废旧磷酸铁锂电池回收利用研究与产业化现状

张笑天, 徐璐, 黄斌, 李维斯, 冀成庆, 杨耀辉. 废旧磷酸铁锂电池回收利用研究与产业化现状[J]. 矿产综合利用, 2023, 44(4): 95-102, 113. doi: 10.3969/j.issn.1000-6532.2023.04.015
引用本文: 张笑天, 徐璐, 黄斌, 李维斯, 冀成庆, 杨耀辉. 废旧磷酸铁锂电池回收利用研究与产业化现状[J]. 矿产综合利用, 2023, 44(4): 95-102, 113. doi: 10.3969/j.issn.1000-6532.2023.04.015
Zhang Xiaotian, Xu Lu, Huang Bin, Li Weisi, Ji Chengqing, Yang Yaohui. Research and Industrialization Status of Recycling of Waste Lithium Iron Phosphate Batteries[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 95-102, 113. doi: 10.3969/j.issn.1000-6532.2023.04.015
Citation: Zhang Xiaotian, Xu Lu, Huang Bin, Li Weisi, Ji Chengqing, Yang Yaohui. Research and Industrialization Status of Recycling of Waste Lithium Iron Phosphate Batteries[J]. Multipurpose Utilization of Mineral Resources, 2023, 44(4): 95-102, 113. doi: 10.3969/j.issn.1000-6532.2023.04.015

废旧磷酸铁锂电池回收利用研究与产业化现状

  • 基金项目: 中国地质调查局地质大调查项目(DD20230354);贵州省科技重大专项计划([2022]ZD006);中国地质科学院矿产综合利用研究所所设基金项目(Skl2302)
详细信息
    作者简介: 张笑天(1997-),男,硕士,助理工程师,主要从事矿产资源综合利用,冶金固废高值化研究
    通讯作者: 徐璐(1987-),男,硕士,副研究员,主要从事稀有、稀散金属湿法冶金相关研究
  • 中图分类号: TD982;X773

Research and Industrialization Status of Recycling of Waste Lithium Iron Phosphate Batteries

More Information
  • 这是一篇材料工程领域的论文。随着近年来新能源行业的蓬勃发展,2030年我国退役磷酸铁锂动力电池规模或达153.1万t。出于保护我国战略性矿产资源和减少环境污染的需要,研究开发出绿色、高效、可持续的废旧磷酸铁锂电池回收工艺已刻不容缓。本文以废旧磷酸铁锂电池的主要组成部分及一般回收流程为研究对象,介绍了预处理、正极材料、负极材料、电解液等多种回收工艺的原理、优缺点及研究现状。在此基础上,对废旧磷酸铁锂电池回收的未来研究方向提出了自己的观点,以期为我国废旧磷酸铁锂电池回收技术的产业化发展提供参考。

  • 加载中
  • 图 1  典型浸出剂浸出性能评价(修改自参考文献[24]

    Figure 1. 

    表 1  磷酸铁锂电池放电方法

    Table 1.  Discharging methods of spent lithium iron phosphate batteries

    方式必需因素优点缺点
    化学法[9-10]NaCl/Na2SO4/Na2CO3操作简单,放电效率高,HF稳定有价金属损失率高,废水含F/P
    电阻法[11]金属/石墨粉放电效率高,放电彻底自燃和爆炸风险
    冷冻法[12]液氮/破碎机安全无毒设备要求高,初始成本高
    下载: 导出CSV

    表 2  电解液主要富集分离方法的优缺点

    Table 2.  Main advantages and disadvantages of the methods for electrolyte enrichment and separation

    方式必需因素优点缺点
    冷冻法[42]液氮/破碎机安全无毒设备要求高,初始成本高
    离心法[44-45]离心机成本低、设备要求低,工业化应用前景良好电解液残留,会对环境带来污染
    溶剂萃取法[46-47]与电解液相溶的溶剂环境友好,回收成本低设备投资及维护费用较高
    超临界CO2萃取法[43, 48-50]超临界CO2萃取仪萃取能力强,提取率高,选择性强,
    产品品质好,分离回收一体化
    工艺控制严格,设备要求高
    下载: 导出CSV
  • [1]

    中华人民共和国国家发展和改革委员会. 新能源汽车生产准入管理规则[EB/OL]. 2007, 10: http://www.gov.cn/zwgk/2007-10/24/content_785019.htm.

