-
摘要:
沉积物可侵蚀性是沉积动力学的重要研究内容,在动力地貌学、海洋工程安全与生态保护等方面均具有重要意义。分别从沉积物可侵蚀性测定方法、经验模型和影响因素3个方面对过去近60年来的黏性沉积物可侵蚀性研究成果进行了总结与分析。前人对黏性沉积物可侵蚀性与影响因素进行了大量研究并取得了丰富的研究成果,但由于黏性沉积物受自身物理化学性质、沉积环境和生物过程等综合影响,导致可侵蚀性研究复杂、困难,不同研究结果间无法形成有效对比,黏性沉积物可侵蚀性经验模型适用性受到极大限制。在总结研究现状与科学问题的基础上认为,下一步黏性沉积物可侵蚀性研究应开展更为全面且系统的实验室与实地研究以及多种方法的综合研究,提高可侵蚀性判定与影响因素识别的准确性与客观性;同时,借助理论、技术创新以及多学科交叉融合研究,深入探讨黏结力形成机理与理论量化,进一步修正与完善黏性沉积物的可侵蚀性经验模型。
Abstract:Sediment erodibility is an important research issue of depositional dynamics, which is of great significance in dynamic geomorphology, marine engineering safety, and ecological protection. In this paper, we summarized the research results of erodibility of cohesive sediments in the past 60 years from three aspects: measurement methods of sediment erodibility, sediment erodibility empirical modelling, and influencing factors of the erodibility. Although many previous studies have been done on the erodibility and influencing factors of cohesive sediments with considerable achievements, due to the multi-factor influence from physical and chemical properties, sedimentary environment, and biological process, the erodibility of cohesive sediments is a complex and difficult issue of study. Therefore, data obtained from different research results are not well comparable, which greatly hampered the applicability of empirical models of erodibility of cohesive sediments. By reviewing the status quo of regarding scientific problems, we proposed the future direction of research on the erodibility of cohesive sediments and suggested that more comprehensive and systematic laboratory and field research shall be carried out to improve the accuracy and objectivity of erodibility determination and its influencing factor identification through comprehensive research by various methods. At the same time, under the theoretical guidance, technological innovation and interdisciplinary integration research, the formation mechanism and theoretical quantification of the adhesion shall be deeply discussed to modify and improve the erodibility empirical model of cohesive sediments.
-
Key words:
- cohesive sediment /
- erodibility /
- empirical model /
- influencing factors
-
-
图 2 近底层剪切应力不同计算方法结果对比[27]
Figure 2.
图 5 原始希尔兹曲线图 [51]
Figure 5.
图 6 经各学者改进的希尔兹曲线图[55]
Figure 6.
图 10 EPS与生物膜对于沉积物可侵蚀性影响作用示意图[113]
Figure 10.
表 1 沉积物可侵蚀性部分测定结果汇总
Table 1. Summary of some results of sediment erodibility determination
序号 作者 研究区域 研究方法 /(N/m2)
侵蚀速率/(g/(m2/s)) 中值粒径/μm ① AMOS等(1997)[46] 加拿大Fraser River三角洲 潮滩侵蚀水槽 0.10~0.75 0.14~0.74 / ② WIDDOWS等 (1998) [47] 英国Humber河口泥滩 潮滩侵蚀水槽 0.18~0.70 0.06~1.90 / ③ HOUWING(1999)[7] 荷兰Wadden Sea潮滩 潮滩侵蚀水槽 0.11~0.18 0.05~3.00 / ④ MENG等(2012)[32] 黄河口岸滩 潮滩侵蚀水槽 0.088~0.254 / 16~58 ⑤ ANDERSEN等(2007)[36] 丹麦Wadden海 底边界层观测 0.26,0.58 0.05~0.08 / ⑥ SALEHI等(2012)[35] 美国San Jacinto河口 底边界层观测 0.06,0.14 / 4~93 ⑦ YANG等(2016)[34] 江苏沿海地区 底边界层观测 0.07,0.11 / 19~121 ⑧ HARRIS等(2016)[14] 新西兰北岛Whitford等三个河口 室内侵蚀实验 0.09~0.79 0.03~2.62 81~301 ⑨ DONG等(2020)[5] 珠江三角洲伶仃洋河口 室内侵蚀实验 0.05~0.45 / 9~207 ⑩ 乔宇等(2021) [15] 长江口海域 室内侵蚀实验 0.33~0.81 / 6~230 ⑪ 林超然等(2021) 黄河清水沟水下三角洲 室内侵蚀实验 0.20~0.68 0.01~1.30 10~94 注:“/”代表无数据,τcr为临界起动剪应力。 表 2 细颗粒黏性泥沙起动公式比较
Table 2. Comparison of incipient motion formulas for fine viscous sediment
作者 公式 参数含义 窦国仁[8] k为系数,取值0.128; =1×10−2 m,
取值与d相关;
与
分别为泥沙干容重与稳定干容重(N/m3);
为黏结力参数,一般取值为1.75 cm3/s2;
为薄膜水厚度,一般取值为2.31×10−5 cm
唐存本[63] 与
分别为泥沙颗粒与水的重度(N/m3);
与
分别为泥沙容重与稳定容重;
杨美卿[62] 为希尔兹参数;
与
分别为沉积物含沙量与稳定含沙量(kg/m3),其中,
数值上等于沉积物的干密度
张瑞瑾[59] 与
分别为泥沙颗粒与水的重度(N/m3);
为水深(m);
=0.4为Karman常数;
为床面粗糙高度(m)
张红武[60] ,为含沙量影响系数;
为体积计含沙量(kg/m3);
为流体黏滞系数(m2/s)
沙玉清[61] 表 3 基于沉积物参数的拟合经验公式的部分汇总
Table 3. Summary of some empirical formulas based on sediment parameters
-
[1] VAN LEUSSEN W. The variability of settling velocities of suspended fine-grained sediment in the Ems estuary[J]. Journal of Sea Research,1999,41(1/2):109-118.
