Characteristics of Kaolinite and Research Progress of its Composite Catalytic Materials
-
摘要:
近年来,高岭石基复合催化材料因成本低廉、化学稳定性好以及具有高效催化性能等优点,而被广泛应用于光/电解水制氢、流化催化裂化、废水废气治理以及环境抗菌,其可再生循环特点及优异性能可有效助力绿水青山的建设以及双碳目标的达成。论文综述了高岭石基催化材料在不同催化领域及其合成应用方面的最新进展,主要介绍了高岭石基光催化材料、高岭石基催化裂化材料、高岭石基过硫酸盐活化材料、高岭石基H2O2活化材料以及电催化材料的应用研究进展,同时介绍了高岭石在各种催化材料中的作用机制及应用方式。最后针对高岭石基催化材料在环境净化、能源领域的发展趋势进行了总结和展望。
Abstract:In recent years, kaolinite-based composite catalytic materials have been widely used in light/electrolytic water hydrogen production, fluidized catalytic cracking, wastewater and waste gas treatment and environmental antibacterial due to their low cost, excellent chemical stability, and high-efficiency catalytic performance. Its renewable cycle characteristics and excellent performance can contribute to the construction of clear waters and green mountains as well as help to achieve the carbon peaking and carbon neutrality goals. In this paper, the latest progress of kaolinite-based catalytic materials in different catalytic fields and their synthesis and application are reviewed. The application of kaolinite-based photocatalytic materials, kaolinite for catalytic cracking, kaolinite-based persulfate active materials, kaolinite-based H2O2 active materials and electrocatalytic materials are mainly introduced. Meanwhile, the action mechanism and application form of kaolinite in various catalytic materials are also introduced. Finally, the development of kaolinite-based catalytic materials in the field of environmental purification and energy was summarized and prospected.
-
Key words:
- kaolinite /
- photocatalysis /
- catalytic cracking /
- persulfate activation /
- wastewater treatment
-
-
图 2 (a) 高岭石基催化裂化材料催化流程;(b)天然高岭土和合成Y型沸石的质构特性[40]
Figure 2.
表 1 高岭石基光催化材料研究进展
Table 1. Research progress of kaolinite-based photocatalytic materials
催化剂种类 污染物 光照条件 反应物质 效果 参考文献 TiO2/高岭石 环丙沙星 400 W UV ·O2-和·OH TiO2/高岭石复合材料反应常数速率可达0.045 49 min-1,是纯TiO2的6.90倍 Chunquan Li[18] C-TiO2/高岭石 环丙沙星 500 W氙灯(λ≥420 nm) ·O2-和·OH C-TiO2/高岭石复合材料反应速率常数为0.005 97 min-1,比纯TiO2提高24.88倍 Chunquan Li[24] g-C3N4/TiO2/高岭石 环丙沙星 500 W氙灯(λ≥420 nm) ·O2-(主)、·OH和h+ g-C3N4/TiO2/高岭土复合材料表观速率常数分别是纯TiO2和g-C3N4的5.35倍、6.35倍 Chunquan Li[22] 天然高岭石-Na2WO4-TiO2-生物质 氨苄西林、磺胺甲恶唑 太阳光 ·O2-和·OH 30 min内去除率可达90%以上 Moses O. Alfred[25] ZnO/高岭石纳米管 左氧氟沙星 金属卤化物灯(λ≥420 nm) ·OH 降解率100%,不含中间化合物 Mostafa R. Abukhadra[26] 聚苯胺/TiO2/偏高岭石 丁基黄药 300 W氙灯(λ≥420 nm) h+和·O2- 禁带宽度从3.10 eV降低到1.93 eV;4 h内可去除94.8%的黄药 Ye Tan[20] 高岭石-BiFeO3 罗丹明B 装有UVA lamb (λ=350 nm)的光反应器 h+(主)和·O2- 光催化活性增强 Bulent Caglar[14] BiOCl/g-C3N4/高岭石 罗丹明B和气态甲醛 500 W氙灯(λ≥420 nm) h+(主)、·O2-和·OH 去除率达95%以上 Xiongbo Dong[17] 钛掺杂钴(Ⅱ)-金属酞菁/高岭石固体 丙甲氨苄、甲氧苄啶和咖啡因 150 W TQ150-Z0灯 h+和·OH 降解率达90% Tiago H. da Silva[27] g-C3N4/高岭石 罗丹明B 500 W氙灯(λ≥420 nm) —— 光催化速率是纯g-C3N4的4.18倍 孙志明[16] 