东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义

桑继镇, 裴先治, 李瑞保, 刘成军, 陈有炘, 李佐臣, 陈国超, 杨森, 王旭斌, 陈功, 邓文兵. 东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质通报, 2016, 35(5): 700-710.
引用本文: 桑继镇, 裴先治, 李瑞保, 刘成军, 陈有炘, 李佐臣, 陈国超, 杨森, 王旭斌, 陈功, 邓文兵. 东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义[J]. 地质通报, 2016, 35(5): 700-710.
SANG Jizhen, PEI Xianzhi, LI Ruibao, LIU Chengjun, CHEN Youxin, LI Zuochen, CHEN Guochao, YANG Sen, WANG Xubin, CHEN Gong, DENG Wenbing. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of gabbro in Qingshuiquan, east section of East Kunlun, and its tectonic significance[J]. Geological Bulletin of China, 2016, 35(5): 700-710.
Citation: SANG Jizhen, PEI Xianzhi, LI Ruibao, LIU Chengjun, CHEN Youxin, LI Zuochen, CHEN Guochao, YANG Sen, WANG Xubin, CHEN Gong, DENG Wenbing. LA-ICP-MS zircon U-Pb dating and geochemical characteristics of gabbro in Qingshuiquan, east section of East Kunlun, and its tectonic significance[J]. Geological Bulletin of China, 2016, 35(5): 700-710.

东昆仑东段清水泉辉长岩体LA-ICP-MS锆石U-Pb年龄、地球化学特征及其构造意义

LA-ICP-MS zircon U-Pb dating and geochemical characteristics of gabbro in Qingshuiquan, east section of East Kunlun, and its tectonic significance

  • 清水泉辉长岩体位于东昆仑中缝合带清水泉蛇绿岩北侧,主要岩性为角闪辉长岩。该岩体的LA-ICP-MS锆石U-Pb测年结果为452.1±5Ma,形成时代为晚奥陶世。辉长岩体样品SiO2含量为43.89%~45.99%,Na2O含量为1.30%~2.32%,K2O含量为0.68%~1.39%,P2O5含量为0.26%~0.40%,TiO2含量较低,为0.74%~0.95%,MgO含量为5.72%~6.54%,Mg#值较低,为53~54。岩石地球化学特征显示,该岩体属于拉斑玄武岩系列,稀土元素表现出轻稀土元素富集、重稀土元素亏损的特点,微量元素以富集大离子亲石元素(Cs、Rb、Ba等,尤其以Ba的正异常最为突出)、亏损高场强元素(Nb、Ta、Ti、Zr、Hf)为特征。微量元素构造判别显示,其形成于活动陆缘岛弧构造环境。结合区域地质资料研究表明,清水泉辉长岩体可能形成于以清水泉蛇绿岩为代表的东昆仑中弧后有限洋盆向北俯冲的初始阶段。
  • 加载中
  • [1]

    任纪舜,姜春发,张正坤,等. 中国大地构造及其演化[M]. 北京:科学出版社,1980.

    [2]

    殷鸿福,张克信. 中央造山带的演化及其特点[J]. 地球科学,1998, 23(5):438-442.

    [3]

    潘裕生,周伟明,许荣华,等. 昆仑山早古生代地质特征与演化[J]. 中国科学(D辑),1996,26(4):302-307.

    [4]

    王国灿,张天平,梁斌,等. 东昆仑造山带东段昆中复合蛇绿混杂岩带及"东昆中断裂带"地质涵义[J]. 地球科学,1999,24(2):21-25.

    [5]

    朱云海,张克信,陈能松,等. 东昆仑造山带不同蛇绿岩带的厘定及其构造意义[J]. 地球科学,1999,24(2):26-30.

    [6]

    王国灿,张克信,梁斌,等. 东昆仑造山带结构及构造岩片组合[J]. 地球科学——中国地质大学学报,1997,22(4):16-20.

