粤东新寮岽铜多金属矿区石英闪长岩锆石U-Pb年龄、地球化学及Hf同位素组成
Zircon U-Pb age, geochemistry and Hf isotopic compositions of quartzdiorite from the Xinliaodong Cu polymetallic deposit in eastern Guangdong Province
-
摘要: 新寮岽铜多金属矿是近年来在粤东地区新发现的一个铜矿床。对该矿床中与成矿关系密切的石英闪长岩进行了锆石U-Pb年龄、地球化学、Hf同位素研究,以约束其形成时代和岩石成因。测得石英闪长岩LA-ICP-MS锆石U-Pb年龄为161±1Ma(n=25,MSWD=0.57),被解释为岩体的成岩年龄。地球化学数据显示,石英闪长岩具有碱含量中等(Na2O+K2O=3.99%~5.05%),高镁(MgO=4.53%~4.91%)的特征,属准铝质钙碱性系列。稀土和微量元素特征表明,其富集轻稀土元素和大离子亲石元素(K、Rb、Ba、Th、U),亏损重稀土元素和高场强元素(Nb、Ta、Ti、P),具弱负Eu异常(δEu=0.68~0.76)。电子探针分析结果表明,石英闪长岩中黑云母为镁质黑云母,具环带结构,斜长石为拉长石。锆石Hf同位素分析结果表明,石英闪长岩εHf(t)为-5.8~2.7,tDM2=1.03~1.58Ga。岩石地球化学和锆石Hf同位素组成特征表明,石英闪长岩源区较复杂,为壳幔混合源,可能为俯冲板片部分熔融并与楔形地幔橄榄岩相互作用形成,且岩浆上侵过程中有古老地壳物质的混染。综合岩石地球化学、矿物化学及Hf同位素特征,结合区域构造演化史和前人研究成果,推测岩体形成于俯冲背景下的活动大陆边缘环境。Abstract: The Xinliaodong Cu polymetallic deposit is a newly-discovered copper ore deposit in eastern Guangdong Province. In this paper, zircon U-Pb age, geochemistry and zircon Hf isotope of the ore-related quartz-diorite from the Xinliaodong Cu polymetallic ore district were studied to constrain its geochronology and petrogenesis. The zircon LA-ICP-MS dating yielded a concordant age of 161±1Ma (n=25, MSWD=0.57), which is interpreted as the petrogenic age of quartz-diorite. Geochemical data show that the quartz-diorite is magnesium-enriched in composition (MgO=4.53%~4.91%) with moderate content of alkali (Na2O+K2O=3.99%~5.05%). It is a metaluminous granite and belongs to the calc-alkaline series. Its REE and trace elements are characterized by enrichment of LREE and large ion lithophile elements (K, Rb, Ba, Th and U) and depletion of HREE and high-field strength elements (Nb, Ta, Ti and P), with slightly weak negative anomalies of Eu (δEu=0.68~0.76). The results of the electron microprobe analysis show that the biotite from the quartz-diorite belongs to magnesian biotite, whereas the zoned plagioclase belongs to labradorite. The Hf isotope shows that the εHf (t) values of the quartze-diorite range from -5.8 to 2.7, with tDM2 ages between 1.03Ga and 1.58Ga. Geochemistry and zircon Hf isotopic compositions indicate that the parental magmas of the quartz-diorite are rather complex. The diagenetic mass of the pluton was derived from the source of crust-mantle mixture and it might have originated from partial melting of a subducted slab which reacted with mantle wedge peridotites. Besides, the magma was intermingled with ancient crustal material during magmatic ascent. According to petrogeochemistry, mineral chemistry and Hf isotope, combined with the tectonic evolution of the eastern Guangdong Province as well as previous achievements, the authors infer that the quartz-diorite was generated in an active continental margin setting triggered by slab subduction.
-
[1] 毛景文,谢桂青,郭春丽,等.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报,2008,14(4):510-526.
[2] 毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区[J].矿床地质,1999,18(4):291-299.