改性高岭石/g-C3N4 罗丹明B 300 W氙灯(λ≥420 nm) —— PK/GCN-3降解表观反应速率常数是纯GCN的5倍 程宏飞[28] Ag/g-C3N4/高岭石 布洛芬 500 W氙灯(λ≥400 nm) h+(主)、·O2-和·OH 辐照5 h去除率达99.9% Zhiming Sun[29] 三聚氰酸改性g-C3N4/高岭石 罗丹明B 500 W氙灯(λ≥420 nm) h+(主)、·O2-和·OH 改性g-C3N4/高岭石复合材料表观速率常数分别是g-C3N4/高岭石和纯g-C3N4的1.9倍和4.0倍 Zhiming Sun[23] Fe/g-C3N4/高岭石 盐酸四环素 500 W氙灯(λ≥420 nm) ·O2-和·OH(主) 80 min内降解率可达89% Zhou Cao[30] Fe掺杂ZnO/高岭石 大肠杆菌 160 W, 220 V LED光源 ·O2- 细菌细胞完全死亡 Ananyo Jyoti Misra[31] 掺杂Zn和Cu/高岭石 大肠杆菌 荧光灯,λ= 407 nm (λexc= 370 nm) 1O2 细菌完全失活 Chidinma G. Ugwuja[32] 黑色TiO2/ 高岭石 亚甲基蓝 300 W氙灯 —— 去除率达89.7% 程港莉[33] CeO2-CdS/巯基改性高岭石 结晶紫 350 W氙灯 ·O2-和·OH(主) 结晶紫的降解率可达95.1% 徐杰[34] 高岭石-Cu2O 对苯二酚 400 W金卤灯 —— 降解率可达97% 牛凤兴[35] BiOCl/煤系高岭石 亚甲基蓝 300 W氙灯 h+ BiOCl/CK-20%降解速率是BiOCl的2.84倍 杨权成[36] CdS/高岭石 罗丹明B 30 mV/cm2氙灯(λ≥420 nm) —— 改善CdS光催化材料的光腐蚀性能 李雪[15] 表 2 高岭石基催化裂化材料应用研究进展
Table 2. Research progress of kaolinite-based catalytic cracking materials
催化剂 硅铝比 反应物 剂油比 应用效果 参考文献 汽油/芳烃收率 转化率 Y型沸石(高岭石) 3.09 丁二酸和乙醇(摩尔比为1:3) — 60% 72% Dolly Gandhi[40] H-ZSM5沸石(高岭石) 41.6 甲醇 — — 90% Ahmad Asghari[42] 锌/沸石(高岭石) 11.1 催化裂化汽油 7 77.77% — Baojian Shen[43] Fe(2.5)改性H-高岭石 4~4.5 PPP真空柴油 — 12% 74.7% O. K. Kim[44] 含沸石的Fe(2.5)改性H-高岭石 — PPP真空柴油 — 22% 92.6% O. K. Kim[44] Y型分子筛/高岭石 3.1 油酸 — — 85% Aidan M. Doyle[45] 氧化镧/高岭石 2.08 重质石油残渣(燃料) 4.5 — 74.13% Abdoulay [41] NaY分子筛/高岭石 6.1 真空汽油 3 64.20% 85.40% 王文凯[39] Y沸石/高岭石 10.6 新疆真空汽油 6.5 41.95% 77.19% Li Ning[38] 原位结晶沸石/高岭石 — 废弃食用油 — — 74.50% Wang Hui[46] USY/偏高岭石 15 真空汽油 1.5 ~ 3.5 ↑ 70% Yorsra Ghrib[47] NaY/高岭石 — 掺30%新疆减压渣油混合原料油 5 63.51% 86.37% 熊晓云[48] 拟薄水铝石/高岭石 — 掺30%新疆减压渣油混合原料油 5 50.45% 80.98% 刘现玉[49] 拟薄水铝石改性高岭石 0.7 大港轻柴油 5 64.44% 81.91% 李雪礼[50] 湛江高岭石 1.19 大港轻柴油 8.04 64.83% 75.08% 李忠[51] 晶化高岭石 — 重质石油 5 71.72% 79.56% 田爱珍[52] 表 3 高岭石基过硫酸盐活化材料研究进展
Table 3. Research progress of kaolinite-based persulfate activated materials
催化剂 污染物 活性物质 污染物浓度 催化剂浓度 PMS/PS浓度 降解率 参考文献 天然高岭石 阿特拉津 SO4·-和·OH 4.6 μmol 1.0 g/L 1.0 mmol 100% Chunquan Li[11] CuFe2O4/高岭石 双酚A SO4·- 50 mg/L 0.5 g/L 0.5 mmol 100% Xiongbo Dong[54] CuCo2O4/高岭石 非那西丁 1O2(主)、SO4·-和·OH 10 mg/L 0.1 g/L 1 mmol 100% Li Liu[55] N空位g-C3N4/高岭石 双酚A 1O2(主)、SO4·-和·OH 5 mg/L 1 g/L 1 mmol 98% 张祥伟[56] γ-FeOOH/含N空位g-C3N4/高岭石 双酚A ·O2-、1O2、SO4·-、·OH、h+和e- 10 mg/L 1.0 g/L 0.5 mmol 93% Xiangwei Zhang[57] Fe2O3/高岭石 罗丹明B SO4·-和·OH 0.1 mmol 0.4 g/L 7 mmol — Yaowen Gao[58] CoFe2O4/高岭石 亚甲基蓝 1O2和h+(主)、·O2-、SO4·-、·OH、和e- 30 mg/L 0.5 g/L 0.1 g/L 92.40% 张宇[59] -
[1] 阴江宁, 丁建华, 陈炳翰, 等. 中国高岭土矿成矿地质特征与资源潜力评价[J/OL]. 中国地质: 1-20[2022-01-09]. http://kns.cnki.net/kcms/detail/11.1167.p.20210510.0910.002.html.
[2] 李国栋, 殷尧禹, 卢瑞, 等. 高岭土提纯工艺及其应用研究进展[J]. 矿产保护与利用, 2018, (4): 142-150. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=1451c75b-742d-40ac-af8a-bad36ba2cc0a
