Pb分析结果
Table 1. LA-ICP-MS zircon U-Th-Pb analytical results of Xialu gabbro (11XL-1)
测点 含量/10-6 Th/U 同位素比值 年龄/Ma Pb Th U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ 01 7.00 124 314 0.4 0.1304 0.0092 0.0190 0.0005 124 8 121 3 02 36.5 1631 1285 1.3 0.1370 0.0069 0.0199 0.0004 130 6 127 3 03 12.34 630 432 1.5 0.1261 0.0076 0.0188 0.0005 121 7 120 3 04 9.30 374 344 1.1 0.1553 0.0094 0.0192 0.0005 147 8 123 3 05 14.69 563 553 1.0 0.1276 0.0078 0.0197 0.0005 122 7 126 3 06 24.2 1564 664 2.4 0.1289 0.0079 0.0200 0.0004 123 7 128 3 07 21.1 1281 697 1.8 0.1214 0.0061 0.0189 0.0004 116 6 121 2 08 20.2 812 719 1.1 0.1363 0.0074 0.0198 0.0004 130 7 127 2 09 26.2 1914 782 2.4 0.1312 0.0071 0.0192 0.0004 125 6 123 2 10 27.7 1941 778 2.5 0.1234 0.0073 0.0200 0.0004 118 7 127 3 11 13.25 655 460 1.4 0.1204 0.0078 0.0193 0.0004 115 7 123 3 12 35.6 3076 861 3.6 0.1303 0.0072 0.0199 0.0005 124 6 127 3 13 14.9 1008 427 2.4 0.1240 0.0080 0.0192 0.0005 119 7 122 3 14 10.26 402 390 1.0 0.1332 0.0089 0.0193 0.0004 127 8 123 3 15 13.10 656 420 1.6 0.1554 0.0129 0.0197 0.0006 147 11 126 4 16 22.9 1581 654 2.4 0.1086 0.0078 0.0198 0.0005 105 7 126 3 17 22.5 946 851 1.1 0.1069 0.0064 0.0189 0.0005 103 6 121 3 18 26.5 1017 951 1.1 0.1064 0.0063 0.0201 0.0005 103 6 128 3 19 15.4 1203 378 3.2 0.1328 0.0112 0.0195 0.0006 127 10 125 4 20 17.79 733 648 1.1 0.1090 0.0078 0.0193 0.0005 105 7 123 3 21 19.0 1019 638 1.6 0.1065 0.0070 0.0187 0.0004 103 6 119 3 22 5.31 209 188 1.1 0.1888 0.0180 0.0197 0.0006 176 15 126 4 23 17.0 944 556 1.7 0.1119 0.0077 0.0189 0.0004 108 7 121 3 24 21.2 1311 655 2.0 0.0927 0.0068 0.0189 0.0005 90.0 6.3 121 3 表 2 夏鲁基性岩主量、微量和稀土元素地球化学特征分析结果
Table 2. Major, trace elements and REE result of Xialu mafic rocks
样号 11XL-1 11XL-2 11XL-3 11XL-4 11XL-6 11XL-7 11XL-8 11XL-9 11XL-10 11XL-12 岩性 辉长岩 辉长岩 淡色辉长岩 淡色辉长岩 辉绿岩 辉绿岩 辉绿岩 辉绿岩 辉绿岩 辉绿岩 SiO2 47.49 48.91 47.53 46.36 50.52 51.29 52.29 50.51 51.07 50.87 Al2O3 17.76 16.7 17.63 15.64 15.54 15.58 15.4 15.75 15.68 15.58 TFe2O3 6.81 8.91 3.67 2.48 9.59 9.57 10.01 9.63 9.6 9.19 CaO 13.87 10.98 16.53 24.86 8.23 7.99 6.55 7.65 7.98 9.29 MgO 7.42 7.53 6.69 5.77 6.94 6.97 7.37 7.74 7.2 7.97 K2O 0.38 0.24 1.03 0.01 0.22 0.55 0.67 0.46 0.55 0.42 Na2O 1.67 2.78 1.94 0.057 4.26 3.73 3.21 3.33 3.5 2.41 TiO2 0.79 1.06 1.22 1.38 1.33 1.33 1.14 1.35 1.32 1.01 P2O5 0.035 0.052 0.079 0.036 0.046 0.042 0.045 0.053 0.046 0.035 MnO 0.092 0.14 0.045 0.037 0.16 0.16 0.14 0.15 0.16 0.18 烧失量 3.62 2.61 3.56 3.36 3.15 2.75 