[3] 毛景文,王志良.中国东部大规模成矿时限及其动力学背景的初步探讨[J].矿床地质,2000,19(4):289-296.
[4] 毛景文,谢桂青,李晓峰,等.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘,2004,11(1):45-55.
[5] 毛景文,谢桂青,郭春丽,等.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景[J].岩石学报,2007,23(10):2329-2338.
[6] 毛景文,陈懋弘,袁顺达,等.华南地区钦杭成矿带地质特征和矿床时空分布规律[J].地质学报,2011,85(5):636-658.
[7] 毛景文,谢桂青,张作衡,等.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188.
[8] 华仁民,毛景文.试论中国东部中生代成矿大爆发[J].矿床地质,1999,18(4):300-308.
[9] 华仁民,陈培荣,张文兰,等.华南中、新生代与花岗岩类有关的成矿系统[J].中国科学(D辑),2003,33(4):335-343.
[10] 华仁民,陈培荣,张文兰,等.论华南地区中生代3次大规模成矿作用[J].矿床地质,2005,24(2):99-107.
[11] 华仁民,李光来,张文兰,等.华南钨和锡大规模成矿作用的差异及其原因初探[J].矿床地质,2010,29(1):9-23.
[12] 舒良树.华南构造演化的基本特征[J].地质通报,2012,31(7):1035-1053.
[13] 程彦博,童祥,武俊德,等.华南西部地区晚中生代与W-Sn矿有关花岗岩的年代学格架及地质意义[J].岩石学报,2010,26(3):809-818.
[14] 杨明桂,黄水保,楼法生,等.中国东南陆区岩石圈结构与大规模成矿作用[J].中国地质,2009,36(3):528-543.
[15] 郑伟,陈懋弘,赵海杰,等.广东鹦鹉岭钨多金属矿床中黑云母花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素特征及其地质意义[J].岩石学报,2013,29(12):4121-4135.
[16] 刘鹏,程彦博,毛景文,等.粤东田东钨锡多金属矿床花岗岩锆石U-Pb年龄、Hf同位素特征及其意义[J].地质学报,2015,89(5):1244-1257.
[17] 王小雨,毛景文,程彦博,等.粤东新寮岽铜多金属矿床绿泥石特征及其地质意义[J].岩石矿物学杂志,2014,33(5):885-905.
[18] 徐晓春.粤东地区中生代岩浆作用和金属成矿的地球化学研究[D].合肥工业大学博士学位论文,1993:1-198.
[19] 徐晓春,岳书仓.粤东中生代火山-侵入杂岩的地壳深熔成因——Pb-Nd-Sr多元同位素体系制约[J].地质论评,1999,45(增刊):829-835.
[20] 黄卉,马东升,陆建军,等.湘东邓阜仙二云母花岗岩锆石U-Pb年代学及地球化学研究[J].矿物学报,2013,33(2):245-255.
[21] Ludwig K R.User's Manual for Isoplot 3.00:A Geochronological Toolkit for Microsoft Excel[M].Berkeley:Geochronology Center Special Publication,2003:4-70.
[22] 侯可军,李延河,邹天人,等.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2594-2604.
[23] Elhlou S,Belousova E,Griffin W L,et al.Trace element and isotopic composition of GJ-red zircon standard by laser ablation[J].Geochimica et Cosmochimica Acta,2006,70(18):407-421.
[24] Qi L,Hu J,Gregoire D C.Determination of trace elements in granites by inductively coupled plasma mass spectrometry[J].Talanta,2000,51(3):507-513.
[25] 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
[26] Compston W,Williams I S,Kirschvink I L.Zircon U-Pb ages for the Early Cambrian timescale[J].Geological society of London,1992,149(2):171-184.
[27] Maniar P D,Piccoli P M.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,1989,101(5):635-643.
[28] Rollinson H R.Using Geochemical Data:Evaluation,Presentation,Interpretation[M].New York:Longman Scientific and Technical,1993:1-352.
