-
摘要:
地质聚合物是一种以活性硅铝质材料和液体激发剂为主要原料制作而成的新型无机胶凝材料,其原料来源广泛,性能优越,发展前景广阔。介绍了地质聚合物的结构和聚合机理,阐述了地质聚合物的合成原料、制备方法以及性能特点,归纳总结了影响地质聚合物性能的主要因素。此外,分析了地质聚合物存在的问题并对其今后的发展方向进行展望。
Abstract:Geopolymer is a new type of inorganic cementitious material made from active silicoalumina material and liquid activator as main raw materials. It has a wide range of raw materials, superior performance and broad development prospects. This article introduces the structure and polymerization mechanism of geopolymers. Explains the synthetic raw materials, preparation methods and characteristics of geopolymers. Summarize the important factors affecting the performance of geopolymers. In addition, the problems of geopolymers are analyzed and their future development directions are prospected.
-
Key words:
- geopolymer /
- cementitious material /
- polymerization mechanism
-
-
[1] 马鸿文, 杨静, 任玉峰, 等. 矿物聚合材料: 研究现状与发展前景[J]. 地学前缘, 2002(4): 397-407. doi: 10.3321/j.issn:1005-2321.2002.04.020
[2] DAVIDOVITS J. Geopolymers and geopolymeric new materials[J]. Journal of Thermal Analysis and Calorimetry, 1989, 35(2): 429-441. doi: 10.1007/BF01904446
[3] DAVIDOVITS J. Geopolymers: Inorganic polymer new materials[J]. Journal of Thermal Analysis and Calorimetry, 1991, 37(8): 1633-1656. doi: 10.1007/BF01912193
[4] 崔潮. 偏高岭土基地质聚合物的研发与应用[D]. 湖南: 长沙理工大学, 2014.
[5] ZHANG Z H, ZHU H J, ZHOU C H, et al. Geopolymer from kaolin in China: An overview[J]. Applied Clay Science, 2016, 119(1): 31-41. http://www.sciencedirect.com/science/article/pii/S016913171500174X
[6] YUN-MING L, CHENG-YONG H, Al Bakri M M, et al. Structure and properties of clay-based geopolymer cements: a review[J]. Progress in Materials Science, 2016, 83(10): 595-629. http://dx.doi.org/10.1016/j.pmatsci.2016.08.002
[7] DAVIDOVITS J. Geopolymer chemistry and sustainable development[C]//Geopolymer Green Chemistry and Sustainable Development Solutions, Geopolymer 2005 Conference. 2005.
[8] AILAR, HAJIMOHAMMADI. Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders[J]. Journal of Cleaner Production, 2018, 193.
[9] WALTRAUD M, KRIVEN, ANDREW L, et al. Phosphate geopolymers[M]//Developments in strategic materials and computational design Ⅱ: ceramic engineering and science proceedings, Volume 32. John Wiley & Sons, Inc. 2011.
[10] S.K.NATH, S.MUKHERJEE, S.MAITRA, et al. Kinetics study of geopolymerization of fly ash using isothermal conduction calorimetry[J]. Journal of Thermal Analysis and Calorimetry, 2017, 127(3): 1953-1961.
[11] DEVENTER J S J V, PROVIS J L, DUXSON P, et al. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products[J]. Journal of Hazardous Materials, 2007, 139(3): 506-513. doi: 10.1016/j.jhazmat.2006.02.044
[12] A, PALOMO. Alkali-activated cementitous materials: Alternative matrices for the immobilisation of hazardous wastes: Part I. Stabilisation of boron[J]. Cement & Concrete Research, 2003, 33(2): 281-288.
[13] 杨南如. 碱胶凝材料形成的物理化学基础(Ⅰ)[J]. 硅酸盐学报, 1996(4): 209-215. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB602.015.htm
[14] 杨南如. 碱胶凝材料形成的物理化学基础(Ⅱ)[J]. 硅酸盐学报, 1996, 24(4): 459-465. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB602.015.htm
[15] 曹德光, 苏达根, 路波, 等. 偏高岭石-磷酸基矿物键合材料的制备与结构特征[J]. 硅酸盐学报, 2005, 33(11): 1385-1389. doi: 10.3321/j.issn:0454-5648.2005.11.018
[16] 刘乐平. 磷酸基地质聚合物的反应机理与应用研究[D]. 南宁: 广西大学, 2012.