    National Development and Reform Commission. Management rules for production access of new energy vehicles[EB/OL]. 2007, 10: http://www.gov.cn/zwgk/2007-10/24/content_785019.htm.

    [2]

    李波, 张莉莉, 洪秋阳, 等. 废弃锂电池电极材料中有价金属的赋存状态[J]. 矿产综合利用, 2022(1):200-204. LI B, ZHANG L L, HONG Q Y, et al. Study on the occurrence state of valuable metals in waste lithium battery electrode material[J]. Multipurpose Utilization of Mineral Resources, 2022(1):200-204. doi: 10.3969/j.issn.1000-6532.2022.01.029

    LI B, ZHANG L L, HONG Q Y, et al. Study on the occurrence state of valuable metals in waste lithium battery electrode material[J]. Multipurpose Utilization of Mineral Resources, 2022 (1): 200-204. doi: 10.3969/j.issn.1000-6532.2022.01.029

    [3]

    邢凯, 朱清, 邹谢华, 等. 新能源背景下锂资源产业链发展研究[J/OL]. 中国地质: 1-19[2023-05-12]. http://kns.cnki.net/kcms/detail/11.1167.P.20221206.1440.004.html.

    XING K, ZHU Q, ZOU X H, et al. Research on development of industry chain of lithium resources under the background of new energy[J/OL]. Geology in China: 1-19[2023-05-12]. http://kns.cnki.net/kcms/detail/11.1167.P.20221206.1440.004.html.

    [4]

    王秋舒. 全球锂矿资源勘查开发及供需形势分析[J]. 中国矿业, 2016, 25(3):11-15+24. WANG Q S. Analysis of global lithium resources expioration and development, supply and demand situation[J]. China Mining Magazine, 2016, 25(3):11-15+24. doi: 10.3969/j.issn.1004-4051.2016.03.003

    WANG Q S. Analysis of global lithium resources expioration and development, supply and demand situation[J]. China Mining Magazine, 2016, 25(3): 11-15+24. doi: 10.3969/j.issn.1004-4051.2016.03.003

    [5]

    何金祥, 崔荣国, 刘伟, 等. 世界锂矿业发展与展望[J]. 国土资源情报, 2020(238):21-26. HE J X, CUI R G, LIU W, et al. Development of world lithium mining industry and prospect[J]. Natural Resources Information, 2020(238):21-26.

    HE J X, CUI R G, LIU W, et al. Development of world lithium mining industry and prospect[J]. Natural Resources Information, 2020, No. 238(10): 21-26.

    [6]

    刘丽君, 王登红, 刘喜方, 等. 国内外锂矿主要类型、分布特点及勘查开发现状[J]. 中国地质, 2017, 44(2):263-278. LIU L J, WANG D H, LIU X F, et al. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 2017, 44(2):263-278. doi: 10.12029/gc20170204

    LIU L J, WANG D H, LIU X F, et al. The main types, distribution features and present situation of exploration and development for domestic and foreign lithium mine[J]. Geology in China, 2017, 44(2): 263-278. doi: 10.12029/gc20170204

    [7]

    许洁, 陈潇. 动力电池将迎“退役”高峰上市公司积极布局锂电池回收[N]. 证券日报, 2023-02-23(B02). DOI:10.28096/n.cnki.ncjrb.2023.000863.

    XU J, CHEN X. Power batteries will face the peak of "retirement", and listed companies will actively layout lithium battery recycling[N]. Securities Daily, 2023-02-23(B02). DOI:10.28096/n.cnki.ncjrb.2023.000863.

    [8]

    徐正震, 梁精龙, 李慧, 等. 废旧锂电池正极材料中有价金属的回收工艺研究进展[J]. 矿产综合利用, 2022(4):119-122. XU Z Z, LIANG J L, LI H, et al. Research progress of recovery process of valuable metals in cathode materials of waste lithium batteries[J]. Multipurpose Utilization of Mineral Resources, 2022(4):119-122. doi: 10.3969/j.issn.1000-6532.2022.04.021

    XU Z Z, LIANG J L, LI H, et al. Research progress of recovery process of valuable metals in cathode materials of waste lithium batteries[J]. Multipurpose Utilization of Mineral Resources, 2022(4): 119-122. doi: 10.3969/j.issn.1000-6532.2022.04.021

    [9]

    HE L P, SUN S Y, MU Y Y, et al. Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using l-tartaric acid as a leachant[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1):714-721.