[29] Sun S S,McDonough W F.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and process[C]//Saunders A D,Norry M J.Magmatism in the Ocean Basins.Geol.Soc.Spec.Publ.,1989,42(1):313-345.
[30] 郑巧荣.由电子探针分析值计算Fe3+和Fe2+[J].矿物学报,1983,(1):55-62.
[31] 马昌前,杨坤光,汤仲华,等.花岗岩类岩浆动力学理论方法及鄂东花岗岩类例析[M].武汉:中国地质大学出版社,1994:77-78.
[32] Foster M D.Interpretation of the composition of trioctahedral micas[J].U.S.Geol.Surv.Prof.Paper.,1960,354-B:11-49.
[33] 吴平霄,吴金平,肖文丁,等.斜长石环带的成因机制[J].地质地球化学,1997,4:40-49.
[34] Wiebe R A.Plagioclase stratigraphy:a record of magmatic conditions and events in a granite stock[J].American Journal of Science,1986,266:690-703.
[35] Holness M B.Spherulitie textures formed during crystallization of partially melted arkose[J].Rum,Scotland,Geol.Mag.,2002,139(6):651-663.
[36] 梅芳.宁镇地区中酸性岩浆岩中斜长石的矿物学特征[J].科技信息,2012,17:11-17.
[37] Watson E B,Harrison T M.Zircon saturation revisited:Temperature and composition effects in avariety of crustal magma types[J].Earth Planet.Sci.Lett,1983,64:295-304.
[38] Kinny P D,Mass R.Lu-Hf and Sm-Nd isotope systems in zircon[C]//Hanchar J M,Hoskin P W O.Zircon.Rev.Mineral.Geochem.,2003,53:327-341.
[39] 吴福元,李献华,郑永飞,等.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.
[40] Vervoort J D,Pachelt P J,Gehrels G E,et al.Constraints on early Earth differentiation from hafnium and neodymium isotopes[J].Nature,1996,379(6566):624-627.
[41] Amelin Y,Lee D C,Halliday A N.Early-Middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J].Geochimica et Cosmochimica Acta,2000,64(24):4205-4225.
[42] Watson E B,Harrison T M.Zircon thermometer reveals minimum melting conditions on earliest Earth[J].Science,2005,308(5723):841-844.
[43] Miller C F,McDowell S M,Mapes R W.Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance[J].Geology,2003,31(6):529-532.
[44] Henry D J,Guidotti C V,Thomson J A.The Ti saturation surface for low to medium pressure metapelitic biotites:Implications for geothemometry and Ti-substitution mechanisms[J].Am.Mineral.,2005,90:316-328.
[45] 高飞,庞雅庆,林锦荣,等.诸广棉花坑铀矿床花岗岩中黑云母成分特征及其成岩成矿意义[J].高校地质学报,2013,19(增刊):274-275.
[46] Wones D R,Eugster H P.Stability of biotite:experiment,theory,and application[J].Am.Mineral,1965,50:1228-1272.
[47] Eugster H P,Wones D R.Stability relations of the ferruginous biotite,annite[J].J.Petrol.,1962,3(1):2648-2697.
[48] Ishihara S.The magnetite-series and ilmenite-series granitic rocks[J].Mining Geology,1977,27:293-305.
[49] 吕志成,段国正,董光华.大兴安岭中南段燕山期三类不同成矿花岗岩中黑云母的化学成分特征及其成岩成矿意义[J].矿物学报,2003,23(2):177-184.
[50] Kelemen P B,Hangh K,Greenem A R.One view of the geochemistry of subduction-related magmatic arcs,with an emphasis on primitive andesite and lower crust[C]//Rudnick R L.Treatise On Geochemistry,2003,3:593-659.
[51] Li J W,Zhao X F,Zhou M F,et al.Origin of the Tongshankou porphyry-skarn Cu-Mo deposit,eastern Yangtze craton,Eastern China:geochronological,geochemical,and Sr-Nd-Hf isotopic constraints[J].Miner.Deposita.,2008,43:315-336.
