东昆仑东段巴隆地区朝火鹿陶勒盖花岗闪长岩体锆石U-Pb年龄、地球化学及其地质意义

陈功, 裴先治, 李佐臣, 李瑞保, 陈有炘, 刘成军, 陈国超, 王旭斌, 桑继镇, 杨森, 邓文兵. 东昆仑东段巴隆地区朝火鹿陶勒盖花岗闪长岩体锆石U-Pb年龄、地球化学及其地质意义[J]. 地质通报, 2016, 35(12): 1990-2005.
引用本文: 陈功, 裴先治, 李佐臣, 李瑞保, 陈有炘, 刘成军, 陈国超, 王旭斌, 桑继镇, 杨森, 邓文兵. 东昆仑东段巴隆地区朝火鹿陶勒盖花岗闪长岩体锆石U-Pb年龄、地球化学及其地质意义[J]. 地质通报, 2016, 35(12): 1990-2005.
CHEN Gong, PEI Xianzhi, LI Zuochen, LI Ruibao, CHEN Youxin, LIU Chengjun, CHEN Guochao, WANG Xubin, SANG Jizhen, YANG Sen, DENG Wenbing. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains[J]. Geological Bulletin of China, 2016, 35(12): 1990-2005.
Citation: CHEN Gong, PEI Xianzhi, LI Zuochen, LI Ruibao, CHEN Youxin, LIU Chengjun, CHEN Guochao, WANG Xubin, SANG Jizhen, YANG Sen, DENG Wenbing. Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains[J]. Geological Bulletin of China, 2016, 35(12): 1990-2005.

东昆仑东段巴隆地区朝火鹿陶勒盖花岗闪长岩体锆石U-Pb年龄、地球化学及其地质意义

Zircon U-Pb geochronology, geochemical characteristics and geological significance of Chaohuolutaolegai granodiorite in Balong area, East Kunlun Mountains

  • 东昆仑造山带晚古生代—早中生代由于布青山-阿尼玛卿洋的俯冲发育有大量岛弧型花岗岩类。选取东昆北巴隆地区朝火鹿陶勒盖花岗闪长岩体寄主岩和闪长质暗色微粒包体进行了岩相学、LA-ICP-MS 锆石U-Pb 年代学及地球化学研究。结果表明,岩体寄主岩的结晶年龄为242.3±1.3Ma,暗色微粒包体结晶年龄为241.2±0.8Ma,显示其形成于中三叠世;寄主岩和暗色微粒包体A/CNK 值介于0.86~1.06 之间,为准铝质-弱过铝质;稀土元素总量分别为119×10-6~170×10-6、189×10-6,稀土元素配分模式显示右倾型,具有负Eu 异常;岩石富集Rb、Ba、Th 等大离子亲石元素,亏损Nb、Ta、Ti 等高场强元素,具有弧岩浆岩特征。野外及岩相学特征均显示包体为基性岩浆进入酸性岩浆快速冷凝形成的,为俯冲板片断离导致幔源岩浆上侵形成的岩浆混合作用的产物,是布青山-阿尼玛卿洋俯冲晚期的岩浆记录。
  • 加载中
  • [1]

    殷鸿福, 张克信. 东昆仑造山带的一些特点[J]. 地球科学-中国地质大学学报, 1997, 22(4): 339-342.

    [2]

    任纪舜. 中国及邻区大地构造图(1:5000000)[M]. 北京: 地质出版社, 1999.

    [3]

    姜春发, 王宗起, 李锦轶. 中央造山带开合构造[M]. 北京: 地质出版社, 2000: 1-154.

    [4]

    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414.

    [5]

    李荣社, 计文化, 赵振明, 等. 昆仑早古生代造山带研究进展[J]. 地质通报, 2007, 20(4): 374-382.

    [6]

    肖庆辉, 王涛, 邓晋福, 等. 中国典型造山带花岗岩与大陆地壳生长研究[M]. 北京: 地质出版社, 2009: 504-527.

