澳大利亚高勒克拉通约克半岛Moonta-Wallaroo矿集区北部Hiltaba岩套锆石U-Pb年龄和微量元素地球化学特征

赵宇浩, 姚仲友, 王天刚, 朱意萍, 赵晓丹, 姜瀚涛. 澳大利亚高勒克拉通约克半岛Moonta-Wallaroo矿集区北部Hiltaba岩套锆石U-Pb年龄和微量元素地球化学特征[J]. 地质通报, 2021, 40(12): 2167-2178.
引用本文: 赵宇浩, 姚仲友, 王天刚, 朱意萍, 赵晓丹, 姜瀚涛. 澳大利亚高勒克拉通约克半岛Moonta-Wallaroo矿集区北部Hiltaba岩套锆石U-Pb年龄和微量元素地球化学特征[J]. 地质通报, 2021, 40(12): 2167-2178.
ZHAO Yuhao, YAO Zhongyou, WANG Tiangang, ZHU Yiping, ZHAO Xiaodan, JIANG Hantao. Zircon U-Pb geochronology and trace elements geochemistry of Hiltaba Suite in the north of Moonta-Wallaroo mining district, Yorke Peninsula, Gawler Craton, Australia[J]. Geological Bulletin of China, 2021, 40(12): 2167-2178.
Citation: ZHAO Yuhao, YAO Zhongyou, WANG Tiangang, ZHU Yiping, ZHAO Xiaodan, JIANG Hantao. Zircon U-Pb geochronology and trace elements geochemistry of Hiltaba Suite in the north of Moonta-Wallaroo mining district, Yorke Peninsula, Gawler Craton, Australia[J]. Geological Bulletin of China, 2021, 40(12): 2167-2178.

澳大利亚高勒克拉通约克半岛Moonta-Wallaroo矿集区北部Hiltaba岩套锆石U-Pb年龄和微量元素地球化学特征

  • 基金项目:
    中国地质调查局项目《拉丁美洲-大洋洲大型铜镍锂资源基地评价》(编号:DD20190441)和《海上丝绸之路大洋洲和南美洲矿产资源潜力评价》(编号:DD20160110)
详细信息
    作者简介: 赵宇浩(1989-), 男, 硕士, 工程师, 从事矿产地质调查研究。E-mail: zhao61060427@126.com
    通讯作者: 姚仲友(1962-), 男, 教授级高级工程师, 从事矿床地质及成矿规律研究。E-mail: yaoyao_q@163.com
  • 中图分类号: P595;P597+.3

Zircon U-Pb geochronology and trace elements geochemistry of Hiltaba Suite in the north of Moonta-Wallaroo mining district, Yorke Peninsula, Gawler Craton, Australia

More Information
  • 澳大利亚南澳州高勒克拉通广泛发育的Hiltaba岩套与该地区的铁氧化物铜金矿床关系密切,查明该岩套的成岩时代、成岩温度及构造背景,对铁氧化物铜金矿床的研究至关重要。对约克半岛Moonta-Wallaroo矿集区北部的眼球状花岗岩进行锆石U-Pb测年,测得年龄为1589±43 Ma,与前人确定的Hiltaba岩套岩浆事件(1595~1575 Ma)时间一致。通过锆石Ti温度计计算出花岗岩成岩温度为848~971℃,平均878℃,接近A型花岗岩的成岩温度。锆石的稀土元素配分模式呈现轻稀土元素亏损、重稀土元素富集及向左倾斜的特征,具有明显的正Ce异常和负Eu异常,δCe值变化范围较大(4.85~107.63),δEu值变化范围较小(0.17~0.36)。在锆石Y-Yb/Dy等判别图解中,样品多落入板内构造环境范围及附近,少数落入火山弧构造环境范围及附近;在锆石Hf-U/Yb等判别图解中,样品均落入陆壳环境范围。综合分析认为,该花岗岩形成于活动大陆边缘向陆内环境演变的构造背景。

  • 加载中
  • 图 1  高勒克拉通地质矿产简图(据参考文献[16]修改)

    Figure 1. 

    图 2  约克半岛Moonta-Wallaroo矿集区北部地区地质简图(据参考文献[5]修改)

    Figure 2. 

    图 3  钻孔PBD30示意图(据参考文献修改)

    Figure 3. 

    图 4  钻孔PBD30岩石特征

    Figure 4. 

    图 5  眼球状花岗岩中代表性锆石阴极发光图像、分析点位置及年龄值

    Figure 5. 

    图 6  眼球状花岗岩中代表性锆石球粒陨石标准化稀土元素配分模式(球粒陨石标准值据参考文献[26])

    Figure 6. 

