云南维西地区中三叠世双峰式火山岩成因及其对金沙江弧盆形成演化的制约

闫国川, 王保弟, 贺娟, 王启宇, 吴喆. 云南维西地区中三叠世双峰式火山岩成因及其对金沙江弧盆形成演化的制约[J]. 地质通报, 2021, 40(11): 1892-1904.
引用本文: 闫国川, 王保弟, 贺娟, 王启宇, 吴喆. 云南维西地区中三叠世双峰式火山岩成因及其对金沙江弧盆形成演化的制约[J]. 地质通报, 2021, 40(11): 1892-1904.
YAN Guochuan, WANG Baodi, HE Juan, WANG Qiyu, WU Zhe. Petrogenesis of Middle Triassic bimodal volcanic rocks in the Weixi area, Yunnan Province and geological implication for the formation and evolution of the Jinshajiang arc-basin[J]. Geological Bulletin of China, 2021, 40(11): 1892-1904.
Citation: YAN Guochuan, WANG Baodi, HE Juan, WANG Qiyu, WU Zhe. Petrogenesis of Middle Triassic bimodal volcanic rocks in the Weixi area, Yunnan Province and geological implication for the formation and evolution of the Jinshajiang arc-basin[J]. Geological Bulletin of China, 2021, 40(11): 1892-1904.

云南维西地区中三叠世双峰式火山岩成因及其对金沙江弧盆形成演化的制约

  • 基金项目:
    国家自然科学基金项目《羌塘中部泥盆纪—石炭纪岩浆作用对古特提斯洋构造演化的制约》(批准号:41773026)、第二次青藏高原综合科学考察研究项目《典型地区岩石圈组成、演化与深部过程》(编号:2019QZKK0702)和中国地质调查局项目《三江造山带昌都—澜沧地区区域地质调查》(编号:DD20190053)、《西南三江有色金属资源基地调查》(编号:DD20160016)
详细信息
    作者简介: 闫国川(1988-), 男, 在读博士生, 矿物学、岩石学、矿床学专业。E-mail: dizhixiaochuan@163.com
    通讯作者: 王保弟(1975-), 男, 博士, 研究员, 从事青藏高原地质研究工作。E-mail: baodiwang@163.com; wbaodi@cgs.cn
  • 中图分类号: P534.51;P588.14

Petrogenesis of Middle Triassic bimodal volcanic rocks in the Weixi area, Yunnan Province and geological implication for the formation and evolution of the Jinshajiang arc-basin

More Information
  • 金沙江缝合带及其西侧发育的岩浆活动记录了大洋俯冲-碰撞过程,是反演大洋演化的关键。江达-维西陆缘弧维西地区的中三叠世火山岩(崔依比组)在时空上构成独特的双峰式火山岩组合,以基性火山岩与大量酸性火山岩交互出现为主要特征,流纹岩LA-ICP-MS锆石U-Pb年龄为244±1.3 Ma,表明崔依比组火山岩形成于中三叠世晚期。地球化学分析结果显示,玄武岩亏损Nb、Ta、Ti等高场强元素,Zr含量、Zr/Y值和(Th/Nb)N值低,兼具板内及弧火山岩的双重特性;流纹岩相对富硅,贫TiO2和MgO,具有较低的Al2O3,富集Rb、Ba等大离子亲石元素,亏损Nb等高场强元素,Sr、Ti均具有弱的负异常特征,也兼具有板内及弧火山岩的双重特性。综合认为,维西地区中三叠世崔依比组双峰式火山岩形成于与板块俯冲过程有关的板内伸展环境,是金沙江洋壳西向俯冲过程中板片断离导致区域伸展背景下岩浆活动的产物。

  • 加载中
  • 图 1  西南三江地区构造格架(a)和维西县攀天阁地区地质简图(b)[]

    Figure 1. 

    图 2  云南维西县攀天阁地区崔依比组火山岩野外产出特征

    Figure 2. 

    图 3  云南维西县攀天阁地区崔依比组火山岩剖面

    Figure 3. 

    图 4  崔依比组英安岩野外特征(a、b)及显微(c、d)照片

    Figure 4. 