[17] JI Z, PEI Y. Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: A review[J]. Journal of Environmental Management, 2019, 231: 256-267. doi: 10.1016/j.jenvman.2018.10.041
[18] CHINDAPRASIRT P, CHAREERAT T, HATANAKA S, et al. High-Strength Geopolymer Using Fine High-Calcium Fly Ash[J]. Journal of Materials in Civil Engineering, 2010, 23(3): 264-270. http://www.researchgate.net/publication/239391741_High_Strength_Geopolymer_Using_Fine_High_Calcium_Fly_Ash
[19] VALERIA F, KENNETH J. D MACKENZIE, et al. Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers[J]. International Journal of Inorganic Materials, 2000, 2(4): 309-317. doi: 10.1016/S1466-6049(00)00041-6
[20] XU H, DEVENTER J S J V. Geopolymerisation of multiple minerals[J]. Minerals Engineering, 2002, 15(12): 1131-1139. doi: 10.1016/S0892-6875(02)00255-8
[21] 朱国振. 粉煤灰/偏高岭土地质聚合物材料的制备及其性能研究[D]. 景德镇: 景德镇陶瓷学院, 2014.
[22] LE-PING L, XUE-MIN C, SHU-HENG Q, et al. Preparation of phosphoric acid-based porous geopolymers[J]. Applied Clay Science, 2010, 50(4): 600-603. doi: 10.1016/j.clay.2010.10.004
[23] PALOMO A, GRUTZECK M W, BLANEO M T. Alkali-aetivated fly ashes: A cement for the future[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329. doi: 10.1016/S0008-8846(98)00243-9
[24] XU H, DEVENTER J S J V. The geopolymerisation of alumino-silieate minerals[J]. International Joumal of Mineral Processing, 2000, 59: 247-266. doi: 10.1016/S0301-7516(99)00074-5
[25] CATHERINE A, JOHN L, GRANT C, et al. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation[J]. Langmuir, 2007, 23(17): 9076-9082. doi: 10.1021/la701185g
[26] 方旭彬, 李兆锋, 吴祥福, 等. 酸性激发剂激发钢渣替代部分水泥熟料的机理研究[J]. 混凝土, 2007(8): 49-51. doi: 10.3969/j.issn.1002-3550.2007.08.016
[27] 彭佳, 颜子博. 地质聚合物的研究进展[J]. 中国非金属矿工业导刊, 2014(1): 16-19. doi: 10.3969/j.issn.1007-9386.2014.01.006
[28] WANG H, LI H, YAN F. Synthesis and tribological behavior of metakaolinite-based geopolymer composites[J]. Materials Letters, 2005, 59(29/30): 3976-3981. http://www.sciencedirect.com/science/article/pii/S0167577X0500724X
[29] HUANG X, ZHUANG R L, MUHAMMAD F, et al. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials[J]. Chemosphere, 2017, 168: 300-308. doi: 10.1016/j.chemosphere.2016.10.067
[30] FENG D, TAN H, DEVENTER J S J V. Ultrasound enhanced geopolymerisation[J]. Journal of Materials Science, 2004, 39(2): 571-580. doi: 10.1023/B:JMSC.0000011513.87316.5c
[31] 中国科学院兰州化学物理研究所. 一种铝硅酸盐矿物聚合物材料的制备方法: CN200310117752.8[P]. 2005-07-06.
[32] TONIOLO N, BOCCACCINI A R. Fly ash-based geopolymers containing added silicate waste. A review[J]. Ceramics International, 2017, 43(17): 14545-14551. doi: 10.1016/j.ceramint.2017.07.221
[33] SLAVIK R, BEDNARIK V, VONDRUSKA M, et al. Preparation of geopolymer from fluidized bed combustion bottom ash[J]. Journal of Materials Processing Technology, 2008, 200(1/2/3): 265-270. http://www.sciencedirect.com/science/article/pii/S092401360700814X
[34] LIN S F, WANG P M. Mechanism of Immobilization of Nickel by Fly Ash Geopolymers[J]. Journal of Building Materials, 2010, 13(5): 665-668. http://en.cnki.com.cn/Article_en/CJFDTOTAL-JZCX201005021.htm
[35] 乐新波. 高岭土基地质聚合物的制备及反应机理研究[D]. 长沙: 长沙理工大学, 2016.
[36] YE J, ZHANG W, SHI D. Effect of elevated temperature on the properties of geopolymer synthesized from calcined ore-dressing tailing of bauxite and ground-granulated blast furnace slag[J]. Construction & Building Materials, 2014, 69(30): 41-48. http://www.sciencedirect.com/science/article/pii/S0950061814007156
[37] DAVIDOVITS JOSEPH, DAVIDOVICS MICHEL. Geopolymer: Room-Temperature Ceramic Matrix for Composites[M]. Ceramic Engineering and Science Proceedings, 1988: 7-8.