    图 7  眼球状花岗岩中代表性锆石La-(Sm/La)N判别图(a)和(Sm/La)N-Ce/Ce*判别图(b)(底图据参考文献[30])

    Figure 7. 

    图 8  眼球状花岗岩中代表性锆石U-Pb谐和图(a) 和207Pb/206Pb年龄谱图(b、c)

    Figure 8. 

    图 9  不同构造背景下锆石微量元素判别图(底图据参考文献[40])

    Figure 9. 

    图 10  陆壳和洋壳环境中锆石Hf-U/Yb (a) 与Y-U/Yb (b) 判别图(底图据参考文献[41])

    Figure 10. 

    表 1  眼球状花岗岩中代表性锆石LA-ICP-MS U-Th-Pb测试结果

    Table 1.  LA-ICP-MS U-Th-Pb data of representative zircons in the augen granite

    点号 含量/10-6 Th/U 同位素比值 年龄/Ma
    Th U 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ 207Pb/206Pb 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ
    1 342 621 0.55 0.0966 0.0023 3.3944 0.0826 0.2516 0.0033 1559 44 1503 19 1447 17
    2 307 488 0.63 0.0979 0.0022 3.7373 0.0832 0.2739 0.0033 1584 43 1579 18 1560 17
    3 451 974 0.46 0.0953 0.0020 3.3399 0.0694 0.2509 0.0029 1544 40 1490 16 1443 15
    4 131 150 0.88 0.0970 0.0025 4.0733 0.1018 0.3018 0.0041 1566 48 1649 20 1700 20
    5 239 490 0.49 0.0979 0.0023 3.6270 0.0793 0.2654 0.0031 1585 43 1555 17 1517 16
    6 81 96 0.84 0.0959 0.0028 3.9585 0.1151 0.2967 0.0049 1546 49 1626 24 1675 24
    7 454 535 0.85 0.0986 0.0028 3.7424 0.0969 0.2721 0.0037 1598 54 1580 21 1552 19
    8 466 742 0.63 0.0976 0.0026 3.5643 0.1082 0.2611 0.0057 1589 51 1542 24 1495 29
    9 401 881 0.46 0.0992 0.0028 3.7575 0.0941 0.2715 0.0038 1610 47 1584 20 1549 19
    10 254 400 0.63 0.0981 0.0025 4.2550 0.1022 0.3117 0.0046 1588 48 1685 20 1749 22
    11 279 429 0.65 0.0978 0.0023 4.1256 0.0965 0.3024 0.0041 1583 44 1659 19 1703 20
    12 478 979 0.49 0.0971 0.0022 3.2652 0.0769 0.2411 0.0033 1569 42 1473 18 1392 17
    13 366 607 0.60 0.0980 0.0021 3.7823 0.0774 0.2774 0.0030 1587 41 1589 16 1578 15
    14 307 682 0.45 0.0980 0.0023 3.4856 0.0956 0.2558 0.0051 1587 43 1524 22 1469 26
    15 373 570 0.65 0.0986 0.0023 4.0140 0.0912 0.2930 0.0033 1598 43 1637 19 1656 17
    下载: 导出CSV

    表 2  眼球状花岗岩中代表性锆石微量元素含量

    Table 2.  Trace element compositions of representative zircons in the augen granite