3.13 3.35 2.86 3.01 总计 99.94 99.91 99.92 99.99 99.99 99.96 99.96 99.97 99.97 99.97 Mg# 71.7 66.3 80.9 84.4 62.8 62.9 63.2 65.2 63.6 66.9 σ 0.94 1.54 1.95 0.00 2.67 2.21 1.62 1.91 2.03 1.02 Sc 30.06 33.1 33.67 26.22 32.15 32.6 31.63 32.71 32.17 33.97 Ti 4383 6002 7004 8020 7615 7522 6310 7718 7530 5745 V 192.6 233.6 222.2 184.3 234.4 233.9 221.6 234.3 230.7 218.9 Cr 134.5 193.9 84.32 42.39 164.4 174.4 120.1 180.3 173.3 189.1 Co 30.92 32.1 16.58 11.86 32.04 31.94 29.73 32.11 31.32 33.61 Ni 68.15 75.83 53.81 54.01 64.77 62.69 46.9 64.81 59.2 59.71 Cu 8.379 8.093 8.732 11.09 15.96 27.35 9.913 31.75 25.16 37.38 Zn 33.41 55.18 20.09 21.05 59.53 61.11 39.07 59.36 59.6 82.74 Ga 12.51 13.59 12.81 7.503 14.7 15.71 14.48 16.15 15.44 14.78 Rb 1.985 1.151 6.726 0.057 0.875 2.085 3.049 1.666 1.94 1.826 Sr 708.8 780.4 564.8 21.03 138.2 140.6 124.1 129.7 140.4 119.6 Y 16.35 20.37 28.12 24.37 24.66 24.97 22.5 26.77 24.51 19.15 Zr 44.94 53.15 89.94 62.26 86.01 90.01 69.77 101.6 87.31 56.84 Nb 0.359 0.454 0.823 0.573 1.041 1.039 0.587 1.139 1.046 0.541 Cs 0.069 0.084 0.135 0.054 0.065 0.088 0.113 0.085 0.078 0.095 Ba 35.77 12.48 52.77 0.567 2.133 3.677 4.217 3.279 3.443 2.43 La 0.921 1.457 2.103 1.81 1.941 2.009 1.776 2.351 1.968 1.225 Ce 3.338 4.861 7.696 6.556 6.397 6.65 5.727 7.532 6.605 4.14 Pr 0.719 0.979 1.544 1.275 1.272 1.264 1.052 1.437 1.247 0.805 Nd 4.22 5.691 8.66 7.248 6.837 6.888 5.959 7.683 7.059 4.853 Sm 1.573 2.089 3.014 2.549 2.379 2.513 2.14 2.714 2.318 1.825 Eu 0.571 0.815 1.098 1.188 1.037 1.033 0.842 1.045 1.009 0.773 Gd 1.938 2.444 3.345 2.985 2.874 2.874 2.614 3.117 2.882 2.25 Tb 0.397 0.506 0.709 0.593 0.601 0.621 0.552 0.654 0.612 0.445 Dy 2.763 3.415 4.767 3.916 4.049 4.241 3.691 4.412 4.159 3.274 Ho 0.64 0.809 1.081 0.913 0.956 1.004 0.894 1.023 0.957 0.767 Er 1.792 2.246 3.009 2.608 2.778 2.88 2.556 3.018 2.752 2.136 Tm 0.279 0.327 0.439 0.398 0.405 0.434 0.402 0.46 0.412 0.324 Yb 1.809 2.137 3.055 2.597 2.742 2.957 2.499 2.96 2.698 2.167 Lu 0.253 0.323 0.448 0.372 0.409 0.439 0.382 0.474 0.43 0.335 Hf 1.265 1.628 2.356 1.757 2.353 2.485 1.95 2.768 2.422 1.611 Ta 0.04 0.055 0.081 0.056 0.102 0.095 0.071 0.109 0.102 0.054 Pb 0.151 0.22 0.122 3.411 0.269 0.318 0.174 0.213 0.298 0.589 Th 0.041 0.056 0.095 0.056 0.083 0.09 0.071 0.1 0.081 0.051 U 0.014 0.024 0.043 0.033 0.04 0.037 0.025 0.048 0.038 0.024 δEu 1.00 1.10 1.06 1.32 1.21 1.17 1.09 1.10 1.19 1.17 (La/Yb)N 0.37 0.49 0.49 0.50 0.51 0.49 0.51 0.57 0.52 0.41 ΣREE 21.21 28.10 40.97 35.01 34.68 35.81 31.09 38.88 35.11 25.32 注:σ为里特曼指数,Mg#=100×Mg/(Mg + Fe2+),Fe2+以Fe2O3/(FeO+Fe2O3)=0.15估算,δEu=EuN/(SmN ×GdN)1/2;主量元素含量单位为%,微量和稀土元素含量单位为10-6 -