    [10]

    NIE H, XU L, SONG D, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chemistry, 2015, 17(2):1276-1280. doi: 10.1039/C4GC01951B

    [11]

    李建波, 徐政, 纪仲光, 等. 废旧锂离子动力电池回收的研究现状[J]. 稀有金属, 2019, 43(2):201-212. LI J B, XU Z, JI Z G, et al. Overview on current technologies of recycling spent lithium-ion batteries[J]. Chinese Journal of Rare Metals, 2019, 43(2):201-212. doi: 10.13373/j.cnki.cjrm.xy17060021

    LI J B, XU Z, JI Z G, et al. Overview on current technologies of recycling spent lithium-ion batteries[J]. Chinese Journal of Rare Metals, 2019, 43(2): 201-212. doi: 10.13373/j.cnki.cjrm.xy17060021

    [12]

    卫寿平, 孙杰, 周添, 等. 废旧锂离子电池中金属材料回收技术研究进展[J]. 储能科学与技术, 2017, 6(6):1196-1207. WEI S P, SUN J, ZHOU T, et al. Research development of metals recovery from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(6):1196-1207. doi: 10.12028/j.issn.2095-4239.2017.0072

    WEI S P, SUN J, ZHOU T, et al. Research development of metals recovery from spent lithium-ion batteries[J]. Energy Storage Science and Technology, 2017, 6(6): 1196-1207. doi: 10.12028/j.issn.2095-4239.2017.0072

    [13]

    ZHANG Y, HE Y, ZHANG T, et al. Application of falcon centrifuge in the recycling of electrode materials from spent lithium ion batteries[J]. Journal of Cleaner Production, 2018, 202:736-747. doi: 10.1016/j.jclepro.2018.08.133

    [14]

    BI H, ZHU H, ZU L, et al. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries[J]. Waste Manag Res, 2019, 37(12):1217-1228. doi: 10.1177/0734242X19871610

    [15]

    SILVEIRA A V M, SANTANA M P, TANABE E H, et al. Recovery of valuable materials from spent lithium ion batteries using electrostatic separation[J]. International Journal of Mineral Processing, 2017, 169:91-98. doi: 10.1016/j.minpro.2017.11.003

    [16]

    WANG F, ZHANG T, HE Y, et al. Recovery of valuable materials from spent lithium-ion batteries by mechanical separation and thermal treatment[J]. Journal of Cleaner Production, 2018, 185:646-652. doi: 10.1016/j.jclepro.2018.03.069

    [17]

    HE Y Q, ZHANG T, WANG F F, et al. Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagent-assisted flotation[J]. Journal of Cleaner Production, 2017, 143:319-325. doi: 10.1016/j.jclepro.2016.12.106

    [18]

    张日林, 雷云, 魏广叶, 等. 采用热解浮选回收废旧锂离子电池中磷酸铁锂[J]. 中国有色金属学报: 1-23[2023-05-20]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220628.1240.001.html.

    ZHANG R L, LEI Y, WEI G Y, et al. Recovery of LiFePO4 from spent lithium-ion batteries by pyrolysis flotation[J]. The Chinese Journal of Nonferrous Metals, 1-23[2023-05-20]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220628.1240.001.html.

    [19]

    刘铸. 废旧磷酸铁锂正极材料短流程回收及固相修复技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    LIU Z. Research on short process recovery and solid phase regeneration of spent LiFePO4 materials[D]. Harbin: Harbin Institute of Technology, 2021.

    [20]

    王韵珂, 延卫, 万邦隆, 等. 废旧锂电池磷酸铁锂正极材料回收工艺研究进展[J]. 云南化工, 2022, 49(6):1-6. WANG Y K, YAN W, WAN B L, et al. Progress in recycling technology of lithium iron phosphate cathode materials for spent lithium - ion battery[J]. Yunnan Chemical Technology, 2022, 49(6):1-6. doi: 10.3969/j.issn.1004-275X.2022.06.01

    WANG Y K, YAN W, WAN B L, et al. Progress in recycling technology of lithium iron phosphate cathode materials for spent lithium - ion battery[J]. Yunnan Chemical Technology, 2022, 49(6): 1-6. doi: 10.3969/j.issn.1004-275X.2022.06.01