[52] Wu F Y,Jahn B M,Wilde S A,et al.Highly fractionated I-type granites in NE China (I):Geochronology and petrogenesis[J].Lithos,2003,66:241-273.
[53] Eby G N,Wooley A R,Din V,et al.Geochemistry and petrogenesis of nepheline syenite:Kasungu-Chipala,Homba,and Ulindi nepheline syenite intrusions,north Nyasa alkaline province,Malawi[J].J.Petrol.,1998,39:1405-1424.
[54] 汪欢,王建平,刘家军,等.南秦岭西坝花岗质岩体矿物学特征及成岩意义[J].现代地质,2011,25(3):489-502.
[55] 丁孝石.西藏中南部花岗岩类中云母矿物标型特征及其地质意义[J].中国地质科学院矿床地质研究所所刊,1988,1:33-50.
[56] 周作侠.湖北丰山洞岩体成因探讨[J].岩石学报,1986,(1):59-70.
[57] Cheng Y B,Mao J W.Age and geochemistry of granites in Gejiu area,Yunnan province,SW China:Constraints ont their petrogenesis and tectonic setting[J].Lithos,2010,120:258-276.
[58] 邓晋福,莫宣学,赵海玲,等.中国东部燕山期岩石圈-软流圈系统大灾变与成矿环境[J].矿床地质,1999,18(4):309-315.
[59] 王德滋,沈渭洲.中国东南部花岗岩成因与地壳演化[J].地学前缘,2003,10(3):209-220.
[60] 徐夕生,谢昕.中国东南部晚中生代-新生代玄武岩与壳幔作用[J].高校地质学报,2005,11(3):318-334.
[61] 董树文,张岳桥,龙长兴,等.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报,2007,81(11):1449-1461.
[62] 徐先兵,张岳桥,贾东,等.华南早中生代大地构造过程[J].中国地质,2009,36(3):573-593.
[63] 张岳桥,董树文,李建华,等.华南中生代大地构造研究新进展[J].地球学报,2012,33(3):257-279.
[64] 杨宗永,何斌.华南侏罗纪构造体质转换:碎屑锆石U-Pb年代学证据[J].大地构造与成矿,2013,37(4):580-591.
[65] Xu X S,Dong C W,Li W X,et al.Late Mesozoic intrusive complexes in the coastal area of Fujian,SE China:The significance of the gabbro-diorite-granite association[J].Lithos,1999,46(2):299-315.
[66] Zhou X M,Li W X.Origin of Late Mesozoic igneous rocks in southeastern China:Implications for lithosphere subduction and underplating of mafic magmas[J].Tectonophysics,2000,326(3/4):269-287.
[67] 汪洋.湘南早中侏罗世花岗闪长岩的岩石化学特征、构造背景及地质意义[J].北京地质,2003,15(3):1-7.
[68] 李晓峰,Watanabe Y,华仁民,等.华南地区中生代Cu-(Mo)-W-Sn矿床成矿作用与洋岭/转换断层俯冲[J].地质学报,2008,82(5):625-640.
[69] 孙卫东,凌明星,杨晓勇,等.洋脊俯冲与斑岩铜金矿成矿[J].中国科学:地球科学,2010,40(2):127-137.
[70] 梁锦,周永章,李红中,等.钦-杭结合带斑岩型铜矿的基本地质特征及成因分析[J].岩石学报,2012,28(10):3361-3372.
[71] Abdel-Ralman M A.Nature of biotites from alkaline,calc-alkaline and peraluminous magmas[J].J.Petrol.,1994,35(2):525-541.
[72] Batchelor R A,Bowden P.Petrogenetic interpretation of granitoid rock series using multi-cationic parameters[J].Chemical Geology,1985,48(1):43-55.
[73] Pearce J A,Harris N B W,Tindle A G.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].J.Petrol.,1984,25:956-983.
计量
- 文章访问数: 1059
- PDF下载数: 107
- 施引文献: 0