[1] Dai J G, Wang C S, Hébert R, et al. Late Devonian OIB alkaline gabbro in the Yarlung Zangbo Suture Zone: Remnants of the Paleo-Tethys?[J]. Gondwana Research, 2011, 19(1) : 232-243. doi: 10.1016/j.gr.2010.05.015
[2] 郎兴海, 唐菊兴, 邓煜霖, 等. 西藏拉萨地块南缘雄村矿集区首次发现早石炭世辉长岩: 古特提斯洋的残留?[J]. 地球学报, 2017, 38(5) : 745-753. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705014.htm
[3] Xia B, Chen G W, Wang R, et al. Seamount volcanism associated with the Xigaze ophiolite, Southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 32: 396-405. doi: 10.1016/j.jseaes.2007.11.008
[4] 李文霞, 赵志丹, 朱弟成, 等. 西藏雅鲁藏布蛇绿岩形成构造环境的地球化学鉴别[J]. 岩石学报, 2012, 28(5) : 1663-1673. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201205028.htm
[5] Dai J G, Wang C S, Li Y L. Relicts of the Early Cretaceous seamounts in the central-western Yarlung Zangbo Suture Zone, southern Tibet[J]. Journal of Asian Earth Sciences, 2012, 53: 25-37. doi: 10.1016/j.jseaes.2011.12.024
[6] Reagan M K, Ishizuka O, Stern R J, et al. Fore-arc basalts and subduction initiation in the Izu-Bonin -Mariana system[J]. Geochemistry, Geophysics, Geosystems, 2010, 11, Q03X12. doi:10.1029/2009GC002871.
[7] Ishizuka O, Tani K, Reagan M K, et al. The timescales of subduction initiation and subsequent evolution of an oceanic island arc[J]. Earth and Planetary Science Letters, 2011, 306(3/4) : 229-240. http://www.onacademic.com/detail/journal_1000035380463810_8871.html
[8] 陈根文, 夏斌, 钟志洪, 等. 西藏得几蛇绿岩体中玻安岩的地球化学特征及其地质意义[J]. 矿物学报, 2003, 23(1) : 91-96. doi: 10.3321/j.issn:1000-4734.2003.01.015
[9] 郑来林, 耿全如, 欧春生, 等. 藏东南迦巴瓦地区雅鲁藏布江蛇绿混杂岩中玻安岩的地球化学特征和地质意义[J]. 地质通报, 2003, 22(11/12) : 8-11. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2003011173&flag=1
[10] Dai J G, Wang C S, Polat A, et al. Rapid forearc preading between 130 and 120 Ma: evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet[J]. Lithos, 2013, 172/173: 1-16. http://www.sciencedirect.com/science/article/pii/S0024493713001072
[11] Liu W L, Zhong Y, Sun Z L, et al. The Late Jurassic Zedong ophiolite: A remnant of subduction initiation within the Yarlung Zangbo Suture Zone(southern Tibet) and its tectonic implications[J]. Gondwana Research, 2020, 78: 172-188. doi: 10.1016/j.gr.2019.09.002
[12] 吴浩若. 西藏南部下鲁硅岩晚侏罗世罩笼虫(放射虫) 新材料[J]. 现代地质, 2000, 14(3) : 301-306. doi: 10.3969/j.issn.1000-8527.2000.03.011