[2] LAI J S,CHANG F J. Physical modeling of hydraulic desiltation in Tapu reservoir[J]. International Journal of Sediment Research,2001,16(3):363-379.
[3] WARNER J C,SHERWOOD C R,SIGNELL R P,et al. Development of a three-dimensional,regional,coupled wave,current,and sediment-transport model[J]. Computers & Geosciences,2008,34(10):1284-1306.
[4] FRANZ G,PINTO L,ASCIONE I,et al. Modelling of cohesive sediment dynamics in tidal estuarine systems:case study of Tagus estuary,Portugal[J]. Estuarine,Coastal and Shelf Science,2014,151:34-44. doi: 10.1016/j.ecss.2014.09.017
[5] DONG H Y,JIA L W,HE Z X,et al. Application of parameters and paradigms of the erosion and deposition for cohesive sediment transport modelling in the Lingdingyang Estuary,China[J]. Applied Ocean Research,2020,94:101999. doi: 10.1016/j.apor.2019.101999
[6] SHIELDS A. Application of similarity principles and turbulence research to bed-load movement[R]. Pasadena: California Institute of Technology, 1936.
[7] HOUWING E J. Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden sea coast[J]. Estuarine,Coastal and Shelf Science,1999,49(4):545-555. doi: 10.1006/ecss.1999.0518
[8] 窦国仁. 再论泥沙起动流速[J]. 泥沙研究,1999,24(6):1-9. doi: 10.3321/j.issn:0468-155X.1999.06.001
[9] AMOS C L,BERGAMASCO A,UMGIESSER G,et al. The stability of tidal flats in Venice Lagoon - the results of in-situ measurements using two benthic,annular flumes[J]. Journal of Marine Systems,2004,51(1/4):211-241.
[10] 宋敬泰, 贾永刚, 单红仙. 黏性沉积物抗侵蚀性研究综述[C]//第三届全国岩土与工程学术大会论文集. 成都: 四川科学技术出版社, 2009.
[11] XU K,CORBETT D R,WALSH J P,et al. Seabed erodibility variations on the Louisiana continental shelf before and after the 2011 Mississippi River flood[J]. Estuarine,Coastal and Shelf Science,2014,149:283-293. doi: 10.1016/j.ecss.2014.09.002
[12] GHOSE-HAJRA M,MCCORQUODALE A,MATTSON G,et al. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects[J]. Proceedings of IAHS,2015,367:435-441. doi: 10.5194/piahs-367-435-2015
[13] 凡姚申. 黄河三角洲近岸海床侵蚀过程及其动力机制[D]. 上海: 华东师范大学, 2019.
[14] HARRIS R J,PILDITCH C A,GREENFIELD B L,et al. The influence of benthic macrofauna on the erodibility of intertidal sediments with varying mud content in three New Zealand estuaries[J]. Estuaries and Coasts,2016,39(3):815-828. doi: 10.1007/s12237-015-0036-2
[15] 乔宇,何青,王宪业. 长江口表层沉积物起动试验研究[J]. 泥沙研究,2021,46(1):34-41. doi: 10.16239/j.cnki.0468-155x.2021.01.005
[16] ARIATHURAI R,ARULANANDAN K. Erosion rates of cohesive soils[J]. Journal of the Hydraulics Division,1978,104(2):279-283. doi: 10.1061/JYCEAJ.0004937
[17] BROWNLIE W R. Prediction of flow depth and sediment discharge in open channels[M]//KECK W M. Laboratory of Hydraulics and Water Resources Report, 43A. Pasadena: California Institute of Technology, 1981.
