碱激发粉煤灰矿渣胶凝材料的流变性能

李莎莎, 李刘蓓, 吴伟, 冯虎. 碱激发粉煤灰矿渣胶凝材料的流变性能[J]. 矿产综合利用, 2024, 45(2): 30-35. doi: 10.3969/j.issn.1000-6532.2024.02.005
引用本文: 李莎莎, 李刘蓓, 吴伟, 冯虎. 碱激发粉煤灰矿渣胶凝材料的流变性能[J]. 矿产综合利用, 2024, 45(2): 30-35. doi: 10.3969/j.issn.1000-6532.2024.02.005
LI Shasha, LI Liubei, WU Wei, FENG Hu. Rheological Properties of Alkali Activated Fly Ash Slag Cementitious Materials[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 30-35. doi: 10.3969/j.issn.1000-6532.2024.02.005
Citation: LI Shasha, LI Liubei, WU Wei, FENG Hu. Rheological Properties of Alkali Activated Fly Ash Slag Cementitious Materials[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(2): 30-35. doi: 10.3969/j.issn.1000-6532.2024.02.005

碱激发粉煤灰矿渣胶凝材料的流变性能

  • 基金项目: 国家自然科学基金资助项目(51709125);西藏自治区科技厅重点研发计划(XZ201901-GB-15)资助
详细信息
    作者简介: 李莎莎(1985-),女,讲师,硕士,研究方向为土木工程材料与建筑学
  • 中图分类号: TD985;TU528

Rheological Properties of Alkali Activated Fly Ash Slag Cementitious Materials

  • 这是一篇陶瓷及复合材料领域的论文。为了研究碱激发粉煤灰矿渣胶凝体系在早期的流变特性,制备了不同粉煤灰和矿粉质量比以及碱激发剂含量的复合浆体,并且分别采用了微型坍落度筒和Brookfield DV3T 流变仪测试其流动性和流变性,最后用等温量热仪测试了各组配比下浆体的水化放热速率。结果表明:当FA/GGBS比为3∶7时,碱激发剂NaOH含量为4%的浆体在所有配合比中流动度为较低。随着粉煤灰质量比和NaOH摩尔质量的升高,碱激发粉煤灰矿渣胶凝体系的流动度均有所上升,且屈服应力和塑性黏度有所下降。粉煤灰掺量的升高使得早期水化速率有所下降,而碱激发剂含量的增加则提高了水化放热峰值速率。

  • 加载中
  • 图 1  水泥浆体的流变测试程序

    Figure 1. 

    图 2  碱激发粉煤灰矿渣浆体的流动度及其经时变化

    Figure 2. 

    图 3  碱激发粉煤灰矿渣浆体的剪切应力-剪切速率曲线

    Figure 3. 

    图 4  碱激发粉煤灰矿渣浆体的流变参数

    Figure 4. 

    图 5  碱激发粉煤灰矿渣混合料的流变滞回曲线

    Figure 5. 

    图 6  触变滞后环面积

    Figure 6. 

    图 7  典型配合比下浆体的水化放热曲线

    Figure 7. 

    表 1  粉煤灰和矿粉的化学组成/%

    Table 1.  Chemical compositions of fly ash and slag

    SiO2Al2O3CaOFe2O3MgOSO3Na2O
    粉煤灰51.6530.945.135.640.590.610.52
    矿渣31.5414.6841.161.195.912.160.43
    下载: 导出CSV

    表 2  碱激发材料的配合比

    Table 2.  Mixture proportions of alkali-activated materials

    序号 FA

    含量/%
    GGBS
    含量/%
    Water to
    FA-GGBS

    碱激发剂
    含量 /%
    碱激
    发剂
    浓度/
    (mol/L)
    1 30 70 0.5 4 2
    2 50 50 0.5 4 2
    3 70 30 0.5 4 2
    4 30 70 0.5 8 4
    5 50 50 0.5 8 4
    6 70 30 0.5 8 4
    下载: 导出CSV
  • [1]

    熊文良, 黄阳, 张丽军, 等. 稀土尾矿配料煅烧硅酸盐水泥熟料的实验研究[J]. 矿产综合利用, 2021(5):76-80.XIONG W L, HUANG Y, ZHANG L J, et al. Experimental study on calcination of Portland cement clinker with rare earth tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(5):76-80.

    XIONG W L, HUANG Y, ZHANG L J, et al. Experimental study on calcination of Portland cement clinker with rare earth tailings[J]. Multipurpose Utilization of Mineral Resources, 2021(5):76-80.

    [2]

    冯卡, 王馨语. 硫铁矿尾矿矿渣改良混凝土力学性质与耐久性[J]. 矿产综合利用, 2022(3):6-11.FENG K, WANG X Y. Research on mechanical properties and durability of concrete improved by pyrite tailings and slag[J]. Multipurpose Utilization of Mineral Resources, 2022(3):6-11.

    FENG K, WANG X Y. Research on mechanical properties and durability of concrete improved by pyrite tailings and slag[J]. Multipurpose Utilization of Mineral Resources, 2022(3):6-11.

    [3]

    邓晓阳, 裴新意, 刘自妥, 等. 粉煤灰中铵离子含量对混凝土减水剂掺量及吸附特性影响[J]. 矿产综合利用, 2022(3):64-69.DENG X Y, PEI X Y, LIU Z T, et al. Effect of ammonium ion content on superplasticizer dosage and adsorption property[J]. Multipurpose Utilization of Mineral Resources, 2022(3):64-69.