[3] YADAV V B, GADI R, KALRA S. Clay based nanocomposites for removal of heavy metals from water: a review[J]. Journal of Environmental Management, 2019, 232: 803-817. doi: 10.1016/j.jenvman.2018.11.120
[4] SZABó P, ZSIRKA B, FERTIG D, et al. Delaminated kaolinites as potential photocatalysts: tracking degradation of Na-benzenesulfonate test compound adsorbed on the dry surface of kaolinite nanostructures[J]. Catalysis Today, 2017, 287: 37-44. doi: 10.1016/j.cattod.2017.01.051
[5] REN B, MIN F, LIU L, et al. Adsorption of different PAM structural units on kaolinite (001) surface: Density functional theory study[J]. Applied Surface Science, 2020, 504: 144324. doi: 10.1016/j.apsusc.2019.144324
[6] 卢承龙, 苟晓琴, 韩海生, 等. 天然铝硅酸盐矿物对氟离子的吸附性能研究[J]. 矿产保护与利用, 2020, 40 (1): 28-36. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a5efc448-c044-4668-90cf-31c98b397360
[7] 刘杰, 曹亦俊, 李晓恒, 等. 溶液环境对高岭石分散行为的影响[J]. 矿产保护与利用, 2017, (4): 35-39. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=6bf0ba4f-065f-4b6a-869a-72b22ad6ac9c
[8] 宁可心, 张婷, 王毅, 等. 黏土类吸附剂去除水中污染物的研究进展[J]. 化工新型材料, 2020, 48(8): 276-280. https://www.cnki.com.cn/Article/CJFDTOTAL-HGXC202008062.htm
[9] CAO Z, WANG Q, CHENG H. Recent advances in kaolinite-based material for photocatalysts[J]. Chinese Chemical Letters, 2021, 32(9): 2617-2628. doi: 10.1016/j.cclet.2021.01.009
[10] ZHAO R, ZHANG X, SU Y, et al. Unprecedented catalytic activity of coal gangue toward environ-mental remediation: Key role of hydroxyl groups[J]. Chemical Engineering Journal, 2020, 380: 122432. doi: 10.1016/j.cej.2019.122432
[11] LI C, HUANG Y, DONG X, et al. Highly efficient activation of peroxymonosulfate by natural negatively-charged kaolinite with abundant hydroxyl groups for the degradation of atrazine[J]. Applied Catalysis B: Environmental, 2019, 247: 10-23. doi: 10.1016/j.apcatb.2019.01.079
[12] LYU L, HAN M, CAO W, et al. Efficient Fenton-like process for organic pollutant degradation on Cu-doped mesoporous polyimide nanocomposites[J]. Environmental Science: Nano, 2019, 6(3): 798-808. doi: 10.1039/C8EN01365A
[13] LI C, ZHU N, YANG S, et al. A review of clay based photocatalysts: Role of phyllosilicate mineral in interfacial assembly, microstructure control and performance regulation[J]. Chemosphere, 2021, 273: 129723. doi: 10.1016/j.chemosphere.2021.129723
[14] CAGLAR B, GUNER E K, OZDOKUR K V, et al. Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction[J]. Journal of Photochemistry and Photobiology a-Chemistry, 2021, 418: 113400. doi: 10.1016/j.jphotochem.2021.113400
[15] 李雪, 孙志明, 李春全, 等. 化学浸渍法制备CdS/高岭土复合材料及其光催化性能[J]. 矿业科学学报, 2017, 2(6): 588-594. https://www.cnki.com.cn/Article/CJFDTOTAL-KYKX201706010.htm
[16] 孙志明, 李雪, 马瑞欣, 等. 浸渍-热聚合法制备g-C3N4/高岭土复合材料及其性能[J]. 功能材料, 2017, 48(8): 8018-8023. https://www.cnki.com.cn/Article/CJFDTOTAL-GNCL201708004.htm