[18] BALE A J,WIDDOWS J,HARRIS C B,et al. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular flume[J]. Continental Shelf Research,2006,26(10):1206-1216. doi: 10.1016/j.csr.2006.04.003
[19] RIGHETTI M,LUCARELLI C. May the shields theory be extended to cohesive and adhesive benthic sediments?[J]. Journal of Geophysical Research:Oceans,2007,112(C5):C05039.
[20] BLACK K S,TOLHURST T J,PATERSON D M,et al. Working with natural cohesive sediments[J]. Journal of Hydraulic Engineering,2002,128(1):2-8. doi: 10.1061/(ASCE)0733-9429(2002)128:1(2)
[21] 龚政,葛冉,冯骞,等. 泥沙颗粒间黏结力作用及其对泥沙起动影响研究进展[J]. 水科学进展,2021,32(5):801-812. doi: 10.14042/j.cnki.32.1309.2021.05.015
[22] BARTZKE G,BRYAN K R,PILDITCH C A,et al. On the stabilizing influence of silt on sand beds[J]. Journal of Sedimentary Research,2013,83(8):691-703. doi: 10.2110/jsr.2013.57
[23] MALARKEY J,BAAS J H,HOPE J A,et al. The pervasive role of biological cohesion in bedform development[J]. Nature Communications,2015,6:6257. doi: 10.1038/ncomms7257
[24] ZHOU Y C,YAO X Y,GU Y Q,et al. Biological effects on incipient motion behavior of sediments with different organic matter content[J]. Journal of Soils and Sediments,2021,21(1):627-640. doi: 10.1007/s11368-020-02807-9
[25] GRABOWSKI R C,DROPPO I G,WHARTON G. Erodibility of cohesive sediment:the importance of sediment properties[J]. Earth-Science Reviews,2011,105(3/4):101-120.
[26] YANG Y,GAO S,WANG Y P,et al. Revisiting the problem of sediment motion threshold[J]. Continental Shelf Research,2019,187:103960. doi: 10.1016/j.csr.2019.103960
[27] SALEHI M,STROM K. Measurement of critical shear stress for mud mixtures in the San Jacinto estuary under different wave and current combinations[J]. Continental Shelf Research,2012,47:78-92. doi: 10.1016/j.csr.2012.07.004
[28] SCOFFIN T P. An underwater flume[J]. Journal of Sedimentary Research,1968,38(1):244-246. doi: 10.1306/74D71947-2B21-11D7-8648000102C1865D
[29] ABERLE J,NIKORA V,WALTERS R. Effects of bed material properties on cohesive sediment erosion[J]. Marine Geology,2004,207(1/4):83-93.
[30] 宋敬泰. 黄河三角洲岸滩沉积物临界侵蚀剪应力研究[D]. 青岛: 中国海洋大学, 2009.
[31] 侯伟,贾永刚,宋敬泰,等. 黄河三角洲粉质土海床临界起动切应力影响因素研究[J]. 岩土力学,2011,32(S1):376-381. doi: 10.16285/j.rsm.2011.s1.042
[32] MENG X M,JIA Y G,SHAN H X,et al. An experimental study on erodibility of intertidal sediments in the Yellow River Delta[J]. International Journal of Sediment Research,2012,27(2):240-249. doi: 10.1016/S1001-6279(12)60032-8
[33] LIU X L,ZHENG J W,ZHANG H,et al. Sediment critical shear stress and geotechnical properties along the modern Yellow River Delta,China[J]. Marine Georesources and Geotechnology,2018,36(8):875-882.
[34] YANG Y,WANG Y P,GAO S,et al. Sediment resuspension in tidally dominated coastal environments:new insights into the threshold for initial movement[J]. Ocean Dynamics,2016,66(3):401-417. doi: 10.1007/s10236-016-0930-6
[35] SALIM S,PATTIARATCHI C,TINOCO R O,et al. Sediment resuspension due to near-bed turbulent effects:a deep sea case study on the northwest continental slope of western Australia[J]. Journal of Geophysical Research:Oceans,2018,123(10):7102-7119.