    DENG X Y, PEI X Y, LIU Z T, et al. Effect of ammonium ion content on superplasticizer dosage and adsorption property[J]. Multipurpose Utilization of Mineral Resources, 2022(3):64-69.

    [4]

    阎培渝. 粉煤灰在复合胶凝材料水化过程中的作用机理[J]. 硅酸盐学报, 2007(S1):167-171.YAN P Y. Mechanism of fly ash’s effects during hydration process of composite binder[J]. Journal of the Chinese Ceramic Society, 2007(S1):167-171.

    YAN P Y. Mechanism of fly ash’s effects during hydration process of composite binder[J]. Journal of the Chinese Ceramic Society, 2007(S1):167-171.

    [5]

    杨晓炳, 王永定, 高谦, 等. 利用脱硫灰渣和粉煤灰开发充填胶凝材料[J]. 矿产综合利用, 2019(4):130-134.YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4):130-134.

    YANG X B, WANG Y D, GAO Q, et al. Research on a new cementitious materials with desulphurization ash and fly ash[J]. Multipurpose Utilization of Mineral Resources, 2019(4):130-134.

    [6]

    聂轶苗, 夏淼, 刘攀攀, 等. 粉煤灰基矿物聚合材料研究进展[J]. 矿产综合利用, 2022(4):123-128.NIE Y M, XIA M, LIU P P, et al. Research progress on fly ash based geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2022(4):123-128.

    NIE Y M, XIA M, LIU P P, et al. Research progress on fly ash based geopolymer[J]. Multipurpose Utilization of Mineral Resources, 2022(4):123-128.

    [7]

    HOJATI M, RADLIŃSKA A. Shrinkage and strength development of alkali-activated fly ash-slag binary cements[J]. Construction and Building Materials, 2017, 150:808-816. doi: 10.1016/j.conbuildmat.2017.06.040

    [8]

    FERNÁNDEZ-JIMÉNEZ A, PALOMO A. Composition and microstructure of alkali activated fly ash binder: Effect of the activator[J]. Cement and Concrete Research, 2005, 35(10):1984-1992. doi: 10.1016/j.cemconres.2005.03.003

    [9]

    SINGH B, ISHWARYA G, GUPTA M, et al. Geopolymer concrete: a review of some recent developments[J]. Construction and Building Materials, 2015, 85:78-90. doi: 10.1016/j.conbuildmat.2015.03.036

    [10]

    PANDA B, UNLUER C, TAN M J. Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing[J]. Cement and Concrete Composites, 2018, 94:307-314. doi: 10.1016/j.cemconcomp.2018.10.002

    [11]

    PUERTAS F, VARGA C, ALONSO M M. Rheology of alkali-activated slag pastes. Effect of the nature and concentration of the activating solution[J]. Cement and Concrete Composites, 2014, 53:279-288. doi: 10.1016/j.cemconcomp.2014.07.012

    [12]

    ALBAR A, CHOUGAN M, AL-KHEETAN M J, et al. Effective extrusion-based 3D printing system design for cementitious-based materials[J]. Results in Engineering, 2020, 6:100135. doi: 10.1016/j.rineng.2020.100135

    [13]

    LI L, LU J X, ZHANG B, et al. Rheology behavior of one-part alkali activated slag/glass powder (AASG) pastes[J]. Construction and Building Materials, 2020, 258:120381. doi: 10.1016/j.conbuildmat.2020.120381

    [14]

    THIEDEITZ M, DRESSLER I, KRÄNKEL T, et al. Effect of pre-shear on agglomeration and rheological parameters of cement paste[J]. Materials, 2020, 13(9):2173. doi: 10.3390/ma13092173

    [15]

    马昆林, 冯金, 龙广成, 等. 水泥-粉煤灰浆体流变特性及其机理研究[J]. 铁道科学与工程学报, 2017, 14(3):465-472.MA K L, FENG J, LONG G C, et al. Rheological characteristic and its mechanism of cement-fly ash paste[J]. Journal of Railway Science and Engineering, 2017, 14(3):465-472.

    MA K L, FENG J, LONG G C, et al. Rheological characteristic and its mechanism of cement-fly ash paste[J]. Journal of Railway Science and Engineering, 2017, 14(3):465-472.

    [16]

    阎培渝, 郑峰. 水泥基材料的水化动力学模型[J]. 硅酸盐学报, 2006(5):555-559.YAN P Y, ZHENG F. Kinetics model for the hydration mechanism of cementitious materials[J]. Journal of the Chinese Ceramic Society, 2006(5):555-559.

    YAN P Y, ZHENG F. Kinetics model for the hydration mechanism of cementitious materials[J]. Journal of the Chinese Ceramic Society, 2006(5):555-559.

    [17]

    PACHECO-TORGAL F, CASTRO-GOMES J, JALALI S. Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products[J]. Construction and Building Materials, 2008, 22(7):1305-1314. doi: 10.1016/j.conbuildmat.2007.10.015

  • 加载中

(7)

(2)

计量
  • 文章访问数:  1138
  • PDF下载数:  216
  • 施引文献:  0
出版历程
收稿日期:  2022-09-08
刊出日期:  2024-04-25

目录