    图 5  崔依比组流纹岩定年样品(PM03-59)锆石阴极发光图像

    Figure 5. 

    图 6  崔依比组流纹岩(PM03-59U1)锆石U-Pb年龄谐和图

    Figure 6. 

    图 7  崔依比组双峰式火山岩SiO2-(Na2O+K2O)分类图解[12]

    Figure 7. 

    图 8  崔依比组玄武岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)

    Figure 8. 

    图 9  崔依比组流纹岩球粒陨石标准化稀土元素配分模式图(a)和原始地幔标准化微量元素蛛网图(b)

    Figure 9. 

    图 10  崔依比组流纹岩La-La/Yb图解

    Figure 10. 

    图 11  崔依比组火山岩SiO2-K2O分类图解[31]

    Figure 11. 

    图 12  崔依比组火山岩Zr/Y-Zr (a)、Th/Yb-Ta/Yb (b)、Th/Ta-Yb (c) 与Nb-Y (d)图解[33]

    Figure 12. 

    表 1  维西崔依比组流纹岩LA-ICP-MS锆石U-Th-Pb同位素分析结果

    Table 1.  LA-ICP-MS zircon U-Th-Pb isotope analytical results of the rhyolite in the Cuiyibi Formation

    测点 含量/10-6 Th/U 同位素比值(已扣除普通铅) 年龄/Ma 谐和度
    Pb Th U 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/235U 206Pb/238U
    1 37 230 366 0.63 0.045 0.003 0.246 0.019 0.039 0.001 252 10.5 241 2.8 94%
    2 64 376 612 0.61 0.048 0.003 0.257 0.016 0.039 0.001 247 10.1 241 2.7 91%
    3 74 475 783 0.61 0.052 0.003 0.275 0.013 0.039 0.001 272 12.0 250 2.7 77%
    4 38 252 361 0.70 0.043 0.004 0.222 0.019 0.039 0.001 257 13.0 248 3.5 93%
    5 54 353 499 0.71 0.051 0.003 0.273 0.016 0.039 0.001 453 20.6 263 4.0 74%
    6 101 671 925 0.73 0.050 0.003 0.264 0.013 0.039 0.001 253 12.3 241 3.3 98%
    7 40 237 316 0.75 0.054 0.005 0.291 0.028 0.039 0.001 234 9.3 245 3.0 91%
    8 81 496 762 0.65 0.053 0.003 0.285 0.015 0.039 0.001 262 9.6 248 2.9 99%
    9 109 699 981 0.71 0.053 0.003 0.285 0.014 0.040 0.001 233 9.2 242 2.7 95%
    10 108 749 1005 0.75 0.049 0.002 0.263 0.013 0.039 0.001 243 9.5 243 3.0 87%
    11 61 402 631 0.64 0.049 0.003 0.267 0.017 0.040 0.001 249 12.2 245 3.4 88%
    12 63 428 494 0.87 0.045 0.003 0.237 0.017 0.039 0.001 245 10.3 246 3.1 99%
    13 125 783 1298 0.60 0.052 0.002 0.280 0.011 0.039 0.000 246 9.7 243 2.9 93%
    14 81 532 801 0.66 0.054 0.003 0.287 0.013 0.039 0.001 251 15.9 248 3.6 99%
    15 87 546 830 0.66 0.052 0.003 0.280 0.015 0.039 0.001 249 12.0 245 3.3 97%
    16 69 471 688 0.69 0.049 0.003 0.262 0.016 0.039 0.001 253 11.5 240 3.4 99%
    17 91 549 988 0.56 0.049 0.003 0.261 0.013 0.039 0.001 255 8.7 245 2.7 91%
    18 63 393 615 0.64 0.043 0.003 0.231 0.015 0.039 0.001 243 14.1 243 3.4 94%
    19 176 970 2297 0.42 0.051 0.002 0.274 0.009 0.038 0.000 236 8.4 244 2.7 95%
    20 105 725 1025 0.71 0.050 0.003 0.268 0.014 0.039 0.001 218 14.7 252 3.5 73%
    21 122 608 1097 0.55 0.054 0.002 0.303 0.011 0.041 0.000 253 12.0 248 3.2 84%
    22 71 325 753 0.43 0.046 0.002 0.251 0.012 0.039 0.001 251 12.3 248 2.9 91%
    23 75 408 656 0.62 0.049 0.003 0.263 0.014 0.039 0.001 257 9.1 250 2.6 87%
    24 89 433 916 0.47 0.050 0.002 0.265 0.012 0.039 0.000 265 10.6 249 3.1 93%
    下载: 导出CSV