[38] HUSEIEN G F, MIRZA J, ISMAIL M, et al. Geopolymer mortars as sustainable repair material: A comprehensive review[J]. Renewable & Sustainable Energy Reviews, 2017, 80(12): 54-74. http://www.sciencedirect.com/science/article/pii/S1364032117307207
[39] KOMIJENOVIC M, BASCAREVIC R, BRADIC R. Mechanical and microstructural properties of alkali-activated fly ash geopolymers[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 35-42. http://europepmc.org/abstract/MED/20554110
[40] GORHAN G, KURKLU G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures[J]. Composites Part B: Engineering, 2014, 58: 371-377. doi: 10.1016/j.compositesb.2013.10.082
[41] SILVA PD, SAGOE-CRENSTIL K, SIRIVIVATNANON V. P. Kinetics of geopolymerization: Role of Al2O3 and SiO2[J]. Cement & Concrete Research, 2007, 37(4): 512-518.
[42] PART W K, RAMLI M, CHEAH C B. An overview on the influence of various factors on the properties of geopolymer concrete derived from industrial by-products[J]. Construction & Building Materials, 2015, 77: 370-395. http://smartsearch.nstl.gov.cn/paper_detail.html?id=13cb7b8c41abe7156f079d470b023281
[43] RIDTIRUD C, CHINDAPRASIRT P, PIMRAKSA K. Factors affecting the shrinkage of fly ash geopolymers[J]. International Journal of Minerals Metallurgy & Materials, 2011, 18(1): 100-104. http://www.springerlink.com/content/m53tqhj4787l5154/
[44] SATHONSAOWAPHAK A, CHINDAPRASIRT P, PIMRAKSA K. Workability and strength of lignite bottom ash geopolymer mortar[J]. Journal of Hazardous Materials, 2009, 168(1): 44-50. doi: 10.1016/j.jhazmat.2009.01.120
[45] SALIH MA, ABANG ALI A A, FARZADNIA N. Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste[J]. Construction & Building Materials, 2014, 65: 592-603. http://www.sciencedirect.com/science/article/pii/S0950061814005145
[46] GUO X, SHI H, DICK WA. Compressive strength and microstructural characteristics of class C fly ash geopolymer[J]. Cement & Concrete Composites, 2010, 32(2): 142-147. http://www.sciencedirect.com/science/article/pii/S095894650900167X
[47] YUSUF M O, JOHARI M A M, AHMAD Z A, et al. Impacts of silica modulus on the early strength of alkaline activated ground slag/ultrafine palm oil fuel ash based concrete[J]. Materials and Structures, 2015, 48(3): 733-741. doi: 10.1617/s11527-014-0318-3
[48] MIJARSH M J A, JOHARI M A M, AHMAD Z A. Synthesis of geopolymer from large amounts of treated palm oil fuel ash: Application of the Taguchi method in investigating the main parameters affecting compressive strength[J]. Construction & Building Materials, 2014, 52(2): 473-481. http://www.sciencedirect.com/science/article/pii/S0950061813010714
[49] HE J, JIE Y, ZHANG J, et al. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites[J]. Cement & Concrete Composites, 2013, 37: 108-118. . http://www.sciencedirect.com/science/article/pii/S0958946512002363
[50] SHEIKH T A, REZA M M. Production of eco-friendly bricks from copper mine tailings through geopolymerization in India[J]. Journal of Trend in Scientific Research and Development, 2017, 1(5): 435-451. http://www.sciencedirect.com/science/article/pii/S0950061811005976
[51] NAZARI A, BAGHERI A, RIAHI S. Properties of geopolymer with seeded fly ash and rice husk bark ash[J]. Materials Science & Engineering A, 2011, 528(24): 7395-7401. http://www.sciencedirect.com/science/article/pii/S0921509311006794
[52] CHINDAPRASIRT P, CHAREERAT T, HATANAKA S, et al. High strength geopolymer using fine high calcium fly ash[J]. Journal of Materials in Civil Engineering, 2010, 23(3): 264-270. http://www.researchgate.net/publication/239391741_High_Strength_Geopolymer_Using_Fine_High_Calcium_Fly_Ash
[53] YAN S, SAGOE-CRENTSIL K. Properties of wastepaper sludge in geopolymer mortars for masonry applications[J]. Journal of Environmental Management, 2012, 112(24): 27-32. http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_PM22868380
[54] FENG-QING Z, JING Z, HONG-JIE L. Autoclaved brick from low-silicon tailings[J]. Construction & Building Materials, 2009, 23(1): 538-541. http://www.sciencedirect.com/science/article/pii/S0950061807002504
-