    [7]

    刘成东, 莫宣学, 罗照华, 等. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据[J]. 科学通报, 2004, 49(6): 592-602.

    [8]

    刘成东. 东昆仑造山带东段花岗岩岩浆混合作用[M]. 北京: 地质出版社, 2008.

    [9]

    谌宏伟, 罗照华, 莫宣学, 等. 东昆仑喀雅克登塔格杂岩体的SHRIMP年龄及其地质意义[J]. 岩石矿物学杂志, 2006, 25(1): 25-32.

    [10]

    许志琴, 李海兵, 杨经绥, 等. 造山的高原—青藏高原巨型造山拼贴体和造山类型[J]. 地学前缘, 2006, 13(4): 1-16.

    [11]

    陈国超. 东昆仑造山带(东段)晚古生代-早中生代花岗质岩石特征、成因及地质意义[D]. 长安大学博士学位论文, 2014.

    [12]

    郭正府, 邓晋福, 徐志琴, 等. 青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程[J]. 现代地质, 1998, 12(3): 344-352.

    [13]

    刘成东, 莫宣学, 罗照华, 等. 东昆仑壳-幔岩浆混合作用: 来自锆石SHRIMP年代学的证据[J]. 科学通报, 2004, 49(6): 592-602.

    [14]

    杨经绥, 徐志琴, 李海兵, 等. 东昆仑阿尼玛卿地区古特提斯火山作用和板块构造体系[J]. 岩石矿物学杂志, 2005, 24(5): 369-379.

    [15]

    莫宣学. 青藏高原岩浆岩成因研究: 成果与展望[J]. 地质通报, 2009, 28(12): 1694-1702.

    [16]

    丰成友, 王松, 李国臣, 等. 青海祁漫塔格中晚三叠世花岗岩: 年代学、地球化学及成矿意义[J]. 岩石学报, 2012, 28(2): 665-678.

    [17]

    古凤宝. 东昆仑华力西期-印支期花岗岩组合及构造环境[J]. 青海地质, 1994, 6(2): 18-26.

    [18]

    罗照华, 邓恶福, 曹水清, 等.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化[J].现代地质, 1999, 13(1): 51-56.

    [19]

    袁万明, 莫宣学, 喻学惠, 等. 东昆仑印支期区域构造背景的花岗岩记录[J]. 地质论评, 2000, 46(2): 203-211.

    [20]

    刘成东, 莫宣学, 罗照华, 等. 东昆仑造山带花岗岩类Pb-Sr-Nd-O同位素特征[J]. 地球学报, 2003, 24(6): 584-588.

    [21]

    赵振明, 马振东, 王秉璋, 等. 东昆仑早泥盆世碰撞造山的侵入岩证据[J]. 地质论评, 2008, 54(1): 47-56.

    [22]

    孙雨, 裴先治, 丁仨平, 等. 东昆仑哈拉尕吐岩浆混合岩浆岩: 来自锆石U-Pb年代学的证据[J]. 地质学报, 2009, 83(7): 1000-1010.

    [23]

    Xiong F H, Ma C Q, Zhang J Y, et al. The origin of mafic microgranular enclaves and their host granodiorites from East Kunlun, Northern Qinhai-Tibet Plateau: implications for magma mixing during subduction of Paleo-Tethyan lithosphere[J]. Mineralogy and Petrology, 2012, 104: 211-224.

    [24]

    王学良. 东昆仑东段香加南山花岗岩体地质特征及其形成年代研究[D]. 长安大学硕士学位论文, 2012.

    [25]

    张刚. 东昆仑造山带东段哈拉尕吐花岗岩体地质特征、形成时代及地质意义[D]. 长安大学硕士学位论文, 2012.

    [26]

    李佐臣, 裴先治, 李瑞保, 等, 东昆仑南缘布青山构造混杂岩带哥日卓托闪长岩体年代学、地球化学特征及其地质意义[J]. 地质学报, 2013, 87(8): 1089-1103.