    表 2  维西崔依比组双峰式火山岩主量、微量和稀土元素分析结果

    Table 2.  Major, trace and rare earth elements analyses of the bimodal volcanic rocks from the Cuiyibi Formation

    样品编号 PM3-55 PM3-59 PM3-59 PM3-61 PM3-63 PM3-67 PM4-21 PM4-23 PM2-03
    岩性 流纹岩 流纹岩 流纹岩 流纹岩 流纹岩 流纹岩 玄武岩 玄武安山岩 玄武安山岩
    SiO2 78.2 76.2 76.4 77.7 78.0 76.6 47.9 51.6 50.2
    Al2O3 11.9 11.1 10.9 10.9 10.8 11.3 14.9 14.2 14.6
    Fe2O3 1.42 1.88 2.18 1.19 0.82 2.88 8.24 8.45 12.4
    CaO 0.08 0.77 0.59 0.05 0.03 0.08 7.22 6.89 10.9
    MgO 0.78 0.81 0.95 0.18 0.26 0.77 7.50 4.90 7.07
    K2O 3.84 6.28 6.07 7.38 8.22 5.38 1.12 0.67 0.63
    Na2O 1.41 1.23 1.07 1.01 0.08 1.26 3.96 3.56 1.97
    TiO2 0.27 0.29 0.27 0.26 0.28 0.32 0.72 0.77 1.16
    P2O5 0.03 0.04 0.04 0.03 0.03 0.04 0.13 0.13 0.14
    MnO 0.01 0.03 0.02 0.01 0.01 0.01 0.13 0.12 0.20
    烧失量 2.00 1.57 1.52 1.30 1.04 1.36 8.87 8.61 1.38
    总计 99.9 99.4 99.4 99.9 99.6 99.8 93.6 93.1 99.2
    Sc 29.3 9.49 9.24 6.94 3.65 4.00 31.7 31.7 31.4
    Ti 10780 1632 1606 1446 1601 1462 3794 3698 3720
    V 227 7.09 5.16 4.37 4.89 6.83 208 187 188
    Cr 9.45 197 6.68 2.17 2.61 2.71 135 196 186
    Mn 699 32.9 229 6.05 8.56 71.2 1126 196 186
    Co 20.8 0.94 0.79 0.48 0.67 1.13 31.3 37.5 31.2
    Ni 4.35 41.3 1.96 0.76 1.25 1.83 34.1 50.9 49.3
    Cu 8.69 10.7 21.7 3.16 4.71 1.58 42.7 28.0 24.6
    Zn 114 29.2 34.2 15.3 18.3 27.3 66.9 135 92.5
    Ga 22.4 20.2 19.8 15.9 16.7 18.3 17.6 19.3 17.9
    Ge 9.00 4.45 5.38 4.92 4.03 4.62 7.02 6.99 7.12
    Rb 23.5 206 180 190 219 179 53.4 8.45 23.9
    Sr 122 16.1 17.6 11.8 16.7 19.5 192 186 322
    Y 36.5 68.7 61.1 47.4 34.9 29.2 41.2 42.2 42.0
    Zr 342 401 356 594 591 274 66.6 220 214
    Nb 12.5 25.9 24.0 22.5 21.3 21.0 2.80 12.9 12.7
    Cs 3.12 7.85 2.58 4.27 2.30 5.21 9.67 0.60 1.44
    Ba 158 336 1309 845 898 1132 176 191 383
    La 22.5 72.9 58.6 58.1 50.0 44.2 6.79 7.89 9.21
    Ce 50.1 142 112 113 91.1 78.1 13.9 51.3 50.4
    Pr 6.03 17.1 13.6 13.5 11.2 9.62 1.78 6.43 6.28
    Nd 23.9 65.1 51.4 50.9 42.3 36.1 7.41 26.7 26.4
    Sm 5.29 13.6 10.8 10.4 8.50 6.90 1.82 6.19 6.20
    Eu 1.53 1.73 1.55 1.56 1.33 0.91 0.66 1.39 1.54
    Gd 5.29 11.7 9.52 8.98 7.13 5.78 1.78 6.84 6.84
    Tb 0.99 1.99 1.73 1.54 1.19 0.97 0.34 1.18 1.15
    Dy 6.34 11.7 10.5 9.03 6.87 5.93 2.16 7.40 7.14
    Ho 1.37 2.36 2.20 1.84 1.38 1.20 0.47 1.57 1.52
    Er 4.15 7.16 6.79 5.30 3.92 3.57 1.36 4.44 4.28
    Tm 0.65 1.08 0.97 0.80 0.57 0.52 0.21 0.67 0.65
    Yb 4.29 7.04 6.26 5.12 3.58 3.24 1.37 4.22 4.02
    Lu 0.68 1.08 0.96 0.77 0.54 0.47 0.21 0.63 0.61
    Hf 5.01 7.42 6.61 9.80 10.0 5.03 1.11 5.32 5.18
    Ta 0.90 1.85 1.73 1.64 1.68 0.94 0.19 0.89 0.85
    Pb 3.82 5.08 3.05 9.13 11.4 3.81 4.35 84.8 10.7
    Th 8.65 28.2 24.9 21.3 16.0 16.7 1.59 5.75 5.42
    U 2.34 6.16 5.87 4.32 4.90 4.94 0.54 1.54 1.44
    ∑REE 154 405 329 327 273 229 48.0 241 164
    δEu 0.29 0.14 0.15 0.16 0.17 0.14 0.37 0.21 0.24
    (Th/Ta)N 9.61 15.2 14.4 13.0 9.52 17.8 8.37 6.46 6.38
    (La/Yb)N 5.24 10.3 9.35 11.3 14.0 13.6 4.96 5.57 5.72
    (La/Sm)N 4.25 5.35 5.41 5.56 5.88 6.41 3.73 3.80 3.71
    注: 主量元素含量单位为%,微量、稀土元素含量单位为10-6;δEu=2EuN/(SmN+GdN),样品∑REE为样品La系元素含量与Y含量总和
    下载: 导出CSV
  • [1]