    点号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y Hf Nb Ta ΣREE ΣLREE ΣHREE δEu δCe
    1 1.84 61.3 2.83 20.7 33.9 8.00 113 33.4 311 90.9 351 68.2 627 113 2676 12228 8.98 5.26 1837 129 1708 0.36 5.33
    2 0.97 51.6 0.89 6.36 8.05 1.77 32.7 11.8 128 45.0 196 42.2 395 76.8 1300 11434 7.87 4.32 997 70 927 0.29 12.58
    3 1.77 85.6 2.17 11.3 11.8 2.57 35.6 12.5 133 45.8 209 46.9 463 92.4 1361 12850 10.7 5.59 1154 115 1039 0.35 9.22
    4 0.68 29.4 0.29 3.10 5.64 1.06 24.4 8.09 92.8 34.9 153 31.4 287 56.0 996 10298 3.66 1.69 727 40 687 0.24 16.35
    5 0.83 49.5 1.45 12.5 17.8 4.74 72.7 21.0 186 54.3 206 41.3 383 73.9 1619 12009 7.74 4.03 1125 87 1039 0.35 8.61
    6 2.01 23.1 0.67 5.77 7.18 1.60 28.3 8.73 95.4 34.5 149 29.8 267 52.5 996 9958 3.39 1.67 705 40 665 0.30 4.85
    7 1.66 64.2 2.12 19.1 27.6 7.18 114 33.4 314 92.0 341 64.2 550 102 2732 10079 6.93 3.29 1732 122 1610 0.34 7.14
    8 0.88 104 1.08 7.16 8.26 1.54 29.4 10.6 126 46.4 217 47.4 462 93.2 1374 11539 10.3 5.43 1154 123 1032 0.27 22.50
    9 0.85 56.0 1.09 8.45 12.2 3.06 44.8 14.1 140 44.1 190 41.4 410 83.0 1332 13084 9.24 5.37 1050 82 968 0.36 12.13
    10 0.02 37.4 0.10 1.48 2.95 0.48 15.6 5.61 69.1 27.6 134 30.5 301 62.8 845 11482 6.93 4.11 688 42 646 0.17 107.63
    11 0.07 47.9 0.23 2.71 4.26 0.98 23.1 7.77 89.9 34.3 160 35.1 339 69.3 1026 11477 7.20 3.90 814 56 758 0.24 58.59
    12 2.10 108 1.64 8.47 7.76 1.83 27.7 9.43 109 39.9 192 44.0 445 94.1 1246 12913 10.1 6.35 1090 130 960 0.34 13.54
    13 0.22 52.3 0.37 2.98 4.26 0.86 19.7 7.27 86.1 32.7 156 35.7 353 74.3 985 11777 8.36 4.64 825 61 764 0.24 35.87
    14 0.99 52.7 1.52 11.1 17.8 4.42 72.2 21.0 201 60.9 257 58.2 545 105 1821 12174 11.3 6.25 1408 89 1319 0.33 8.55
    15 0.15 43.9 0.30 2.75 4.54 0.86 23.8 8.49 99.1 39.2 181 39.2 374 76.3 1158 11651 9.11 4.71 894 53 842 0.20 38.41
    注:微量元素含量单位为10-6
    下载: 导出CSV

    表 3  锆石Ti温度计计算结果

    Table 3.  Calculation results of zircon Ti thermometer

    点号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    T/℃ 870 867 859 927 859 971 899 872 848 874 875 858 865 858 866
    下载: 导出CSV
  • [1]

    Perring C S, Pollard P J, Dong G, et al. The Lingtning Creek sill complex, Cloncurry district, Northwest Queensland: A source of fluids for Fe oxide Cu-Au mineralization and sodic-calcic alteration[J]. Economic Geology, 2000, 95(5): 1067-1089. doi: 10.2113/gsecongeo.95.5.1067

    [2]

    Pollard P J. Evidence of a magmatic fluid and metal source for Fe-oxide Cu-Aumineralization[C]//Porter T M. Hydrothermal iron oxide copper-gold and related deposits: A global perspective. Adelaide: Australian Mineral Foundation, 2000: 27-41.

    [3]

    Pollard P J. An intrusion-related origin for Cu-Au mineralization in iron oxide-copper-gold(IOCG) provinces[J]. Mineralium Deposita, 2006, 41(2): 179-187. doi: 10.1007/s00126-006-0054-x

    [4]

    Sillitoe R H. Iron oxide-copper-gold deposits: an Andean view[J]. Mineralium Deposita, 2003, 38(7): 787-812. doi: 10.1007/s00126-003-0379-7

    [5]

    毛景文, 余金杰, 袁顺达, 等. 铁氧化物-铜-金(IOCG)型矿床: 基本特征、研究现状与找矿勘查[J]. 矿床地质, 2008, 27(3): 267-278. doi: 10.3969/j.issn.0258-7106.2008.03.001

    [6]

    聂凤军, 江思宏, 路彦明. 氧化铁型铜-金(IOCG)型矿床的地质特征、成因机理与找矿模型[J]. 中国地质, 2008, 35(6): 1074-1087. doi: 10.3969/j.issn.1000-3657.2008.06.005

    [7]

    赵宇浩, 毛大华, 王天刚, 等. 智利Candelaria-Punta del Cobre铁氧化物铜金矿床地质和成矿作用简[J]. 地质通报, 2017, 36(12): 2296-2307. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20171221&flag=1

    [8]

    Reid A J. The Olympic Cu-Au Province, Gawler Craton: A Review of the Lithospheric Architecture, Geodynamic Setting, Alteration Systems, Cover Successions and Prospectivity[J]. Minerals, 2019, 9: 1-37. http://www.researchgate.net/publication/333908454_The_Olympic_Cu-Au_Province_Gawler_Craton_A_Review_of_the_Lithospheric_Architecture_Geodynamic_Setting_Alteration_Systems_Cover_Successions_and_Prospectivity/download