    [21]

    李金龙, 何亚群, 付元鹏, 等. 废弃锂离子电池正极材料酸浸出试验研究[J]. 矿产综合利用, 2020(2):128-134. LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2):128-134. doi: 10.3969/j.issn.1000-6532.2020.02.023

    LI J L, HE Y Q, FU Y P, et al. Study on leaching cathode materials of spent lithium-ion batteries[J]. Multipurpose Utilization of Mineral Resources, 2020(2): 128-134. doi: 10.3969/j.issn.1000-6532.2020.02.023

    [22]

    YANG C, ZHANG J L, JING Q K, et al. Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(9):1478-1487. doi: 10.1007/s12613-020-2137-6

    [23]

    KUMAR J, SHEN X, LI B, et al. Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the properties of the regenerated LiFePO4[J]. Waste Managment, 2020, 113:32-40. doi: 10.1016/j.wasman.2020.05.046

    [24]

    李棉, 程琍琍, 杨幼明, 等. 锂离子电池回收利用技术研究进展[J]. 稀有金属, 2022, 46(3):349-366. LI M, CHENG L L, YANG Y M, et al. Development of technology for spent lithium-ion batteries recycling: a review[J]. Chinese Journal of Rare Metals, 2022, 46(3):349-366.

    LI M, CHENG L L, YANG Y M, et al. Development of technology for spent lithium-ion batteries recycling: a review[J]. Chinese Journal of Rare Metals, 2022, 46(3): 349-366.

    [25]

    FAN E S, LI L, ZHANG X X, et al. Selective recovery of Li and Fe from spent lithium-ion batteries by an environmentally friendly mechanochemical approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8):11029-11035.

    [26]

    YANG Y, ZHENG X, CAO H, et al. A closed-loop process for selective metal recovery from spent lithium iron phosphate batteries through mechanochemical activation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11):9972-9980.

    [27]

    何奥希, 陈晋, 李毅恒, 等. 机械活化在矿物浸出过程中的应用研究[J]. 矿产综合利用, 2018(4):1-6. HE A X, CHEN J, LI Y H, et al. Application and research on mechanical activation in mineral leaching[J]. Multipurpose Utilization of Mineral Resources, 2018(4):1-6. doi: 10.3969/j.issn.1000-6532.2018.04.001

    HE A X, CHEN J, LI Y H, et al. Application and research on mechanical activation in mineral leaching[J]. Multipurpose Utilization of Mineral Resources, 2018, (4): 1-6. doi: 10.3969/j.issn.1000-6532.2018.04.001

    [28]

    董敏, 胡启阳, 李新海, 等. 废旧磷酸铁锂电池高值回收制备磷酸铁锂材料[J]. 中国有色金属学报: 1-14 [2023-05-12]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220 720.1349.002.html.

    DONG M, HU Q Y, LI X H, et al. High value recovery of waste lithium iron phosphate batteries to prepare lithium iron phosphate materials[J]. The Chinese Journal of Nonferrous Metals: 1-14 [2023-05-12]. http://kns.cnki.net/kcms/detail/43.1238.TG.20220720.1349.00 2.html.

    [29]

    王艺博, 阮久莉, 郭玉文, 等. TBP为萃取剂分离废磷酸铁锂电池中金属锂的研究[J]. 现代化工, 2021, 41(7):185-190. WANG Y B, RUAN J L, GUO Y W, et al. Separation of lithium metal from spent lithium iron phosphate batteries with TBP as extractant[J]. Modern Chemical Industry, 2021, 41(7):185-190.

    WANG Y B, RUAN J L, GUO Y W, et al. Separation of lithium metal from spent lithium iron phosphate batteries with TBP as extractant[J]. Modern Chemical Industry, 2021, 41(7): 185-190.

    [30]

    WESSELBORG T, VIROLAINEN S, SAINIO T. Recovery of lithium from leach solutions of battery waste using direct solvent extraction with TBP and FeCl3[J]. Hydrometallurgy, 2021, 202:105593. doi: 10.1016/j.hydromet.2021.105593

    [31]

    张文静. 新能源汽车动力电池回收问题的探讨[J]. 资源节约与环保, 2022(246):135-137. ZHANG W J. Discussion on the recycling of power batteries for new energy vehicles[J]. Resources Economization & Environment Protection, 2022(246):135-137. doi: 10.16317/j.cnki.12-1377/x.2022.05.007

    ZHANG W J. Discussion on the Recycling of Power Batteries for New Energy Vehicles[J]. Resources Economization & Environment Protection, 2022, No. 246(5): 135-137. DOI:10.16317/j.cnki.12-1377/x.2022.05.007.