[36] ANDERSEN T J,FREDSOE J,PEJRUP M. In situ estimation of erosion and deposition thresholds by Acoustic Doppler Velocimeter (ADV)[J]. Estuarine,Coastal and Shelf Science,2007,75(3):327-336. doi: 10.1016/j.ecss.2007.04.039
[37] SHI B W,WANG Y P,YANG Y,et al. Determination of critical shear stresses for erosion and deposition based on in situ measurements of currents and waves over an intertidal mudflat[J]. Journal of Coastal Research,2015,31(6):1344-1356.
[38] TOLHURST T J,RIETHMÜLLER R,PATERSON D M. In situ versus laboratory analysis of sediment stability from intertidal mudflats[J]. Continental Shelf Research,2000,20(10/11):1317-1334.
[39] POPE N D,WIDDOWS J,BRINSLEY M D. Estimation of bed shear stress using the turbulent kinetic energy approach: a comparison of annular flume and field data[J]. Continental Shelf Research,2006,26(8):959-970. doi: 10.1016/j.csr.2006.02.010
[40] NGUYEN H M,BRYAN K R,PILDITCH C A,et al. Influence of ambient temperature on erosion properties of exposed cohesive sediment from an intertidal mudflat[J]. Geo-Marine Letters,2019,39(6):521. doi: 10.1007/s00367-019-00618-7
[41] DE LUCAS PARDO M A,BAKKER M,VAN KESSEL T,et al. Erodibility of soft freshwater sediments in Markermeer:the role of bioturbation by meiobenthic fauna[J]. Ocean Dynamics,2013,63(9/10):1137-1150.
[42] 蒋黛. 环境梯度及大型底栖动物对于新西兰Whangateau海湾潮间带沉积物侵蚀性的影响[D]. 北京: 中国地质大学(北京), 2017.
[43] XIONG J L,WANG X H,WANG Y P,et al. Mechanisms of maintaining high suspended sediment concentration over tide-dominated offshore shoals in the southern Yellow Sea[J]. Estuarine,Coastal and Shelf Science,2017,191:221-233. doi: 10.1016/j.ecss.2017.04.023
[44] SALIM S,PATTIARATCHI C,TINOCO R,et al. The influence of turbulent bursting on sediment resuspension under unidirectional currents[J]. Earth Surface Dynamics,2017,5(3):399-415. doi: 10.5194/esurf-5-399-2017
[45] 李华国,袁美琦,张秀芹. 淤泥临界起动条件及冲刷率试验研究[J]. 水道港口,1995(3):20-26.
[46] AMOS C L,FEENEY T,SUTHERLAND T F,et al. The stability of fine-grained sediments from the Fraser River Delta[J]. Estuarine,Coastal and Shelf Science,1997,45(4):507-524. doi: 10.1006/ecss.1996.0193
[47] WIDDOWS J,BRINSLEY M D,BOWLEY N,et al. A benthic annular flume for in situ measurement of suspension feeding/biodeposition rates and erosion potential of intertidal cohesive sediments[J]. Estuarine,Coastal and Shelf Science,1998,46(1):27-38. doi: 10.1006/ecss.1997.0259
[48] 杨奉广,刘兴年,曹叔尤,等. 希尔兹曲线统一表达式及其在唐家山堰塞湖下游河道冲刷防治中的应用[J]. 四川大学学报(工程科学版),2010,42(5):175-179.
[49] 戴清,刘春晶,胡健,等. 希尔兹曲线的拟合及不确定性研究[J]. 泥沙研究,2014,19(6):19-24. doi: 10.16239/j.cnki.0468-155x.2014.06.004
[50] 马志伟,杨奉广,刘兴年,等. 对Vanoni希尔兹曲线辅助线方法的研究[J]. 工程科学与技术,2017,49(S2):62-66.
[51] MILLER M C,MCCAVE I N,KOMAR P D. Threshold of sediment motion under unidirectional currents[J]. Sedimentology,1977,24(4):507-527. doi: 10.1111/j.1365-3091.1977.tb00136.x
[52] VANONI V A. Measurements of critical shear stress for entraining fine sediments in a boundary layer[M]//KECK W M. Laboratory of Hydraulics and Water Resources Report, 7. Pasadena: California Institute of Technology, 1964.
[53] BUFFINGTON J M,MONTGOMERY D R. A systematic analysis of eight decades of incipient motion studies,with special reference to gravel‐bedded rivers[J]. Water Resources Research,1997,33(8):1993-2029. doi: 10.1029/96WR03190
[54] PAPHITIS D. Sediment movement under unidirectional flows:an assessment of empirical threshold curves[J]. Coastal Engineering,2001,43(3/4):227-245.
[55] VAN RIJN L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam: Aqua Publications, 1993.