    [9]

    Creaser R A. Petrogenesis of a Mesoproterozoic quartz latite-granitoid suite from the Roxby Downs area, South Australia[J]. Precambrian Research, 1996, 79(3): 371-394. http://www.sciencedirect.com/science/article/pii/S0301926896000022

    [10]

    Budd A R. A- and I-type subdivision of the Gawler Ranges-Hiltaba Volcano-Plutonic Association[J]. Geochimica et Cosmochimica Acta, 2006, 70(18-supp-S): A72. http://www.onacademic.com/detail/journal_1000035388115810_638f.html

    [11]

    Chapman N, Ferguson M, Meffre S, et al. Pb-isotopic constraints on the source of A-type Suites: Insights from the Hiltaba Suite-Gawler Range Volcanics Magmatic Event, Gawler Craton, South Australia[J]. Lithos, 2019, 346/347: 1-18. http://www.sciencedirect.com/science/article/pii/S002449371930307X

    [12]

    Brotodewo A, Tiddy C J, Reid A, et al. Relationships between magmatism and deformation in northern Yorke Peninsula and southeastern Proterozoic Australia[J]. Australian Journal of Earth Sciences, 2018, 65: 619-641. doi: 10.1080/08120099.2018.1470573

    [13]

    姚仲友, 王天刚, 王国平, 等. 大洋洲地区优势矿产资源潜力评价[M]. 科学出版社, 2015: 99-107.

    [14]

    姚仲友, 王天刚, 傅朝义, 等. 大洋洲地区大地构造格架与优势矿产资源[J]. 地质通报, 2014, 33(2/3): 143-158. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=2014020301&flag=1

    [15]

    Reid A J, Fabris A. Influence of pre-existing low metamorphic grade sedimentary sucessions on the distribution of iron oxide-copper-gold mineralization in the Olympic Cu-Au province, Gawler craton[J]. Economic Geology, 2015, 110: 2147-2157 doi: 10.2113/econgeo.110.8.2147

    [16]

    丁绍磊. 澳大利亚南澳省Hillside与Olympic Dam铁氧化物铜-金矿床(IOCG)对比研究[D]. 成都理工大学硕士学位论文, 2016.

    [17]

    Reid A J. Geology and metallogeny of the Gawler Craton[C]//Phillips G N. Australian Ore Deposits. Melbourne: The Australian Institute of Mining and Metallrugy, 2017: 589-594.

    [18]

    Allen S R, McPhie J, Ferris G, et al. Evolution and architecture of a large felsic igneous province in western Laurentia: the 1.6 Ga Gawler Range Volcanics, South Australia[J]. Journal of Volcanology and Geothermal Research, 2008, 172: 132-147. doi: 10.1016/j.jvolgeores.2005.09.027

    [19]

    Haynes D W, Cross K C, Bills R T, et al. Olympic Dam ore genesis; a fluid-mixing model[J]. Economic Geology, 1995, 90(2): 281-307. doi: 10.2113/gsecongeo.90.2.281

    [20]

    Belperio A, Flint R, Freeman H. Prominent Hill-a hematite-dominated, iron-oxide copper-gold system[J]. Economic Geology, 2007, 102(8): 1499-1510. doi: 10.2113/gsecongeo.102.8.1499

    [21]

    McPhie J, Kamenetsky V S, Chambefort I, et al. Origin of the supergiant Olympic Dam Cu-U-Au-Ag deposit, South Australia: was a sedimentary basin involved?[J]. Geology, 2011, 39(8): 795-798. http://www.researchgate.net/profile/Vadim_Kamenetsky/publication/263891547_Origin_of_the_supergiant_Olympic_Dam_Cu-U-Au-Ag_deposit_South_Australia_Was_a_sedimentary_basin_involved/links/551a22a80cf244e9a45854a7.pdf

    [22]

    Ferris G M, Schwarz M P. Proterozoic gold province of the Central Gawler Craton[J]. MESA Journal, 2003, 30: 4-12. http://www.researchgate.net/publication/284033530_Proterozoic_gold_province_of_the_central_Gawler_Craton

    [23]

    Mortimer G E, Cooper J A, Oliver R L. The geochemical evolution of Proterozoic granitoids near Port Lincoln in the Gawler orogenic domain of South Australia[J]. Precambrian Research, 1988, 40/41: 387-406. doi: 10.1016/0301-9268(88)90077-0

    [24]

    Reid A, Hand M, Jagodzinski E, et al. Paleoproterozoic orogenesis in the southeastern Gawler craton, South Australia[J]. Australian Journal of Earth Sciences, 2008, 55: 449-471. doi: 10.1080/08120090801888594

    [25]

    Slama J, Kosler J, Condon D J, et al. Plešovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chemical Geology, 2008, 249(1/2): 1-35.