    [32]

    姚美娇. 动力电池回收多重难题待解[N]. 中国能源报, 2023-02-20(5). DOI:10.28693/n.cnki.nshca.2023.000276.

    YAO M J. Multiple difficulties in power battery recycling to be solved[N]. China Energy News, 2023-02-20(5). DOI:10.28693/n.cnki.nshca.2023.000276.

    [33]

    湖北省人民政府. 宁德时代邦普一体化新能源产业园邦普循环项目试产-邦普时代项目开工[EB/OL]. 2022, 09: https://www.hubei.gov.cn/hbfb/rdgz/202209/t20220928_4325062.shtml.

    People’s Government of Hubei Province. Ningde Times integrated new energy industrial park Bangpu cycle project trial production - Bangpu times project commences[EB/OL]. 2022, 09: https://www.hubei.gov.cn/hbfb/rdgz/202209/t20220928_4325 06 2.shtml.

    [34]

    牟思宇, 谢宇斌. 我国废旧动力电池回收利用的发展现状、存在问题及对策建议[J]. 有色金属工程, 2022, 12(12):153-158. MOU S Y, XIE Y B. Current status, existing problems and development suggestions for recycling and utilization of waste power batteries[J]. Nonferroous Metals Engineering, 2022, 12(12):153-158. doi: 10.3969/j.issn.2095-1744.2022.12.019

    MOU S Y, XIE Y B. Current status, existing problems and development suggestions for recycling and utilization of waste power batteries[J]. Nonferroous Metals Engineering, 2022, 12(12): 153-158. doi: 10.3969/j.issn.2095-1744.2022.12.019

    [35]

    GIES, ERICA. Lazarus batteries[J]. Nature, 2015.

    [36]

    SONG X, HU T, LIANG C, et al. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method[J]. RSC Advances, 2017, 7(8):4783-4790. doi: 10.1039/C6RA27210J

    [37]

    LI X, ZHANG J, SONG D, et al. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries[J]. Journal of Power Sources, 2017, 345:78-84. doi: 10.1016/j.jpowsour.2017.01.118

    [38]

    梁力勃, 杨生龙, 罗茂枭, 等. 高温固相法再生废旧磷酸铁锂电池正极材料[J]. 矿冶工程, 2021, 41(3):120-123+128. LIANG L B, YANG S L, LUO M X, et al. Regeneration of cathode materials in spent lithium iron phosphate batteriesby using high temperature solid-phase method[J]. Mining and Metallurgical Engineering, 2021, 41(3):120-123+128. doi: 10.3969/j.issn.0253-6099.2021.03.029

    LIANG L B, YANG S L, LUO M X, et al. Regeneration of cathode materials in spent lithium iron phosphate batteriesby using high temperature solid-phase method[J]. Mining and Metallurgical Engineering, 2021, 41(3): 120-123+128. doi: 10.3969/j.issn.0253-6099.2021.03.029

    [39]

    SONG W, LIU J, YOU L, et al. Re-synthesis of nano-structured LiFePO4/graphene composite derived from spent lithium-ion battery for booming electric vehicle application[J]. Journal of Power Sources, 2019, 419:192-202. doi: 10.1016/j.jpowsour.2019.02.065

    [40]

    GUO Y, LI F, ZHU H, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Manage, 2016, 51:227-233. doi: 10.1016/j.wasman.2015.11.036

    [41]

    杨生龙, 杨凯雲, 范小萍, 等. 废旧锂离子电池负极片的硫酸浸出回收研究[J]. 电源技术, 2020, 44(3):364-366+376. YANG S L, YANG K Y, FAN X P, et al. Recycling of negative electrode sheets of spent lithium ion batteries by sulfuric acid leaching[J]. Chinese Journal of Power Sources, 2020, 44(3):364-366+376. doi: 10.3969/j.issn.1002-087X.2020.03.015

    YANG S L, YANG K Y, FAN X P, et al. Recycling of negative electrode sheets of spent lithium ion batteries by sulfuric acid leaching[J]. Chinese Journal of Power Sources, 2020, 44(3): 364-366+376. doi: 10.3969/j.issn.1002-087X.2020.03.015