[17] DONG X, SUN Z, ZHANG X, et al. Construction of BiOCl/g-C3N4/kaolinite composite and its enhanced photocatalysis performance under visible-light irradiation[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84: 203-211. doi: 10.1016/j.jtice.2018.01.017
[18] LI C, SUN Z, SONG A, et al. Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum[J]. Applied Catalysis B: Environmental, 2018, 236: 76-87. doi: 10.1016/j.apcatb.2018.04.083
[19] LI C, DONG X, ZHU N, et al. Rational design of efficient visible-light driven photocatalyst through 0D/2D structural assembly: Natural kaolinite supported monodispersed TiO2 with carbon regulation[J]. Chemical Engineering Journal, 2020, 396: 125311. doi: 10.1016/j.cej.2020.125311
[20] TAN Y, CHEN T, ZHENG S, et al. Adsorptive and photocatalytic behaviour of PANI/TiO2/metakaolin composites for the removal of xanthate from aqueous solution[J]. Minerals Engineering, 2021, 171: 107129. doi: 10.1016/j.mineng.2021.107129
[21] LI C, ZHU N, DONG X, et al. Tuning and controlling photocatalytic performance of TiO2/kaolinite composite towards ciprofloxacin: Role of 0D/2D structural assembly[J]. Advanced Powder Technology, 2020, 31(3): 1241-1252. doi: 10.1016/j.apt.2020.01.007
[22] LI C, SUN Z, ZHANG W, et al. Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus[J]. Applied Catalysis B: Environmental, 2018, 220: 272-282. doi: 10.1016/j.apcatb.2017.08.044
[23] SUN Z, YUAN F, LI X, et al. Fabrication of novel cyanuric acid modified g-C3N4/Kaolinite composite with enhanced visible light-driven photocatalytic activity[J]. Minerals, 2018, 8(10): 437. doi: 10.3390/min8100437
[24] LI C, SUN Z, DONG X, et al. Acetic acid functionalized TiO2/kaolinite composite photocatalysts with enhanced photocatalytic performance through regulating interfacial charge transfer[J]. Journal of Catalysis, 2018, 367: 126-138. doi: 10.1016/j.jcat.2018.09.001
[25] ALFRED M O, OMOROGIE M O, BODEDE O, et al. Solar-active clay-TiO2 nanocomposites prepared via biomass assisted synthesis: Efficient removal of ampicillin, sulfamethoxazole and artemether from water[J]. Chemical Engineering Journal, 2020, 398: 125544. doi: 10.1016/j.cej.2020.125544
[26] ABUKHADRA M R, HELMY A, SHARAF M F, et al. Instantaneous oxidation of levofloxacin as toxic pharmaceutical residuals in water using clay nanotubes decorated by ZnO (ZnO/KNTs) as a novel photocatalyst under visible light source[J]. Journal of Environmental Management, 2020, 271: 111019. doi: 10.1016/j.jenvman.2020.111019
[27] DA SILVA T H, RIBEIRO A O, NASSAR E J, et al. Kaolinite/TiO2/cobalt(Ⅱ) tetracarboxymetall-ophthalocyanine nanocomposites as heterogeneous photocatalysts for decomposition of organic pollutants trimethoprim, caffeine and prometryn[J]. Journal of the Brazilian Chemical Society, 2019, 30(12): 2610-2623.