[56] GUO J K. Empirical model for shields diagram and its applications[J]. Journal of Hydraulic Engineering,2020,146(6):04020038. doi: 10.1061/(ASCE)HY.1943-7900.0001739
[57] SOULSBY R. Dynamics of Marine Sands (HR Wallingford Titles): A Manual for Practical Applications[M]. New York: Thomas Telford Publications, 1997.
[58] ZHANG M X,YU G L. Critical conditions of incipient motion of cohesive sediments[J]. Water Resources Research,2017,53(9):7798-7815. doi: 10.1002/2017WR021066
[59] 张瑞瑾. 河流泥沙动力学[M]. 2版. 北京: 中国水利水电出版社, 1998.
[60] 张红武. 泥沙起动流速的统一公式[J]. 水利学报,2012,43(12):1387-1396. doi: 10.13243/j.cnki.slxb.2012.12.002
[61] 沙玉清. 泥沙运动学引论[M]. 北京: 中国工业出版社, 1965.
[62] 杨美卿,王桂玲. 粘性细泥沙的临界起动公式[J]. 应用基础与工程科学学报,1995,3(1):99-109. doi: 10.16058/j.issn.1005-0930.1995.01.013
[63] 唐存本. 泥沙起动规律[J]. 水利学报,1964(4):69-73. doi: 10.13243/j.cnki.slxb.1964.02.009
[64] 黄磊,方红卫,陈明洪,等. 粘性细颗粒泥沙的表面电荷特性研究进展[J]. 清华大学学报(自然科学版),2012,52(6):747-752.
[65] 邢耀文,刘敏,桂夏辉,等. 基于原子力显微镜的颗粒间表面力研究[J]. 中国矿业大学学报,2019,48(6):1352-1357,1374. doi: 10.13247/j.cnki.jcumt.001082
[66] HOU J,LI H,ZHU H L,et al. Determination of clay surface potential:a more reliable approach[J]. Soil Science Society of America Journal,2009,73(5):1658-1663. doi: 10.2136/sssaj2008.0017
[67] CHEN X D,ZHANG C K,ZHOU Z,et al. Stabilizing effects of bacterial biofilms:EPS penetration and redistribution of bed stability down the sediment profile[J]. Journal of Geophysical Research:Biogeosciences,2017,122(12):3113-3125.
[68] ZHANG N Y,THOMPSON C E L,TOWNEND I H,et al. Nondestructive 3D imaging and quantification of hydrated biofilm-sediment aggregates using X-ray microcomputed tomography[J]. Environmental Science & Technology,2018,52(22):13306-13313.
[69] 乔宇. 长江口表层沉积物侵蚀特性研究[D]. 上海: 华东师范大学, 2019.
[70] AHIMOU F,SEMMENS M J,HAUGSTAD G,et al. Effect of protein,polysaccharide,and oxygen concentration profiles on biofilm cohesiveness[J]. Applied and Environmental Microbiology,2007,73(9):2905-2910. doi: 10.1128/AEM.02420-06
[71] FANG H W,SHANG Q Q,CHEN M H,et al. Changes in the critical erosion velocity for sediment colonized by biofilm[J]. Sedimentology,2014,61(3):648-659. doi: 10.1111/sed.12065
[72] TAKI K. Critical shear stress for cohesive sediment transport[J]. Proceedings in Marine Science,2000,3:53-61.
[73] WANG Y C. Effects of physical properties and rheological characteristics on critical shear stress of fine sediments[D]. Atlanta: Georgia Institute of Technology, 2013: 270.
[74] 庞启秀,白玉川,杨华,等. 淤泥质浅滩泥沙临界起动切应力剖面确定[J]. 水科学进展,2012,23(2):249-255.
[75] 刘洁,刘洁玉,白玉川. 黏性泥沙流变特性及其临界起动的研究[J]. 泥沙研究,2015,20(6):59-64. doi: 10.16239/j.cnki.0468-155x.2015.06.010
[76] 练继建,赵子丹. 波浪作用下软泥床面的粘性泥沙悬扬[J]. 水利学报,1998(8):47-51. doi: 10.13243/j.cnki.slxb.1998.08.010
[77] SMERDON E T, BEASLEY R P. The Tractive Force Theory Applied to Stability of Open Channels in Cohesive Soils[M]. University of Missouri, Agricultural Experiment Station, 1959.