    潘桂棠, 李兴振, 王立全, 等. 青藏高原及邻区大地构造单元初步划分[J]. 地质通报, 2002, 1(11): 701-707. doi: 10.3969/j.issn.1671-2552.2002.11.002 http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2002011160&flag=1

    [2]

    莫宣学. 中华人民共和国地质矿产部地质专报. 三·岩石矿物地球化学. 第20号, 三江特提斯火山作用与成矿[M]. 北京: 地质出版社, 1993: 6-128.

    [3]

    王立全, 潘桂棠. 江达-维西陆缘火山弧的形成演化及成矿作用[J]. 沉积与特提斯地质, 2000, 20(2): 1-17. doi: 10.3969/j.issn.1009-3850.2000.02.001

    [4]

    牟传龙, 余谦. 云南兰坪盆地攀天阁组火山岩的Rb-Sr年龄[J]. 地层学杂志, 2002, 26(4): 289-292. doi: 10.3969/j.issn.0253-4959.2002.04.009

    [5]

    王保弟, 王立全, 王冬兵, 等. 三江上叠裂谷盆地人支雪山组火山岩锆石U-Pb定年与地质意义[J]. 岩石矿物学杂志, 2011, 30(1): 25-33. doi: 10.3969/j.issn.1000-6524.2011.01.003

    [6]

    简平, 刘敦一, 孙晓猛. 滇川西部金沙江石炭纪蛇绿岩SHRIMP测年: 古特提斯洋壳演化的同位素年代学制约[J]. 地质学报, 2003, 77(2): 217-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302017.htm

    [7]

    Zi J W, Cawood P A, Fan W M, et al. Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys[J]. American Journal of Science, 2013, 313(2): 81-112. doi: 10.2475/02.2013.02

    [8]

    Zi J W, Cawood P A, Fan W M, et al. Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China[J]. Lithos, 2012, 144/145(7): 145-160.