[13] Guilmette C, Hébert R, Wang C S, et al. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet[J]. Lithos, 2009, 112: 149-162. doi: 10.1016/j.lithos.2009.05.027
[14] Hébert R, Bezard R, Guilmette C, et al. The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys[J]. Gondwana Research, 2012, 22(2) : 377-397. doi: 10.1016/j.gr.2011.10.013
[15] Aitchison J C, Zhu B D, Davis A M, et al. Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung. Zangbo suture(southern Tibet) [J]. Earth and Planetary Science Letters, 2000, (183) : 231-244. http://www.onacademic.com/detail/journal_1000035462353510_3cf5.html
[16] Dupuis C, Hébert R, Dubois-Côté V, et al. The Yarlung Zangbo Suture Zone ophiolitic melange(southern Tibet) [J]. Journal of Asian Earth Sciences, 2005, 25: 937-960. doi: 10.1016/j.jseaes.2004.09.004
[17] Bezard R, Hébert R, Wang C S, et al. Petrology and geochemistry of the Xiugugabu ophiolitic massif, western Yarlung Zangbo suture zone, Tibet[J]. Lithos, 2011, 125: 347-367. doi: 10.1016/j.lithos.2011.02.019
[18] Xia B, Yu H J, Chen G W, et al. Geochemistry and tectonic environment of the Dagzhuka ophiolite in the Yarlung-Zangbo suture zone, Tibet[J]. Geochemical Journal, 2003, 37: 311-324. doi: 10.2343/geochemj.37.311
[19] Zhang S Q, Mahoney J J, Mo X X, et al. Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics[J]. Journal of Petrology, 2005, 46(4) : 829-858. doi: 10.1093/petrology/egi002
[20] Xiong Q, Griffin W L, Zheng J P, et al. Southward trench migration at ~130-120 Ma caused accretion of the Neo-Tethyan forearc lithosphere in Tibetan ophiolites[J]. Earth and Planetary Science Letters, 2016, 438: 57-65. doi: 10.1016/j.epsl.2016.01.014
[21] 吴福元, 刘传周, 张亮亮, 等. 雅鲁藏布蛇绿岩——事实与臆想[J]. 岩石学报, 2014, 30(2) : 293-325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201402001.htm
[22] Liu T, Wu F Y, Zhang L L, et al. Zircon U-Pb geochronological constraints on rapid exhumation of the mantle peridotite of the Xigaze ophiolite, southern Tibet[J]. Chemical Geology, 2016, 443: 67-86. doi: 10.1016/j.chemgeo.2016.09.015
[23] 刘飞, 连东洋, 牛晓露, 等. 雅鲁藏布江缝合带西段东波MORB型均质辉长岩的大洋核杂岩成因[J]. 地球科学, 2018, 43(4) : 952-974. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201804003.htm
[24] 潘桂棠, 王立全, 李兴振, 等. 青藏高原区域构造格局及其多岛弧盆系的空间配置[J]. 沉积与特提斯地质, 2001, 21(3) : 1-26. doi: 10.3969/j.issn.1009-3850.2001.03.001
[25] 王立全, 朱同兴. 青藏高原及邻区地质图说明书(1: 1500000) [M]. 北京: 地质出版社, 2013: 1-319.
[26] 潘桂棠, 陈智梁, 李兴振. 东特提斯地质构造形成演化[M]. 北京: 地质出版社, 1997: 1-100.