[28] 程宏飞, 赵炳新, 张蒙, 等. 改性高岭石/g-C3N4复合材料光催化性能[J]. 硅酸盐学报, 2021, 49(7): 1367-1376. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202107012.htm
[29] SUN Z, ZHANG X, DONG X, et al. Hierarchical assembly of highly efficient visible-light-driven Ag/g-C3N4/kaolinite composite photocatalyst for the degradation of ibuprofen[J]. Journal of Materiomics, 2020, 6(3): 582-592. doi: 10.1016/j.jmat.2020.04.008
[30] CAO Z, JIA Y, WANG Q, et al. High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation[J]. Applied Clay Science, 2021, 212: 106213. doi: 10.1016/j.clay.2021.106213
[31] MISRA A J, DAS S, HABEEB RAHMAN A P, et al. Doped ZnO nanoparticles impregnated on Kaolinite (Clay): a reusable nanocomposite for photocatalytic disinfection of multidrug resistant Enterobacter sp. under visible light[J]. J Colloid Interface Sci, 2018, 530: 610-623. doi: 10.1016/j.jcis.2018.07.020
[32] UGWUJA C G, ADELOWO O O, OGUNLAJA A, et al. Visible-light- mediated photodynamic water disinfection @ bimetallic-doped hybrid clay nanocomposites[J]. Acs Applied Materials & Interfaces, 2019, 11(28): 25483-25494.
[33] 程港莉, 胡佩伟, 张炎, 等. 黑色TiO2/高岭石光催化剂的制备及其降解动力学研究[J]. 矿产保护与利用, 2021, 41(3): 166-172. http://kcbh.cbpt.cnki.net/WKD/WebPublication/paperDigest.aspx?paperID=a4f2b219-abf4-4bb9-99f2-df5f090296e4
[34] 徐杰, 郑建东, 张丽惠, 等. 巯基改性高岭土负载CeO2-CdS光催化降解结晶紫[J]. 环境科学研究, 2018, 31(6): 1144-1151. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX201806020.htm
[35] 牛凤兴, 陈钰, 张雪梅. 高岭土-Cu2O光催化降解对苯二酚的研究[J]. 当代化工, 2019, 48(11): 2502-2504+2508. doi: 10.3969/j.issn.1671-0460.2019.11.014
[36] 杨权成, 张开永, 唐海香, 等. BiOCl/煤系高岭土复合材料制备及光催化性能研究[J]. 非金属矿, 2021, 44(3): 64-67. doi: 10.3969/j.issn.1000-8098.2021.03.016
[37] KOHANTORABI M, HOSSEINIFARD M, KAZEMZADEH A. Catalytic activity of a magnetic Fe2O3@CoFe2O4 nanocomposite in peroxymonosulfate activation for norfloxacin removal[J]. New Journal of Chemistry, 2020, 44(10): 4185-4198. doi: 10.1039/C9NJ04379A
[38] LI N, LI T, LIU H, et al. A novel approach to synthesize in-situ crystallized zeolite/kaolin composites with high zeolite content[J]. Applied Clay Science, 2017, 144: 150-156. doi: 10.1016/j.clay.2017.05.010
[39] 王文凯, 谭涓, 王诗涵, 等. 高硅铝比小晶粒NaY分子筛/高岭土复合物的合成及其催化裂化性能[J]. 硅酸盐通报, 2021, 40(10): 3479-3489. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202110041.htm
[40] GANDHI D, BANDYOPADHYAY R, SONI B. Zeolite Y from kaolin clay of Kachchh, India: Synthesis, characterization and catalytic application[J]. Journal of the Indian Chemical Society, 2021, 98(12): 100246. doi: 10.1016/j.jics.2021.100246
[41] ABDOULAYE DAN MAKAOU O, GUEU S, GOUROUZA M, et al. Development of semi-synthetic catalyst based on clay and their use in catalytic cracking of petroleum residue[J]. Applied Petrochemical Research, 2021, 11(2): 147-154. doi: 10.1007/s13203-021-00268-w
[42] ASGHARI A, KHORRAMI M K, KAZEMI S H. Hierarchical H-ZSM5 zeolites based on natural kaolinite as a high-performance catalyst for methanol to aromatic hydrocarbons conversion[J]. Sci Rep, 2019, 9(1): 17526. doi: 10.1038/s41598-019-54089-y
[43] SHEN B, WANG P, YI Z, et al. Synthesis of zeolite beta from Kaolin and its catalytic performance for FCC naphtha aromatization[J]. Energy & Fuels, 2009, 23(1/2): 60-64.
