全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释

杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 杜雪亮, 焦守涛, 王淑华. 全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释[J]. 地质通报, 2016, 35(12): 1937-1949.
引用本文: 杨婧, 王金荣, 张旗, 陈万峰, 潘振杰, 杜雪亮, 焦守涛, 王淑华. 全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释[J]. 地质通报, 2016, 35(12): 1937-1949.
YANG Jing, WANG Jinrong, ZHANG Qi, CHEN Wanfeng, PAN Zhenjie, DU Xueliang, JIAO Shoutao, WANG Shuhua. Global IAB data excavation: The performance in basalt discrimination diagrams and preliminary interpretation[J]. Geological Bulletin of China, 2016, 35(12): 1937-1949.
Citation: YANG Jing, WANG Jinrong, ZHANG Qi, CHEN Wanfeng, PAN Zhenjie, DU Xueliang, JIAO Shoutao, WANG Shuhua. Global IAB data excavation: The performance in basalt discrimination diagrams and preliminary interpretation[J]. Geological Bulletin of China, 2016, 35(12): 1937-1949.

全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释

Global IAB data excavation: The performance in basalt discrimination diagrams and preliminary interpretation

  • MORB(洋中脊玄武岩)、OIB(洋岛玄武岩)和IAB(岛弧玄武岩)是学术界最关心的3 种玄武岩类型,其中尤以与板块消减作用有关的岛弧岩浆活动备受关注。岛弧可分为洋内岛弧和大陆边缘岛弧(活动陆缘弧)2 类。对IAB 进行讨论,重点探讨IAB 的识别。IAT(岛弧拉斑玄武岩)和IAB 是前弧、岛弧和后弧岩浆作用的产物,其中,后弧组分更具多样性,它不同于弧后玄武岩,前者属于弧的范围,而后者形成的动力学过程与俯冲系统有关,但其是独立的构造单元,尽管其岩浆作用可能仍受到俯冲流体的影响。前人对IAB 进行了大量研究,提出了多种构造环境判别图解,并得到广泛应用。尝试应用全球玄武岩数据来验证上述判别图的可信度,研究发现,可信度高的判别图不多,且大多与Th、Ta(Nb)和Ti 元素有关的,如Hf-Th-Ta(Nb)、Ti-Zr-Sr 和Th/Yb-Ta/Yb 图,其余判别图的判别效果可信度低且具多解性,建议谨慎使用。IAB 与MORB 和OIB 的区别主要体现在Nb-Ta 亏损的特征上,是否受到俯冲流体的影响是区分IAB 与MORB 和OIB 最重要的标志。
  • 加载中
  • [1]

    Capedri S, Venturelli G, Bocchi G, et al. The geochemistry and petrogenesis of an ophiolitic sequence from Pindos, Greece[J]. Contributions to Mineralogy and Petrology, 1980, 74(2): 189-200.

    [2]

    Galoyan G, Rolland Y, Sosson M, et al. Evidence for superposed MORB, oceanic plateau and volcanic arc series in the Lesser Caucasus (Stepanavan, Armenia)[J]. Comptes Rendus Geoscience, 2007, 339(7): 482-492.

    [3]

    Glassley W. Geochemistry and tectonics of the Crescent volcanic rocks, Olympic Peninsula, Washington[J]. Geological Society of America Bulletin, 1974, 85(5): 785-794.

    [4]

    Harris N B W, Pearce J A, Tindle A G. Geochemical characteristics of collision-zone magmatism[J]. Geological Society, London, Special Publications, 1986, 19(1): 67-81.

    [5]

    Meschede M. A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb, Zr, Y diagram[J]. Chemical Geology, 1986, 56(3): 207-218.

    [6]

    Mullen E D. MnO-TiO2-P2O5: a minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters, 1983, 62(1): 53-62.

    [7]

    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and planetary science letters, 1973, 19(2): 290-300.

    [8]

    Pearce J A, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Jour-nal of Petrology, 1984, 25(4): 956-983.

    [9]

    Pearce J A, Lippard S J, Roberts S. Characteristics and tectonic significance of supra-subduction zone ophiolites[J]. Geological Society, London, Special Publications, 1984, 16(1): 77-94.

    [10]

    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks[J]. Contributions to mineralogy and petrology, 1979, 69(1): 33-47.

    [11]

    Pearce J A, Peate D W. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review of Earth and Planetary Sciences, 1995, 23: 251-286.

    [12]

    Pearce J A. Basalt geochemistry used to investigate past tectonic environments on Cyprus[J]. Tectonophysics, 1975, 25(1): 41-67.

    [13]

    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins[J]. Journal of the Electrochemical Society, 1983, 147(6): 2162-2173.

    [14]

    Pearce J A. Statistical analysis of major element patterns in basalts[J]. Journal of Petrology, 1976, 17(1): 15-43.

    [15]

    Pearce J A. Supra-subduction zone ophiolites: the search for modern analogues[J]. Special Papers-Geological Society of America, 2003: 269-294.

    [16]

    Pearce J A. Trace element characteristics of lavas from destructive plate boundaries[J]. Andesites, 1982, 8: 525-548.

    [17]

    Pearce T H, Gorman B E, Birkett T C. The relationship between major element chemistry and tectonic environment of basic and intermediate volcanic rocks[J]. Earth and Planetary Science Letters, 1977, 36(1): 121-132.

    [18]

    Shervais J W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and planetary science letters, 1982, 59(1): 101-118.

    [19]

    Wood D A, Joron J L, Treuil M. A re-appraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings[J]. Earth and Planetary Science Letters, 1979, 45(2): 326-336.