[27] 吴浩若. 西藏南部和地中海西部白垩纪中期放射虫化石的对比[J]. 微体古生物学报, 2010, 27(4) : 299-304. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGT201004002.htm
[28] Ziabrev S V, Aitchison J C, Abrajevitch A V, et al. Precise radiolarian age constraints on the timing of ophiolite generation and sedimentation in the Dazhuqu terrane, Yarlung-Tsangpo suture zone, Tibet[J]. Journal of the Geological Society, 2003, 160: 591-599. doi: 10.1144/0016-764902-107
[29] 朱杰, 杜远生, 刘早学, 等. 西藏雅鲁藏布江缝合带中段中生代放射虫硅质岩成因及其大地构造意义[J]. 中国科学(D辑), 2005, 35(12) : 1131-1139. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200512004.htm
[30] Göpel C, Allègre C J, Xu R H. Lead isotopic study of the Xigaze ophiolite(Tibet) the problem of the relationship between magmatites(gabbros, dolerites, lavas) and tectonites(harzburgites) [J]. Earth and Planetary Science Letters, 1984, 69: 301-310. doi: 10.1016/0012-821X(84)90189-4
[31] Malpas J, Zhou M F, Robinson P T, et al. Geochemical and geochronological constraints on the origin and emplacement of the Yarlung Zangbo ophiolites, Southern Tibet[J]. Geological Society, 2003, 218: 191-206. doi: 10.1144/GSL.SP.2003.218.01.11
[32] 王冉, 夏斌, 周庆国, 等. 西藏吉定蛇绿岩中辉长岩SHRIMP锆石U-Pb年龄[J]. 科学通报, 2006, 51(1) : 114-117. doi: 10.3321/j.issn:0023-074X.2006.01.021
[33] Huot F, Hébert R, Varfalvy V, et al. The Beimarang mélange(southern Tibet) brings additional constraints in assessing the origin, metamorphic evolution and obduction processes of the Yarlung Zangbo ophiolite[J]. Journal of Asian Earth Sciences, 2002, 21: 307-322. doi: 10.1016/S1367-9120(02)00053-6
[34] 牛晓露, 赵志丹, Depaolo D J, 等. 西藏日喀则地区德村-昂仁蛇绿岩内基性岩的元素与Sr-Nd-Pb同位素地球化学及其揭示的特提斯地幔域特征[J]. 岩石学报, 2006, 22(12) : 2875-2888. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612005.htm
[35] 朱弟成, 莫宣学, 王立全, 等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世—早白垩世岩浆作用推论[J]. 岩石学报, 2008, 24(2) : 225-237. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200802006.htm
[36] Huang F, Xu J F, Zeng Y C, et al. Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred From Contemporaneous Melting of the Mantle and Crust[J]. Geochemistry Geophysics Geosystems, 2017, 18(11) : 4074-4095. doi: 10.1002/2017GC007039
[37] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2) : 34-43. http://www.onacademic.com/detail/journal_1000035368794210_7e0b.html
[38] Ludwig K R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, California, Berkeley, 2003: 1-77.
[39] 刘颖, 刘海臣, 李献华. 用ICP-MS准确测定岩石样品中的40余种微量元素[J]. 地球化学, 1996, 25(6) : 552-558. doi: 10.3321/j.issn:0379-1726.1996.06.004
[40] Reagan M K, McClelland W C, Girard G, et al. The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific[J]. Earth and Planetary Science Letters, 2013, 380: 41-51. doi: 10.1016/j.epsl.2013.08.013
[41] Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society Special Publication, 1989, 42: 313-345. doi: 10.1144/GSL.SP.1989.042.01.19
[42] Sylvester P J, Campbell I H, Bowyer D A. Niobium/Uranium Evidence for Early Formation of the Continental Crust[J]. Science, 1997, 275 : 521-523. doi: 10.1126/science.275.5299.521
[43] Pthman B D, White W M, Patchett J. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling[J]. Earth Planetary Science Letters, 1989, 94: 1-21. doi: 10.1016/0012-821X(89)90079-4
[44] 李曙光. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J]. 岩石学报, 1993, 9(2) : 146-157. doi: 10.3321/j.issn:1000-0569.1993.02.005
[45] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology, 1998, 145: 325-394. doi: 10.1016/S0009-2541(97)00150-2
[46] Niu Y L. The Meaning of Global Ocean Ridge Basalt Major Element Compositions[J]. Journal of Petrology, 2016, 57(11/12) : 2081-2104. http://dro.dur.ac.uk/21082/1/21082.pdf
[47] 李昌年. 火成岩微量元素地球化学[M]. 武汉: 中国地质大学出版社, 1992: 1-195.