[78] TOLHURST T J,CONSALVERY M,PATERSON D M. Changes in cohesive sediment properties associated with the growth of a diatom biofilm[J]. Hydrobiologia,2008,596(1):225-239. doi: 10.1007/s10750-007-9099-9
[79] ORVAIN F,SAURIAU P G,LE HIR P,et al. Spatio-temporal variations in intertidal mudflat erodability:Marennes-Oléron Bay,western France[J]. Continental Shelf Research,2007,27(8):1153-1173. doi: 10.1016/j.csr.2006.05.013
[80] VAN LEDDEN M,VAN KESTEREN W G M,WINTERWERP J C. A conceptual framework for the erosion behaviour of sand–mud mixtures[J]. Continental Shelf Research,2004,24(1):1-11. doi: 10.1016/j.csr.2003.09.002
[81] 时连强,李九发,应铭,等. 现代黄河三角洲潮滩原状沉积物冲刷试验[J]. 海洋工程,2006,24(1):46-54. doi: 10.16483/j.issn.1005-9865.2006.01.008
[82] DICKHUDT P J,FRIEDRICHS C T,SANFORD L P. Mud matrix solids fraction and bed erodibility in the York River estuary,USA,and other muddy environments[J]. Continental Shelf Research,2011,31(10):S3-S13. doi: 10.1016/j.csr.2010.02.008
[83] CARLING P A, KELSEY A, GLAISTER M S. Effect of bed roughness, particle shape and orientation on initial motion criteria[M]//BILLY P, DAY R D, THORNE C R, et al. Dinamics of Gravel-Bed River. New York: Wiley, 1992.
[84] BRIDGE J S,BENNETT S J. A model for the entrainment and transport of sediment grains of mixed sizes,shapes,and densities[J]. Water Resources Research,1992,28(2):337-363. doi: 10.1029/91WR02570
[85] PAPHITIS D,COLLINS M B,NASH L A,et al. Settling velocities and entrainment thresholds of biogenic sands (shell fragments) under unidirectional flow[J]. Sedimentology,2002,49(1):211-225. doi: 10.1046/j.1365-3091.2002.00446.x
[86] 朱遥,刘春,刘辉,等. 颗粒形态对砂土抗剪强度影响的试验和离散元数值模拟[J]. 工程地质学报,2020,28(3):490-499. doi: 10.13544/j.cnki.jeg.2019-288
[87] 乔宇,何青,王宪业,等. 长江口表层沉积物含水量影响因素分析[J]. 泥沙研究,2020,45(1):29-36.
[88] WHARTON G,COTTON J A,WOTTON R S,et al. Macrophytes and suspension-feeding invertebrates modify flows and fine sediments in the Frome and Piddle catchments,Dorset (UK)[J]. Journal of Hydrology,2006,330(1/2):171-184.
[89] HEPPELL C M,WHARTON G,COTTON J A C,et al. Sediment storage in the shallow hyporheic of lowland vegetated river reaches[J]. Hydrological Processes,2009,23(15):2239-2251. doi: 10.1002/hyp.7283
[90] DROPPO I G,JASKOT C,NELSON T,et al. Aquaculture waste sediment stability:implications for waste migration[J]. Water,Air,and Soil Pollution,2007,183(1/4):59-68.
[91] THOMSEN L,GUST G. Sediment erosion thresholds and characteristics of resuspended aggregates on the western European continental margin[J]. Deep Sea Research Part I:Oceanographic Research Papers,2000,47(10):1881-1897. doi: 10.1016/S0967-0637(00)00003-0
[92] 卢佩霞, 徐永福. 粘性沉积物表面侵蚀临界剪切应力的分形模型[C]//江苏省公路学会学术论文集(2017年). 南京: 江苏省公路学会, 《现代交通技术》编辑部, 2018.
[93] LAU Y L,DROPPO I G. Influence of antecedent conditions on critical shear stress of bed sediments[J]. Water Research,2000,34(2):663-667. doi: 10.1016/S0043-1354(99)00164-5
[94] DROPPO I G. Rethinking what constitutes suspended sediment[J]. Hydrological Processes,2001,15(9):1551-1564. doi: 10.1002/hyp.228
[95] 孟祥梅,贾永刚,宋敬泰,等. 黄河入海泥沙沉积固结过程抗侵蚀性变化研究[J]. 岩土力学,2010,31(12):3809-3815. doi: 10.3969/j.issn.1000-7598.2010.12.019
[96] MEHTA A J,PARCHURE T M. Surface erosion of fine-grained sediment revisited[J]. Proceedings in Marine Science,2000,2:55-74.
[97] WINTERWERP J C, VAN KESTEREN W G M. Introduction to the Physics of Cohesive Sediment in the Marine Environment[M]. Amsterdam: Elsevier, 2004.