[44] KIM O K, VOLKOVA L D, ZAKARINA N A, et al. Vacuum gas-oil cracking catalysts based on Fe-modified kaolinites with and without zeolites[J]. Chemistry and Technology of Fuels and Oils, 2019, 55(4): 378-388. doi: 10.1007/s10553-019-01042-4
[45] DOYLE A M, ALBAYATI T M, ABBAS A S, et al. Biodiesel production by esterification of oleic acid over zeolite Y prepared from kaolin[J]. Renewable Energy, 2016, 97: 19-23. doi: 10.1016/j.renene.2016.05.067
[46] WANG H, LIN H, ZHENG Y, et al. Kaolin-based catalyst as a triglyceride FCC upgrading catalyst with high deoxygenation, mild cracking, and low dehydrogenation performances[J]. Catalysis Today, 2019, 319: 164-171. doi: 10.1016/j.cattod.2018.04.055
[47] GHRIB Y, FRINI-SRASRA N, SRASRA E, et al. Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts[J]. Catalysis Science & Technology, 2018, 8(3): 716-725.
[48] 熊晓云, 朱夔, 高雄厚, 等. 预处理法制备原位晶化高结晶度NaY/高岭土复合微球[J]. 石油化工, 2021, 50(6): 511-516. doi: 10.3969/j.issn.1000-8144.2021.06.001
[49] 刘现玉, 袁程远, 高雄厚, 等. 拟薄水铝石@高岭土复合材料的合成及其在FCC催化剂中的应用[J]. 石油化工, 2020, 49(3): 219-223. doi: 10.3969/j.issn.1000-8144.2020.03.003
[50] 李雪礼, 袁程远, 王启飞, 等. 抗铁污染催化裂化催化剂的制备及性能评价[J]. 石油炼制与化工, 2020, 51(6): 42-46. doi: 10.3969/j.issn.1005-2399.2020.06.012
[51] 李忠, 刘勇文. 高岭土对流化催化裂化(FCC)催化剂性能的影响[J]. 无机盐工业, 2017, 49(8): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-WJYG201708021.htm
[52] 田爱珍, 宗鹏, 孟凡芳, 等. 低成本原位晶化型催化裂化催化剂的制备及性能研究[J]. 炼油技术与工程, 2019, 49(12): 49-53. doi: 10.3969/j.issn.1002-106X.2019.12.012
[53] WANG J, WANG S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059
[54] DONG X, REN B, SUN Z, et al. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation[J]. Applied Catalysis B: Environmental, 2019, 253: 206-217. doi: 10.1016/j.apcatb.2019.04.052
[55] LIU L, LI Y, PANG Y, et al. Activation of peroxymonosulfate with CuCO2O4@kaolin for the efficient degradation of phenacetin[J]. Chemical Engineering Journal, 2020, 401: 126014. doi: 10.1016/j.cej.2020.126014
[56] 张祥伟, 李春全, 郑水林, 等. 热还原法制备g-C3N4/高岭石复合材料及其光/过硫酸盐协同催化性能[J]. 硅酸盐学报, 2021, 49(7): 1337-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202107009.htm
[57] ZHANG X, LIU Y, LI C, et al. Fast and lasting electron transfer between γ-FeOOH and g-C3N4/kaolinite containing N vacancies for enhanced visible-light-assisted peroxymonosulfate activation[J]. Chemical Engineering Journal, 2022, 429: 132374. doi: 10.1016/j.cej.2021.132374
[58] GAO Y, ZHANG Z, LI S, et al. Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation[J]. Applied Catalysis B: Environmental, 2016, 185: 22-30. doi: 10.1016/j.apcatb.2015.12.002
[59] 张宇. CF/K-PMS双效催化体系耦合膜工艺处理含盐有机废水的研究[D]. 呼和浩特: 内蒙古大学, 2021.