    [27]

    Jackson S E, Person N J, Griffin W L, et al. The application of laser ablation-inductively couple plasma-mass spectrometry to in situ U-Pb zircon geochronology[J]. Chemical Geoligy, 2004, 211:59-79

    [28]

    Anderson T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical Geoligy, 2002, 192:59-79

    [29]

    Ludwig K R. Isoplot 3.0 Age chronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2003,4: 1-70.

    [30]

    Chen F K, Hegner E, Todt W. Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: Evidence for a Cambrian magmatic arc[J]. International Journal of Earth Sciences(Geol Rundsch), 2000, 88: 791-802.

    [31]

    Chen F K, Siebel W, Satir M, et al. Geochronology of the Karadere basement(NW Turkey)and implications for the geological evolution of the Istanbul zone[J]. International Journal of Earth Sciences (Geol Rundsch), 2002, 91: 469-481.

    [32]

    Belousova E A, Griffin W L, O' Reillv S Y, et al. Igneous zircon: Irace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

    [33]

    吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1602.

    [34]

    Siebel W, Blaha U, Chen F K, et al. Geochronology and geochemistry of a dyke-host rock association and implications for the formation of the Bavarian Pfahl shear zone, Bohemian Massif[C]//Maniar P D, Piccoli P M. Tectionic discrimination in of granitoids. Geological Society of America Bulletin, 1989, 1: 635-643.

    [35]

    Maniar P D, Piccoli P M. Tectionic discrimination in of granitoids[J]. Geological Society of America Bulletin, 1989, 1: 635-643.

    [36]

    Rollinson H R. Using geochemical data: evaluation, presentation, interpreation[M]. Longman Group UK Ltd, New York, 1993: 1-352.

    [37]

    Boynton W V. Geochemistry of the rare earth elements: meteorite studies[C]//Henderson Pd. Rare earth element geochemistry. Amsterdam Elservier, 1984: 63-114.

    [38]

    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]//Sunders A D, Norry M J. Magmatism in the Ocean Basins. London: Geol. Soc. Spec. Publ., 1989, 42: 313-345.

    [39]

    王德滋, 刘昌实. 桐庐I型和相山S型两类碎斑熔岩对比[J]. 岩石学报, 1993, 9(1): 44-54.

    [40]

    Wilson M. Igneous Petrogenesis[M]. Unwin Hyman Press, London, 1989: 295-323.

    [41]

    Barth M G, William F, McDonough W F, et al. Tracking the bugtet of Nb and Ta in the continental crust[J]. Chemical Geology, 2000, 165: 197-213.

    [42]

    Chappell B W, White A J R. I-and S-type granites in the Lachland Fold Belt[J]. Mineralogy MagazineTransactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83: 1-26.

    [43]

    Patino Dounce A E. What do experiments tell us about the relative contribution of crust and mantle to the origins of granitic magma?[C]//Castro A, Fernandez C, Vigneresse J L. Understanding Granites: Intergrating New and Classical Techniques. Geological Society of London, Special Publication, 1999, 168: 55-75.

    [44]

    Taylor S R, Mclennan S M. The continental Crust: Its composition and Evolution[M]. Oxford: Blackwell Scientific Publication, 1985: 1-132.

    [45]

    McCulloch M T, Gamble J A. Geochemical and geodynamical constraints on subduction zone magmatism[J]. Earth and Planetary Science Letters, 1991, 102(3/4): 358-374.

    [46]

    Luhr J F, Haldar D. Barren Island Volcano(NE Indian Ocean): Island-arc high-alumina basalts produced by troctolite contamination[J]. Journal of Volcanology and Geothermal Rresearch, 2006, 149(3/4): 177-212.

    [47]

    Donnelly K E, Goldstein S L, Langmuir C H, et al. Origin of enriched ocean ridge basalts and implications for mandtle dynamics[J]. Earth and Planetary Science Letters, 2004, 226(3/4): 347-366.