[98] 刘姣,单红仙,王伟宏,等. 海洋盐度场对细粒沉积物临界剪应力影响[J]. 海洋地质与第四纪地质,2016,36(5):35-41. doi: 10.16562/j.cnki.0256-1492.2016.05.004
[99] DE BROUWER J F C,RUDDY G K,JONES T ER,et al. Sorption of EPS to sediment particles and the effect on the rheology of sediment slurries[J]. Biogeochemistry,2002,61(1):57-71. doi: 10.1023/A:1020291728513
[100] KÖRSTGENS V,FLEMMING H C,WINGENDER J,et al. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa[J]. Water Science and Technology,2001,43(6):49-57. doi: 10.2166/wst.2001.0338
[101] BRADY N C. The Nature and Properties of Soil. 10 ed[M]. McMillan Publishing, NY, 1990.
[102] STOODLEY P,JACOBSEN A,DUNSMORE B C,et al. The influence of fluid shear and AICI3 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 biofilms[J]. Water Science and Technology,2001,43(6):113-120. doi: 10.2166/wst.2001.0353
[103] MÖHLE R B,LANGEMANN T,HAESNER M,et al. Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor[J]. Biotechnology and Bioengineering,2007,98(4):747-755. doi: 10.1002/bit.21448
[104] 贾海波,胡颢琰,唐静亮,等. 长江口及其邻近海域表层沉积物中重金属含量对大型底栖生物的影响[J]. 海洋环境科学,2011,30(6):809-813. doi: 10.3969/j.issn.1007-6336.2011.06.011
[105] WIDDOWS J,BRINSLEY M. Impact of biotic and abiotic processes on sediment dynamics and the consequences to the structure and functioning of the intertidal zone[J]. Journal of Sea Research,2002,48(2):143-156. doi: 10.1016/S1385-1101(02)00148-X
[106] 高丽. 生物扰动对黄河口潮滩沉积物侵蚀性的试验研究[D]. 青岛: 中国海洋大学, 2008.
[107] 李宝泉,李晓静,周政权,等. 生物扰动对沉积物侵蚀和沉积的影响[J]. 广西科学,2015,22(5):527-531. doi: 10.3969/j.issn.1005-9164.2015.05.013
[108] GERBERSDORF S U,JANCKE T,WESTRICH B. Physico-chemical and biological sediment properties determining erosion resistance of contaminated riverine sediments – Temporal and vertical pattern at the Lauffen reservoir/River Neckar,Germany[J]. Limnologica,2005,35(3):132-144. doi: 10.1016/j.limno.2005.05.001
[109] GRAF G,ROSENBERG R. Bioresuspension and biodeposition:a review[J]. Journal of Marine Systems,1997,11(3/4):269-278.
[110] KANAYA G,NOBATA E,TOYA T,et al. Effects of different feeding habits of three bivalve species on sediment characteristics and benthic diatom abundance[J]. Marine Ecology Progress Series,2005,299:67-78. doi: 10.3354/meps299067
[111] ROAST S D,WIDDOWS J,POPE N,et al. Sediment-biota interactions:Mysid feeding activity enhances water turbidity and sediment erodability[J]. Marine Ecology Progress Series,2004,281:145-154. doi: 10.3354/meps281145
[112] 陈友媛. 生物活动对黄河口底土渗流特性的影响研究[D]. 青岛: 中国海洋大学, 2006.
[113] CHEN X D,ZHANG C K,PATERSON D M,et al. Hindered erosion:the biological mediation of noncohesive sediment behavior[J]. Water Resources Research,2017,53(6):4787-4801. doi: 10.1002/2016WR020105
[114] 张铭,蔡鹏,吴一超,等. 细菌胞外聚合物:基于土壤生态功能的视角[J]. 土壤学报,2022,59(2):308-323. doi: 10.11766/trxb202107310271
[115] 尚倩倩,方红卫,府仁寿,等. 泥沙颗粒生长生物膜后起动的实验研究:Ⅰ. 起动实验设计及结果分析[J]. 水科学进展,2011,22(3):295-300.
[116] VIGNAGA E,SLOAN D M,LUO X Y,et al. Erosion of biofilm-bound fluvial sediments[J]. Nature Geoscience,2013,6(9):770-774. doi: 10.1038/ngeo1891
[117] PIQUÉ G,VERICAT D,SABATER S,et al. Effects of biofilm on river-bed scour[J]. Science of the Total Environment,2016,572:1033-1046. doi: 10.1016/j.scitotenv.2016.08.009
[118] BRADY N C, WEIL R R. The Nature and Properties of Soils[M]. 13th ed. Upper Saddle River: Prentice Hall, 1960.
[119] Morgan R P C. Soil erosion and conservation[M]. John Wiley and Sons, 2009.