[48] Roex A P, Dick H J B, Erlank A J, et al. Geochemistry, mineralogy and petrogenesis of lavas erupted along the southwest Indian Ridge between the Bouver triple junction and degree east[J]. Journal of Petrology, 1983, 24(3) : 267-318. doi: 10.1093/petrology/24.3.267
[49] 赵佳楠, 许志琴, 梁凤华, 等. 西藏日喀则地区白朗蛇绿岩中石榴辉石岩的岩石地球化学、年代学及其构造意义[J]. 岩石学报, 2015, 31(12) : 3687-3700. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201512013.htm
[50] Saccani E. A new method of discriminating different types of post-Archean Ophiolitic Basalts and Their Tectonic Signficance Using Th-Nb and Ce-Dy-Yb Systematics[J]. Geoscience Fronticrs, 2015, 6(4) : 481-501. doi: 10.1016/j.gsf.2014.03.006
[51] 肖龙, 徐义刚, 梅厚钧, 等. 云南宾川地区峨眉山玄武岩地球化学特征: 岩石类型及随时间演化规律[J]. 地质科学, 2003, 38(4) : 478-494. doi: 10.3321/j.issn:0563-5020.2003.04.007
[52] Aldanmaz E, Pearce J A, Thirlwall M F, et al. Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey[J]. Journal of Volcanology and Geothermal Research, 2000, 102: 67-95. doi: 10.1016/S0377-0273(00)00182-7
[53] 吴浩若. 西藏南部白垩纪深海沉积地层——冲堆组及其地质意义[J]. 地质科学, 1984, 1: 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198401002.htm
[54] Matsuoka A, Yang Q, Kobayashi K, et al. JurassiceCretaceous radiolarian biostratigraphy and sedimentary environments of the Ceno- Tethys: records from the Xialu Chert in the Yarlung- Zangbo Suture Zone, southern Tibet[J]. Journal of Asian Earth Sciences, 2002, 20(3) : 277-287. doi: 10.1016/S1367-9120(01)00044-X
[55] 王玉净, 舒良树. 中国蛇绿岩带形成时代研究中的两个误区[J]. 古生物学报, 2001, 40(4) : 529-532. doi: 10.3969/j.issn.0001-6616.2001.04.014
[56] Ngai Chan G H, Aitchison J C, Crowley Q G, et al. Michael P. Searle A, U-Pb zircon ages for Yarlung Tsangpo suture zone ophiolites, southwestern Tibet and their tectonic implications[J]. Gondwana Research, 2015, 27: 719-732. doi: 10.1016/j.gr.2013.06.016
[57] 李建峰, 夏斌, 刘立文, 等. 西藏群让蛇绿岩辉长岩SHRIMP锆石U-Pb年龄及地质意义[J]. 大地构造与成矿学, 2009.33(2) : 294-298. doi: 10.3969/j.issn.1001-1552.2009.02.013
[58] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb Variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology, 1979, 69: 33-37. doi: 10.1007/BF00375192
[59] Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letter, 1982, 59: 110-118. http://www.usu.edu/geo/shervais/Shervais%20-%20My%20Articles/Shervais1982.pdf
[60] Wood D A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province[J]. Earth and Planetary Science Letters, 1980, 50(1) : 11-30. doi: 10.1016/0012-821X(80)90116-8
[61] Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56: 207-218. doi: 10.1016/0009-2541(86)90004-5
[62] McKenzie D, O'nions R K. Partial melt distributions from inversion of rare earth element concentrations[J]. Journal of Petrology, 1991, 32(5) : 1021-1091. doi: 10.1093/petrology/32.5.1021
[63] Dubois-Côté V, HéBert R, Dupuis C, et al. Petrological and geochemical evidence for the origin of the Yarlung Zangbo ophiolites, southern Tibet[J]. Chemical Geology, 2005, 214: 265-286. doi: 10.1016/j.chemgeo.2004.10.004
[64] Condie K C. Mafic crustal xenoliths and the origin of the lower continental crust[J]. Lithos, 1999, 46: 95-101. doi: 10.1016/S0024-4937(98)00056-5
[65] Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology, 1984, 25(4) : 956-983. doi: 10.1093/petrology/25.4.956
[66] Pearce J A, Stern R J, Bloomer S H, et al. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(7) : p. Q07006. doi:10.1029/2004GC000895.