    [7]

    解玉月. 昆中断裂东段不同时代蛇绿岩特征及形成环境[J]. 青海地质,1998,1:27-36.

    [8]

    高延林,吴向农,左国朝. 东昆仑山清水泉蛇绿岩特征及其大地构造意义[J]. 西北地质科学,1988,21:17-28.

    [9]

    Yang J S, Robinson P T, Jiang C F, et al. Ophiolites of the Kunlun Mountains, China and their tectonic implications[J]. Tectonophysics, 1996, 258(1):299-305.

    [10]

    陆松年,于海峰,赵风清,等. 青藏高原北部前寒武纪地质初探[M]. 北京:地质出版社,2002:1-125.

    [11]

    冯建赟. 东昆仑都兰可可沙-科科可特镁铁-超镁铁质岩的地质特征、形成时代及构造意义[D]. 长安大学硕士学位论文,2010.

    [12]

    冯建赟,裴先治,于书伦,等. 东昆仑都兰县可可沙地区镁铁-超镁铁质杂岩的发现及其LA-ICP-MS锆石U-Pb年龄[J]. 地质通报,2010,37(1):28-38.

    [13]

    陈能松,孙敏,张克信,等. 东昆仑变闪长岩体的40Ar-39Ar和UPb年龄:角闪石过剩和东昆仑早古生代岩浆岩带的证据[J]. 科学通报,2000,45(21):2337-2342.

    [14]

    任军虎,柳益群,冯乔,等. 东昆仑清水泉辉绿岩脉地球化学及LA-ICP-MS锆石U-Pb定年[J]. 岩石学报,2009,25(5):1135-1145.

    [15]

    刘彬,马昌前,蒋红安,等. 东昆仑早古生代洋壳俯冲与碰撞造山作用的转换:来自胡晓钦镁铁质岩石的证据[J]. 岩石学报,2013, 29(6):2093-2106.

    [16]

    殷鸿福,张克信,陈能松,等. 中华人民共和国区域地质调查报告(1:25万冬给措纳湖幅)[M]. 武汉:中国地质大学出版社,2003:1-457.

    [17]

    边千韬,罗小全,李涤徽,等. 青海省阿尼玛卿布青山蛇绿混杂岩的地球化学性质及形成环境[J]. 地质学报,2001,75(1):45-55.

    [18]

    许志琴,杨经绥,陈远方. 阿尼玛卿缝合带及"俯冲-碰撞"动力学[C]//张旗. 蛇绿岩与地球动力学研究. 北京:地质出版社, 1996:185-189.

    [19]

    殷鸿福,张克信. 东昆仑造山带的一些特点[J]. 地球科学——中国地质大学学报,1997,22(4):339-342.

    [20]

    刘战庆,裴先治,李瑞保,等. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J]. 地质学报,2011,85(2):185-194.

    [21]

    Yuan H L, Gao S, Liu X M, et al. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370.

    [22]

    Anderson T. Correction of common Pb in U-Pb analyses that donot report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.

    [23]

    Ludwig K R. User's Manual for Isoplot/Ex. Version 2. 49, A geochronological Tool-kit for Microsoft Excel[J]. Berkeley:Berkeley Geochronology Center Special Publication, 2001:1-55.

    [24]

    吴元保,郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,2004,49(16):1589-1604.

    [25]

    Vavra G, Schmid R, Gebauer D. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps):an ion microprobe (SHRIMP) study[J]. Contributions to Mineralogy and Petrology, 1996, 122:337-358.

    [26]

    Vavra G, Schmid R, Gebauer D. Internal morophology, habit and U-Th-Pb microanalysis of amphibole to granulite facies zircon:geochronology of the irven zone (Southern Alps)[J]. Contributions to Mineralogy and Petrology, 1999, 134:380-404.

    [27]

    Wilson M. Igneous Petrogenesis:a global tectonic approach[M]. London:Unwin Hyman, 1989:1-466.