    [48]

    Wyllie P J, Cox K G, Biggar G M. The hait of apatite in synthetic systems and igneous rocks[J]. Journal of Petrology, 1962, 3(2): 238-242.

    [49]

    Didier J, Ferrand C. Contribution of enclave studies to the under-standing of origin and evolution of granitic magmas[J]. Geologische Rundschau, 1987, 76(1): 41-50.

    [50]

    Barbarin B, Didier J. Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas[J]. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83(1/2): 145-153.

    [51]

    Donaire T, Pascual E, Pin C, et al. Microgranular enclaves as evidence of rapid cooling in granitoid rocks: the case of the Los Pedroches granodiorite, Iberian Massif, Spain[J]. Contributions to Mineralogy and Petrology, 2005, 149(3): 247-265.

    [52]

    White R V, Tarney J, Kerr A C, et al. Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust[J]. Lithos, 1999, 46: 43-68.

    [53]

    Li R B, Pei X Z, Li Z C, et al. Regional tectonic transformation in East Kunlun Orogenic Belt in Early Paleozoic: constraints form the geochronology and geochemistry of Helegangnaren Alkalifeldspar granite[J]. Acta Geologica Sinica, 2013, 87(2): 333-345.

    [54]

    陈亮, 孙勇, 柳小明, 等. 青海省德尔尼蛇绿岩的地球化学特征及其大地构造意义[J]. 岩石学报, 2000, 16(1): 106-110.

    [55]

    边千韬, 罗小全, 李涤徽, 等. 青海省阿尼玛卿带布青山蛇绿混杂岩的地球化学性质及形成环境[J]. 地质学报, 2001, 75(1): 45-55.

    [56]

    杨经绥, 王希斌, 史仁灯, 等. 青藏高原北部东昆仑南缘德尔尼蛇绿岩: 一个被肢解了的古特提斯洋壳[J]. 中国地质, 2004, 31(3): 225-239.

    [57]

    刘战庆, 裴先治, 李瑞保, 等. 东昆仑南缘阿尼玛卿构造带布青山地区两期蛇绿岩的LA-ICP-MS锆石U-Pb定年及其构造意义[J]. 地质学报, 2011, 85(2): 186-194.

    [58]

    杨杰, 裴先治, 李瑞保, 等. 东昆仑南缘布青山地区哈尔郭勒玄武岩地球化学特征及其地质意义[J]. 中国地质, 2014, 41(2): 335-350.

    [59]

    柴耀楚, 冯秉贵, 杨经绥. 东昆仑中段东西大滩花岗岩带的基本特征及其成因的探讨[J]. 青藏高原地质文集, 1984, 15: 78-90.

    [60]

    Briqueu L, Bougault H, Joron J L. Quantification of Nb, Ta, Ti and V anomalies in Magmas associated with subduction zones:Petrogenetic implications[J]. Earth and Planetary Science Letters, 1984, 68(2): 297-308.

    [61]

    Pearce J A, Harris NBW, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Joumal of Petrology, 1984, 25(4): 956-983.

    [62]

    莫宣学, 罗照华, 邓晋福, 等. 东昆仑造山带花岗岩及地壳生长[J]. 高校地质学报, 2007, 13(3): 403-414.

    [63]

    刘成东, 张文秦, 莫宣学, 等. 东昆仑约格鲁岩体暗色微粒包体特征及成因[J]. 地质通报, 2002, 21(11): 739-744.

    [64]

    陈广俊, 孙丰月, 李碧乐, 等. 东昆仑沟里地区暗色包体及其寄主岩石地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2014, 44(3): 892-904.

  • 加载中
计量
  • 文章访问数:  1773
  • PDF下载数:  179
  • 施引文献:  0
出版历程
收稿日期:  2015-12-10
修回日期:  2016-06-01
刊出日期:  2016-12-15

目录