    [20]

    Wood D A. The application of a Th Hf Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volca-nic Province[J]. Earth and Planetary Science Letters, 1980, 50(1): 11-30.

    [21]

    Workman R K, Hart S R. Major and trace element composition of the depleted MORB mantle (DMM)[J]. Earth and Planetary Science Letters, 2005, 231(1): 53-72.

    [22]

    Allan J F, Carmichael I S E. Lamprophyric lavas in the Colima graben, SW Mexico[J]. Contributions to Mineralogy and Petrology, 1984, 88(3): 203-216.

    [23]

    杨婧, 王金荣, 张旗, 等. 弧后盆地玄武岩(BABB)数据挖掘: 与MORB及IAB的对比[J]. 地球科学进展, 2016, 31(1): 66-77.

    [24]

    王金荣, 潘振杰, 张旗, 等. 大陆板内玄武岩数据挖掘: 成分多样性及在判别图中的表现[J]. 岩石学报, 2016, 32(7): 1919-1933.

    [25]

    Li C, Arndt N T, Tang Q, et al. Trace element indiscrimination diagrams[J]. Lithos, 2015, 232: 76-83.

    [26]

    Ewart A, Collerson K D, Regelous M, et al. Geochemical evolution within the Tonga-Kermadec-Lau arc-back-arc systems: the role of varying mantle wedge composition in space and time[J]. Journal of Petrology, 1998, 39(3): 331-368.

    [27]

    Niu Y, O'Hara M J. Origin 捯潦洠灯潣獥楡瑮椠潩湳獬?普牤漠浢?关畡慬瑴敳爺渠慁爠祮?扷愠獰慥汲瑳楰捥?癴潩汶捥愠湦楲捯?爠潰捥歴獲?楬湯?湹漬爠瑧桥敯慣獨瑥敭物湳??慹瀬愠湡???浭灩汮楥捲慡瑬椠潰湨獹?晩潣牳?楣湯瑮敳物慤捥瑲楡潴湩?扮敳瑛睊敝攮渠?獯畵扲摮畡捬琠敯摦?潇捥敯慰湨楹捳?獣污慬戠?慥湳摥?浲慣湨琺氠敓?睬敩摤朠故孡?嵴???漲田爰渳愬氠?漰昸??攩漺瀠栲礸猳椭挲愹氹?刼敢獲放慛爲挸桝??卵潮氠楓搠??愠牍瑣桄????????ㄠう金???????ち?ㄠ??つ????扴牯?孩??嵳??獴桥業穡畴歩慣?夠??丠慯正慥条慮睩慣????偡敬瑴牳漺氠潩杭楰捬慩汣?整癩潯汮畳琠楦潯湲?潭晡?剴楬獥栠楣牯業?癯潳汩捴慩湯潮??湮潤爠瑰桲敯牣湥??潥歳歛慊楝搮漠???慬灯慧湩季?嵬???潣畩牥湴慹氬?潌景??楯湮攬爠慓汰潥杣祩?偬攠瑐牵潢汬潩杣祡????捳漬渠漱洹椸挹??攴漲氨漱朩示?″?????‵??????′代????????戠牊?孁??嵓??獲桮椠穒甠歊愬?奂??乯慭步慲朠慓眠慈???????爮?慇来敯獣?潥晭?摣慡捬椠瑭楡捰?汩慮癧愠?摦漠浴敨獥?潍晡?剩楡獮桡椠牡楲?瘭潢污捳慩湮漠??湳潴牥瑭栺攠牉湭??潩正歡慴楩摯潮?嬠?嵯???潨略爠湮慡汴?潲晥??楮湤攠牤慩汳潴杲祩?偵整瑩牯潮氠潯杦礠????捵潣湴潩浯楮挠??敭潰汯潮来祮?????????????????ひ?????ophysics, Geosystems, 2005, 6(7): 406-407.

    [28]

    Zindler A, Hart S. Chemical geodynamics[J]. Annual review of earth and planetary sciences, 1986, 14: 493-571.

    [29]

    Rollinson H R. Using geochemical data: evaluation, presentation, interpretation[M]. Routledge, 2014.

    [30]

    Bloomer S H. Geochemical characteristics of boninite-and tholeiite-series volcanic rocks from the Mariana forearc and the role of an incompatible element-enriched fluid in arc petrogenesis[J]. Geological Society of America Special Papers, 1987, 215: 151-164.

    [31]

    Tatsumi Y, Maruyama S. Boninites and high-Mg andesites:tectonics and petrogenesis[C]//Crawford A J. Boninite and related rocks. Unwin Hyman, London, 1989: 50-71

    [32]

    Kuritani T, Yokoyama T, Nakamura E. Generation of rear-arc magmas induced by influx of slab-derived supercritical liquids: implications from alkali basalt lavas from Rishiri volcano, Kurile arc[J]. Journal of Petrology, 2008, 49(7): 1319-1342.

    [33]

    Kuritani T, Kitagawa H, Nakamura E. Assimilation and fractional crystallization controlled by transport process of crustal melt: implications from an alkali basalt-dacite suite from Rishiri Volcano, Japan[J]. Journal of Petrology, 2005, 46(7): 1421-1442.

    [34]

    Nakamura E, Campbell I H, Sun S S. The influence of subduction processes on the geochemistry of Japanese alkaline basalts[J]. Nature, 1985, 316(6023): 55-58.

    [35]

    Shibata T, Nakamura E. Across-arc variations of isotope and trace element

  • 加载中
计量
  • 文章访问数:  1822
  • PDF下载数:  391
  • 施引文献:  0
出版历程
收稿日期:  2016-06-19
修回日期:  2016-11-02
刊出日期:  2016-12-15

目录