[120] XU Z X,WU J,LI H Z,et al. Different erosion characteristics of sediment deposits in combined and storm sewers[J]. Water Science and Technology,2017,75(7/8):1922-1931.
[121] AVNIMELECH Y,RITVO G,MEIJER L E,et al. Water content,organic carbon and dry bulk density in flooded sediments[J]. Aquacultural Engineering,2001,25(1):25-33. doi: 10.1016/S0144-8609(01)00068-1
[122] FETTWEIS M,FRANCKEN F,VAN DEN EYNDE D,et al. Storm influence on SPM concentrations in a coastal turbidity maximum area with high anthropogenic impact (southern North Sea)[J]. Continental Shelf Research,2010,30(13):1417-1427. doi: 10.1016/j.csr.2010.05.001
[123] PRIOR D B,SUHAYDA J N,LU N Z,et al. Storm wave reactivation of a submarine landslide[J]. Nature,1989,341(6237):47-50. doi: 10.1038/341047a0
[124] ZHENG J W,JIA Y G,LIU X L,et al. Experimental study of the variation of sediment erodibility under wave-loading conditions[J]. Ocean Engineering,2013,68:14-26. doi: 10.1016/j.oceaneng.2013.04.010
[125] JIA Y G,ZHANG L P,ZHENG J W,et al. Effects of wave-induced seabed liquefaction on sediment re-suspension in the Yellow River Delta[J]. Ocean Engineering,2014,89:146-156. doi: 10.1016/j.oceaneng.2014.08.004
[126] LIU X L,ZHANG H,ZHENG J W,et al. Critical role of wave–seabed interactions in the extensive erosion of Yellow River estuarine sediments[J]. Marine Geology,2020,426:106208. doi: 10.1016/j.margeo.2020.106208
[127] ZHANG S T,JIA Y G,WEN M Z,et al. Vertical migration of fine-grained sediments from interior to surface of seabed driven by seepage flows–'sub-bottom sediment pump action'[J]. Journal of Ocean University of China,2017,16(1):15-24. doi: 10.1007/s11802-017-3042-0
[128] 高学平,秦崇仁,赵子丹. 板结粉沙运动规律的研究[J]. 水利学报,1994(12):1-6,21. doi: 10.3321/j.issn:0559-9350.1994.12.001
[129] 粟莉. 黄河三角洲铁板砂形成机制研究[D]. 天津: 天津大学, 2019.
[130] 王虎,粟莉,白玉川. 河口海岸铁板砂研究进展[J]. 水科学进展,2019,30(4):601-612. doi: 10.14042/j.cnki.32.1309.2019.04.015
[131] KAFTORI D,HETSRONI G,BANERJEE S. Particle behavior in the turbulent boundary layer. I. Motion,deposition,and entrainment[J]. Physics of Fluids,1995,7(5):1095-1106. doi: 10.1063/1.868551
[132] KASSEM H,THOMPSON C E L,AMOS C L,et al. Wave-induced coherent turbulence structures and sediment resuspension in the nearshore of a prototype-scale sandy barrier beach[J]. Continental Shelf Research,2015,109:78-94. doi: 10.1016/j.csr.2015.09.007
[133] JAGO C F,JONES S E,SYKES P,et al. Temporal variation of suspended particulate matter and turbulence in a high energy,tide-stirred,coastal sea:relative contributions of resuspension and disaggregation[J]. Continental Shelf Research,2006,26(17/18):2019-2028.
[134] GRASS A J. Structural features of turbulent flow over smooth and rough boundaries[J]. Journal of Fluid Mechanics,1971,50(2):233-255. doi: 10.1017/S0022112071002556
[135] WALLACE J M,ECKELMANN H,BRODKEY R S. The wall region in turbulent shear flow[J]. Journal of Fluid Mechanics,1972,54(1):39-48. doi: 10.1017/S0022112072000515
[136] YUAN Y,WEI H,ZHAO L,et al. Implications of intermittent turbulent bursts for sediment resuspension in a coastal bottom boundary layer:a field study in the western Yellow Sea,China[J]. Marine Geology,2009,263(1/4):87-96.
[137] 张海涵,王娜,宗容容,等. 水动力条件对藻类生理生态学影响的研究进展[J]. 环境科学研究,2022,35(1):181-190.
[138] 陈含墨,渠晓东,王芳. 河流水动力条件对大型底栖动物分布影响研究进展[J]. 环境科学研究,2019,32(5):758-765. doi: 10.13198/j.issn.1001-6929.2019.02.17
[139] 刘睿,李若男. 漓江大型底栖动物空间分布及水力驱动因子[J]. 长江科学院院报,2022,39(8):34-40. doi: 10.11988/ckyyb.20191064
-