[67] El-Rahman Y A, Polat A, Dilek Y, et al. Geochemistry and tectonic evolution of the neoproterozoic wadi ghadir ophiolite, eastern desert, Egypt[J]. Lithos, 2009, 113(1/2), 158-178. http://www.users.muohio.edu/dileky/publications/2009/El-Rahman%20et%20al.LITHOS2009.pdf
[68] Hawkesworth C J, Gallagher K, Hergt J M, et al. Mantle and slab contributions in arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1993, 21: 175-204. doi: 10.1146/annurev.ea.21.050193.001135
[69] 李源, 杨经绥, 裴先治, 等. 秦岭造山带早古生代蛇绿岩的多阶段演化: 从岛弧到弧间盆地[J]. 岩石学报, 2012, 28(6) : 1896-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201206015.htm
[70] 夏斌, 王冉, 陈根文. 西藏仁布蛇绿岩壳层熔岩的岩石地球化学及成因[J]. 高校地质学报, 2003, 9(4) : 638-647. doi: 10.3969/j.issn.1006-7493.2003.04.015
[71] Chen G W, Xia B. Platinum-group elemental geochemistry of mafic and ultramafic rocks from the Xigaze ophiolite, southern Tibet[J]. Journal of Asian Earth Sciences, 2008, 32: 406-422. doi: 10.1016/j.jseaes.2007.11.009
[72] Whattam S A, Stern R J. The 'subduction initiation rule': a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation[J]. Contributions to Mineralogy & Petrology, 2011, 162: 1031-1045. http://utdallas.edu/~rjstern/pdfs/WhattamSIR.CMP11.pdf
[73] Guilmette C, Hébert R, Dostal J, et al. Discovery of a dismembered metamorphic sole in the Saga ophiolitic mélange, South Tibet: Assessing an Early Cretaceous disruption of the Neo-Tethyan supra-subduction zone and consequences on basin closing[J]. Gondwana Research, 2012, 22(2) : 398-414. doi: 10.1016/j.gr.2011.10.012
[74] Canales J P. Small-Scale Structure of the Kane Oceanic Core Complex, Mid-Atlantic Ridge 23°30′N, from Wave Form To mography of Multichannel Seismic Date[J]. Geophysical Research Letters, 2010, 37(21) : 1-6. http://onlinelibrary.wiley.com/doi/10.1029/2010GL044412
[75] 潘桂棠, 王立全, 尹福光, 等. 从多岛弧盆系研究实践看板块构造登陆的魅力[J]. 地质通报, 2004, 23(9/10) : 933-939. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=200409166&flag=1
[76] McDermid I R C, Aitchison J C, Davis A M, et al. The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung- Tsangpo suture zone, southeastern Tibet[J]. Chemical Geology, 2002, 187: 267-277. doi: 10.1016/S0009-2541(02)00040-2
[77] 韦栋梁, 夏斌, 周国庆, 等. 西藏泽当英云闪长岩的地球化学和Sr-Nd同位素特征: 特提斯洋内俯冲的新证据[J]. 中国科学(D辑), 2007, 37(4) : 442-450. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200704001.htm
[78] 许荣科, 郑有业, 冯庆来, 等. 西藏札达县夏浦沟的放射虫硅质岩和岛弧火山岩: 新特提斯洋内俯冲体系的记录?[J]. 地球科学(中国地质大学学报), 2009, 34(6) : 884-894. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200906003.htm
[79] 程晨, 夏斌, 郑浩, 等. 西藏雅鲁藏布江缝合带西段达巴蛇绿岩年代学、地球化学特征及其构造意义[J]. 地球科学, 2018, 43(4) : 975-990. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201804004.htm
[80] Butler J P, Beaumont C. Subduction zone decoupling/retreat modelingexplains south Tibet(Xigaze) and other supra-subduction zone ophiolites and their UHP mineral phases[J]. Earth and Planetary Science Letters, 2017, 463: 101-117. doi: 10.1016/j.epsl.2017.01.025
① 西藏自治区区域地质调查大队. 中华人民共和国1: 25万区域地质图: 日喀则幅. 2004.
-