[60] KULAKSIZ E, KAYAN B, GOZMEN B, et al. Comparative degradation of 5-fluorouracil in aqueous solution by using H2O2-modified subcritical water, photocatalytic oxidation and electro-Fenton processes[J]. Environmental Research, 2022, 204: 111898. doi: 10.1016/j.envres.2021.111898
[61] GUO S, ZHANG G, WANG J. Photo-Fenton degradation of rhodamine B using Fe2O3-Kaolin as heterogeneous catalyst: characterization, process optimization and mechanism[J]. Journal of Colloid and Interface Science, 2014, 433: 1-8. doi: 10.1016/j.jcis.2014.07.017
[62] ZHAO Q, LIU X, SUN M, et al. Natural kaolin derived stable SBA-15 as a support for Fe/BiOCl: a novel and efficient Fenton-like catalyst for the degradation of 2-nitrophenol[J]. RSC Advances, 2015, 5(46): 36948-36956. doi: 10.1039/C5RA01804H
[63] WU Y, YAO H, KHAN S, et al. Characteristics and Mechanisms of Kaolinite-Supported Zero-Valent Iron/H2O2 System for Nitrobenzene Degradation[J]. CLEAN - Soil, Air, Water, 2017, 45(3): 1600826. doi: 10.1002/clen.201600826
[64] ZHAI S, ZHENG Q, GE M Q. Nanosized mesoporous iron manganese bimetal oxides anchored on natural kaolinite as highly efficient hydrogen peroxide catalyst for polyvinyl alcohol degradation[J]. Journal of Molecular Liquids, 2021, 337: 116611. doi: 10.1016/j.molliq.2021.116611
[65] XIAO C, LI S, YI F, et al. Enhancement of photo-Fenton catalytic activity with the assistance of oxalic acid on the kaolin-FeOOH system for the degradation of organic dyes[J]. RSC Advances, 2020, 10(32): 18704-18714. doi: 10.1039/D0RA03361H
[66] KOSCO J, BIDWELL M, CHA H, et al. Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles[J]. Nature Materials, 2020, 19(5): 559-565. doi: 10.1038/s41563-019-0591-1
[67] ZHAO G, RUI K, DOU S X, et al. Heterostructures for electrochemical hydrogen evolution reaction: a review[J]. Advanced Functional Materials, 2018, 28(43): 1803291. doi: 10.1002/adfm.201803291
[68] LIN S, XU H, WANG Y, et al. Directly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning[J]. Journal of Materials Chemistry A, 2020, 8(11): 5663-5670. doi: 10.1039/C9TA13404B
[69] PENG K, WAN P, WANG H, et al. Unraveling the morphology effect of kandite supporting MoS2 nanosheets for enhancing electrocatalytic hydrogen evolution[J]. Applied Clay Science, 2021, 212: 106211. doi: 10.1016/j.clay.2021.106211
[70] DEDZO G K, YAMBOU E P, SAHEU M R T, et al. Hydrogen evolution reaction at PdNPs decorated 1 : 1 clay minerals and application to the electrocatalytic determination of p-nitrophenol[J]. Journal of Electroanalytical Chemistry, 2017, 801: 49-56. doi: 10.1016/j.jelechem.2017.07.030
[71] SONG B, WANG Z Y, LI J F, et al. Preparation and electrocatalytic properties of kaolin/steel slag particle electrodes[J]. Catalysis Communications, 2021, 148: 106177. doi: 10.1016/j.catcom.2020.106177
[72] ÖZCAN A, ATILIR ÖZCAN A, DEMIRCI Y, et al. Preparation of Fe2O3 modified kaolin and application in heterogeneous electro-catalytic oxidation of enoxacin[J]. Applied Catalysis B: Environmental, 2017, 200: 361-371. doi: 10.1016/j.apcatb.2016.07.018
-