    [42]

    张群斌, 董陶, 李晶晶, 等. 废旧电池电解液回收及高值化利用研发进展[J]. 储能科学与技术, 2022, 11(9):2798-2810. ZHANG Q B, DONG T, LI J J, et al. Research progress on the recovery and high-value utilization of spent electrolyte from lithium ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9):2798-2810. doi: 10.19799/j.cnki.2095-4239.2022.0338

    ZHANG J B, DONG T, LI J J, et al. Research progress on the recovery and high-value utilization of spent electrolyte from lithium ion batteries[J]. Energy Storage Science and Technology, 2022, 11(9): 2798-2810. doi: 10.19799/j.cnki.2095-4239.2022.0338

    [43]

    MU D Y, LIU Y L, LI R H, et al. Transcritical CO2 extraction of electrolytes for lithium-ion batteries: optimization of the recycling process and quality–quantity variation[J]. New Journal of Chemistry, 2017, 41(15):7177-7185. doi: 10.1039/C7NJ00771J

    [44]

    严红. 废旧锂离子电池电解液的回收方法: CN104282962B[P]. 2017-03-08.

    YAN H. Method for recycling electrolyte from waste lithium-ion batteries: CN104282962B[P]. 2017-03-08.

    [45]

    HE K, ZHANG Z Y, ALAI L, et al. A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries[J]. J Hazard Mater, 2019, 375:43-51. doi: 10.1016/j.jhazmat.2019.03.120

    [46]

    ZHU Y, DING Q, ZHAO Y, et al. Study on the process of harmless treatment of residual electrolyte in battery disassembly[J]. Waste Manag Res, 2020, 38(11):1295-1300. doi: 10.1177/0734242X20914752

    [47]

    林浩志, 平田浩一郎, 鹤卷英范, 等. 含氟电解液的处理方法: CN105594056B[P]. 2017-07-28.

    Hayashi H, Hirata K, Tsurumaki E, et al. Treatment methods for fluoride containing electrolytes: CN105594056B[P]. 2017-07-28.

    [48]

    SHARIF K M, RAHMAN M M, AZMIR J, et al. Experimental design of supercritical fluid extraction - A review[J]. Journal of Food Engineering, 2014, 124:105-116. doi: 10.1016/j.jfoodeng.2013.10.003

    [49]

    穆德颖, 刘铸, 金珊, 等. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7):950-965. MU D Y, LIU Z, JIN S, et al. The recovery and recycling of cathode materials and electrolyte from spent lithium ion batteries in full process[J]. Progress in Chemistry, 2020, 32(7):950-965.

    MU D Y, LIU Z, JIN S, et al. The recovery and recycling of cathode materials and electrolyte from spent lithium ion batteries in full process[J]. Progress in Chemistry, 2020, 32(7): 950-965.

    [50]

    Sloop S E . System and method for removing an electrolyte from an energy storage and/or conversion device using a supercritical fluid: EP, EP1472756 A1[P].

    [51]

    胡家佳, 王晨旭, 曹利娜. 一种废旧锂离子电池中六氟磷酸锂回收方法: CN106025420A[P]. 2016-10-12.

    HU J J, WANG C X, CAO L N. A method for recovering lithium hexafluorophosphate from waste lithium-ion batteries: CN106025420A[P]. 2016-10-12.

    [52]

    赵煜娟, 孙玉成, 纪常伟, 等. 一种废旧锂离子电池电解液回收处理方法: CN103825065B[P]. 2016-11-16.

    ZHAO Y J, SUN Y C, JI C W, et al. A method for recycling and treating electrolyte from waste lithium ion batteries, Beijing: CN103825065B[P]. 2016-11-16.

    [53]

    张俊喜, 刘蔚, 王昆仑. 一种废旧电池电解液回收利用方法: CN109193062B[P]. 2021-04-02.

    ZHANG J X, LIU W, WANG K L. A method for recycling and utilizing electrolyte from waste batteries: CN109193062B[P]. 2021-04-02.

  • 加载中

(1)

(2)

计量
  • 文章访问数:  3613
  • PDF下载数:  1347
  • 施引文献:  0
出版历程
收稿日期:  2023-05-30
刊出日期:  2023-08-25

目录