    [9]

    曾普胜, 尹光候, 李文昌, 等. 金沙江造山带德钦-羊拉矿集区构造-岩浆-成矿系统[M]. 北京: 地质出版社, 2015: 1-229.

    [10]

    Liu Y, Hu Z, Gao S, et al. In Situ, analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257(1/2): 34-43. http://www.onacademic.com/detail/journal_1000035368794210_7e0b.html

    [11]

    Hoskin P W O, Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62. doi: 10.2113/0530027

    [12]

    Le Maitre R W. Igneous rocks: A Classification and Glossary of Terms(2nd ed)[M]. Cambridge: Cambridge University Press, 2002: 1-236.

    [13]

    Sun S S, Mcdonough W F. Chemical and Isotopic Systematics of Oceanic Basalts; Implications for Mantle Composition and Processes[J]. Geological Society London Special Publication, 1989, 42(1): 313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    [14]

    O'Hara M J. Primary magmas and the origin of basalts[J]. Scottish Journal of Geology, 1965, 1(1): 19-40. doi: 10.1144/sjg01010019

    [15]

    McKenzie D, Bickle M J. The Volume and Composition of Melt Generated by Extension of the Lithosphere[J]. Journal of Petrology, 1988, 29(3): 625-679. doi: 10.1093/petrology/29.3.625

    [16]

    Hofmann A W, Jochum K P, Seufert M, et al. Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution[J]. Earth and Planetary Science Letters, 1986, 79(1/2): 33-45. http://www.sciencedirect.com/science/article/pii/0012821X86900385

    [17]

    Taylor S R, Mclennan S M. The continental crust: Its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks[M]. Blackwell Scientific Pub., 1985.

    [18]

    Glazner A F, Farmer G L, Hughes W T, et al. Contamination of Basaltic Magma by Mafic Crust at Amboy and Pisgah Craters, Mojave Desert, California. [J]. Journal of Geophysical Research: Solid Earth, 1991, 96(B8): 13673-13691. doi: 10.1029/91JB00175

    [19]

    Charles R, Bacon, Timothy H Druitt. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon[J]. Contributions to Mineralogy and Petrology, 1988, 98(2): 224-256. doi: 10.1007/BF00402114

    [20]

    Guffanti M, Clynne, et al. Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust[J]. Journal of Geophysical Research, 1996, 101: 3003-3013. doi: 10.1029/95JB03463

    [21]

    Roberts M P, Clemens. Origin of high-potassium, talc-alkaline, I-type granitoids[J]. Geology, 1993, 21: 825-828. doi: 10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2

    [22]

    Tepper J H, Nelson, Bergantz G W, et al. Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity[J]. Contributions to Mineralogy and Petrology, 1993, 113: 333-351. doi: 10.1007/BF00286926

    [23]

    Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165(3/4): 197-213. http://geol.umd.edu/~rudnick/PDF/Barth2000_CHEMGE.pdf

    [24]

    Rudnick R L, Gao S. Composition of the continental crust[C]//Rudnick R L. The Crust: Treaties on Geochemistry. Oxford: Elsevier Pergamon, 2003: 1-64.

    [25]

    Pin C, Paquette J L. A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subductionrelated rift origin of the Late Devonian Brévenne metavolcanics, Massif Central(France)[J]. Contributions to Mineralogy and Petrology, 1997, 129(2/3): 222-238. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=9712015479&site=ehost-live

    [26]

    Bonin B. Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review[J]. Lithos, 2004, 78: 1-24. doi: 10.1016/j.lithos.2004.04.042

    [27]

    Hildreth W. Gradients in silicic magma chambers: implications for lithospheric magmatism[J]. Journal of Geophysical Research, 1981, 86: 10153-10192. doi: 10.1029/JB086iB11p10153

    [28]

    Shellnutt J G, Zhou M F. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: their relationship to the Emeishan mantle plume[J]. Chemical Geology, 2007, 243: 286-316. doi: 10.1016/j.chemgeo.2007.05.022

    [29]