    [26]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. The Geological Society, London, Special Publications, 1989, 42(1): 313-345.

    [27]

    Dubińska E, Bylinab P, Kozowskia A, et al. U-Pb dating of serpentinization: Hydrothermal zircon from ametasomatic rodingite shell(Sudetic ophiolite, SW Poland)[J]. Chemical Geology, 2004, 203(3/4): 183-203.

    [28]

    Schaltegger U. Hydrothermal zircon[J]. Elements, 2007, 3(1): 51-79. doi: 10.2113/gselements.3.1.51

    [29]

    赵振华. 副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J]. 地学前缘, 2010, 17(1): 267-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201001027.htm

    [30]

    Hoskin P W O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648. doi: 10.1016/j.gca.2004.07.006

    [31]

    范飞鹏, 陈乐柱, 李海立, 等. 南岭东段枫树洞稀土矿中辉长质包体锆石U-Pb年代学, 地球化学特征及其成岩作用[J]. 华东地质, 2020, 41(4): 325-338. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ202004003.htm

    [32]

    Watson E B, Harrison T M. Zircon thermometer reveals minimum melting conditions on earliest Earth[J]. Science, 2005, 308(5723): 841-844. doi: 10.1126/science.1110873

    [33]

    Watson E B, Wark D A, Thomas J B. Crystallization thermometers for zircon and rutile[J]. Contributions to Mineralogy & Petrology, 2006, 151(4): 413-433. http://link.springer.com/content/pdf/10.1007%2Fs00410-006-0068-5.pdf

    [34]

    Ferry J M, Watson E B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy & Petrology, 2007, 154(4): 429-437. http://www.researchgate.net/profile/Edward_Watson2/publication/216832207_New_thermodynamic_models_and_revised_calibrations_for_the_Ti-in-zircon_and_Zr-in-rutile_thermometers/links/54ff52ad0cf2eaf210b91ff2.pdf

    [35]

    高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2): 417-431. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102006.htm

    [36]

    Hayden L A, Watson E B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon[J]. Earth and Planetary Science Letters, 2007, 258(3/4): 561-568. http://www.onacademic.com/detail/journal_1000035380473610_d5fe.html

    [37]

    King P L, White A J R, Chappell B W, et al. Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia[J]. Journal of Petrology, 1997, 38(3): 371-391. doi: 10.1093/petroj/38.3.371

    [38]

    刘昌实, 陈小明, 陈培荣, 等. A型岩套的分类、判别标志和成因[J]. 高校地质学报, 2003, 9(4): 573-591. doi: 10.3969/j.issn.1006-7493.2003.04.011

    [39]

    蔡杨, 吴维平, 马涛, 等. 安徽九华山柯村花岗斑岩锆石U-Pb年代学、地球化学特征及地质意义[J]. 华东地质, 2018, 39(3): 177-186. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201803003.htm

    [40]

    陈超, 滕学建, 潘志龙, 等. 内蒙古北山造山带中段石板井地区A型花岗岩锆石U-Pb年龄对北山洋闭合时间的限定[J]. 地质通报, 2020, 39(9): 1448-1460. http://dzhtb.cgs.cn/gbc/ch/reader/view_abstract.aspx?file_no=20200910&flag=1

    [41]

    Schulz B, Klemd R, Bratz H. Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement[J]. Geochimica et Cosmochimica Acta, 2006, 70(3): 697-710. doi: 10.1016/j.gca.2005.10.001

    [42]

    Grimes C B, John B E, Kelemen P B, et al. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance[J]. Geology, 2007, 35(7): 643-646. doi: 10.1130/G23603A.1

    Budd A R, Wyborn L A I, Bastrakova I V. The Metallogenic Potential of Australian Proterozoic Granites. 2001.

    Stewart K P, Foden J. Mesoproterozoic granites of South Australia. 2003.

    Coles B, Tassell S W, Street G J, et al. Progress reports, annual reports and final report to licence expiry/full surrender. 1991.

    Conor C H H. Moonta-Wallaroo region: an interpretation of the geology of the Maitland and Wallaroo 1: 100 000 sheet areas. 1995.

    Department of Primary industries and Resources SA. WHYALLA 1: 250, 000 geological map. 2006.

  • 加载中

(10)

(3)

计量
  • 文章访问数:  1011
  • PDF下载数:  9
  • 施引文献:  0
出版历程
收稿日期:  2021-07-04
修回日期:  2021-09-02
刊出日期:  2021-12-15

目录