    [28]

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[C]//Thorpe R S. Andesites:orogenic andesites and related rocks. Chichester:Willy, 1982:525-548.

    [29]

    Pearce J A. A user's guide to basalt discrimination diagrams[J]. Geology of Canada, Short Course Notes, 1996, 12:79-113.

    [30]

    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20(4):325-343.

    [31]

    Barrett T J, MacLean W H. Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstone and younger volcanic rocks[C]//Lentz D R. Alteration and Alteration Processes Associated with Ore-Forming Systems. Geological Association of Canada, Short Course Notes, 1994, 11:433-467.

    [32]

    Boynton W V. Geochemistry of the rare earth elements:meteorite studies[C]//Henderson P. Rare Earth Element Geochemistry. Elservier, 1984:63-114.

    [33]

    Henderson P. Rare Earth Element Geochemistry[M]. New York:Elsevier Science Publications B V, 1984.

    [34]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 1989, 42:313-345.

    [35]

    Rollison H R. Using Geochemical Date:Evaluation, Presentation, Interpretation[M]. New York:Longman Group UK Ltd, 1993:1-352.

    [36]

    Condie K C. Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary:Identification and significance[J]. Lithos, 1989, 23:1-18.

    [37]

    李曙光. 蛇绿岩生成构造环境的Ba-Th-Nb-La判别图[J]. 岩石学报,1993,9(2):146-157.

    [38]

    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analysis[J]. Earth and Planetary Science Letters, 1973, 19(2):290-300.

    [39]

    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram[J]. Chemical Geology, 1986, 56:207-218.

    [40]

    李王晔,李曙光,郭安林,等. 青海东昆南构造带苦海辉长岩和德尔尼闪长岩的锆石SHRIMP U-Pb年龄及痕量元素地球化学——对"祁-柴-昆"晚新元古代-早奥陶世多岛洋南界的制约[J]. 中国科学(D辑),2007,37(增刊Ⅰ):288-294.

    [41]

    Li W Y, Li S G, Guo A L, et al. Zircon SHRIMP U-Pb ages and trace element geochemistry of the Kuhai gabbro and the Dur'ngoi diorite in the southern east Kunlun tectonic belt, Qinghai, Western China and their geological implications[J]. Science in China (Series D), 2007, 50(2):331-338.

    [42]

    李王晔. 西秦岭-东昆仑造山带蛇绿岩及岛弧型岩浆岩的年代学和地球化学研究[D]. 中国科学技术大学博士学位论文,2008.

    [43]

    张亚峰,裴先治,丁仨平,等. 东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义[J]. 地质通报,2010,29(1):79-85.

    [44]

    陈能松,何蕾,孙敏,等. 东昆仑造山带早古生代变质峰期和逆冲构造变形年代的精确限定[J]. 科学通报,2002,47(8):628-631.

    [45]

    LI R B, PEI X Z, LI Z C, et al. Regional tectonic transformation in East Kunlun Orogenic Belt in Early Paleozoic:Constraints from the Geochronology and Geochemistry of Helegangnaren Alkalifeldspar Granite[J]. Acta Geologica Sinica (English Edition), 2013, 87(2):333-345.

    [46]

    陈能松,孙敏,王勤燕,等. 东昆仑造山带中带的锆石U-Pb定年与构造演化启示[J]. 中国科学(D辑),2008,38(6):657-666.

    [47]

    李瑞保,裴先治,李佐臣,等. 东昆仑东段晚古生代-中生代若干不整合面特征及其对重大构造事件的响应[J]. 地学前缘,2012, 19(5):244-254.

  • 加载中
计量
  • 文章访问数:  1140
  • PDF下载数:  50
  • 施引文献:  0
出版历程
收稿日期:  2015-01-01
修回日期:  2015-09-21
刊出日期:  2016-05-15

目录