    Zhang K J, Zhang Y X, Tang X C, et al. First report of eclogites from central Tibet, China: evidence for ultradeep continental subduction prior to the Cenozoic India-Asian collision[J]. Terra Nova, 2008, 20(4): 302-308. doi: 10.1111/j.1365-3121.2008.00821.x

    [30]

    Zhu D, Pan G, Mo X, et al. Petrogenesis of volcanic rocks in the Sangxiu Formation, central segment of Tethyan Himalaya: A probable example of plume-lithosphere interaction[J]. Journal of Asian Earth Sciences, 2007, 29: 320-335. doi: 10.1016/j.jseaes.2005.12.004

    [31]

    Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81. doi: 10.1007/BF00384745

    [32]

    Gorton M P, Schandl E S. From continents to island arcs: a geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks[J]. The Canadian Mineralogist, 2000, 38: 1065-1073. doi: 10.2113/gscanmin.38.5.1065

    [33]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour. Petrol., 1984, 25(4): 956-983. doi: 10.1093/petrology/25.4.956

    [34]

    Macdonald R. The 1875 eruption of Askja Volcano, Iceland: Combined fractional crystallization and selective contamination in the generation of rhyolitic magma[J]. Mineralogical Magazine, 1987, 51(360): 183-202. doi: 10.1180/minmag.1987.051.360.01

    [35]

    Zhu D C, Zhao Z D, Niu Y, et al. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Andean-type magmatic arc in the Australian proto-Tethyan margin[J]. Chemical Geology, 2012, 328: 290-308. doi: 10.1016/j.chemgeo.2011.12.024

    [36]

    潘桂棠, 莫宣学, 侯增谦, 等. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 2006, 22(3): 521-533. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200603001.htm

    [37]

    Zhu D C, Mo M M, Niu Y L, et al. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet[J]. Chemical Geology, 2009, 268: 298-312. doi: 10.1016/j.chemgeo.2009.09.008

    [38]

    Zhu D C, Zhao Z D, Niu Y L, et al. Lhasa terrane in southern Tibet came from Australia[J]. Geology, 2011, 39(8): 727-730. doi: 10.1130/G31895.1

    [39]

    Zhu D C, Zhao Z D, Niu Y L, et al. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 2011, 301: 241-255. doi: 10.1016/j.epsl.2010.11.005

    [40]

    王保弟, 王立全, 王冬兵, 等. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 2021, DOI: 10.19826/j.cnki.1009-3850.2021.02008.

    [41]

    Wang B, Wang L, Chen J, et al. Triassic three-stage collision in the Paleo-Tethys: Constraints from magmatism in the Jiangda-Deqen-Weixi continental margin arc, SW China[J]. Gondwana Research, 2014, 26(2): 475-491. doi: 10.1016/j.gr.2013.07.023

    [42]

    王保弟, 王立全, 王冬兵, 等. 西南三江金沙江弧盆系时空结构及构造演化[J]. 沉积与特提斯地质, 2021, 41(2): 246-264. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102012.htm

    [43]

    Duretz T, Gerya T V, May D A. Numerical modelling of spontane-ous slab breakoff and subsequent topographic response[J]. Tectono-physics, 2011, 502: 244-256. doi: 10.1016/j.tecto.2010.05.024

    [44]

    简平, 刘敦一, 孙晓猛. 滇川西部金沙江石炭纪蛇绿岩SHRIMP测年: 古特提斯洋壳演化的同位素年代学制约[J]. 地质学报, 2003, 77(2): 217-228. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200302017.htm

    [45]

    Hunen J V, Allen M B. Continental collision and slab break-off: A comparison of 3-D numerical models with observations[J]. Earth and Planetary Science Letters, 2011, 30(2): 27-37. http://eps.mcgill.ca/~courses/c350/ProbSets/vanHunen_2011_EPSL.pdf

    云南省地质矿产局.1∶25万临沧,滚龙幅(国内部分)区域地质调查报告.2003.

  • 加载中

(12)

(2)

计量
  • 文章访问数:  1581
  • PDF下载数:  14
  • 施引文献:  0
出版历程
收稿日期:  2021-05-03
修回日期:  2021-06-08
刊出日期:  2021-11-15

目录