冲洪积平原地面沉降特征及主控因素——以北京平原为例

周毅, 罗郧, 郭高轩, 罗勇, 雷坤超, 王荣. 冲洪积平原地面沉降特征及主控因素——以北京平原为例[J]. 地质通报, 2016, 35(12): 2100-2110.
引用本文: 周毅, 罗郧, 郭高轩, 罗勇, 雷坤超, 王荣. 冲洪积平原地面沉降特征及主控因素——以北京平原为例[J]. 地质通报, 2016, 35(12): 2100-2110.
ZHOU Yi, LUO Yun, GUO Gaoxuan, LUO Yong, LEI Kunchao, WANG Rong. A study of the characteristics of land subsidence and the main control factors in the alluvial plain: A case study of Beijing plain[J]. Geological Bulletin of China, 2016, 35(12): 2100-2110.
Citation: ZHOU Yi, LUO Yun, GUO Gaoxuan, LUO Yong, LEI Kunchao, WANG Rong. A study of the characteristics of land subsidence and the main control factors in the alluvial plain: A case study of Beijing plain[J]. Geological Bulletin of China, 2016, 35(12): 2100-2110.

冲洪积平原地面沉降特征及主控因素——以北京平原为例

A study of the characteristics of land subsidence and the main control factors in the alluvial plain: A case study of Beijing plain

  • 北京由于长期过量开采地下水,相继引发了一系列地质环境问题,其中地面沉降问题尤为突出。回顾了北京地面沉降发展历史,从平面和垂向上分析了地面沉降特征,在此基础上对北京冲洪积平原区沉降的主控因素进行了研究。结果表明:①平面上,沉降分为南、北2 个大区,7 个沉降中心。北区已由多个单独沉降中心区扩展成一个大区域,南区北扩明显;②垂向上,南区第一压缩层为沉降主贡献层,沉降占比42%,浅部地层沉降速率减小,深部地层沉降速率增加。土体变形特征为塑性变形,包含蠕变变形;北区第二压缩层为沉降主贡献层,沉降占比65%,浅部沉降量值很小且波动平缓,深部沉降量相对较大。土体变形特征为浅部以弹性变形为主,深部以塑性变形为主,包含蠕变变形;③沉降受构造作用及基底格架控制,北东方向受冲洪积扇上部单一砂卵砾石的地层条件控制扩展范围有限,沉降整体向北西、南东方向扩张;④地层结构决定沉降平面和垂向分布特征,尤其北部冲洪积与南部湖相沉积的差异,是产生深浅部地层沉降贡献率不同的重要因素;⑤地下水开采仍是沉降产生的主因,地下水漏斗的扩展和沉降中心的分布高度吻合,主要沉降层地下水位下降速率与沉降速率成正比。
  • 加载中
  • [1]

    魏子新. 上海市第四承压含水层应力-应变分析[J]. 水文地质工程地质, 2002, 1(5): 1-4.

    [2]

    Hu R L, Yue Z Q, Wang L C, et al. Review on current status and challenging issues of land subsidence in China[J]. Engineering Geology, 2004, 76(1/2): 65-77.

    [3]

    闫世龙, 王焰新, 马腾, 等. 内陆新生代断陷盆地区地面沉降机理及模拟—以山西省太原市为例[M]. 武汉: 中国地质出版社, 2006.

    [4]

    岳建平, 方露. 城市地面沉降监控理论与技术[M]. 北京: 科学出版社, 2012.

    [5]

    Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research, 1995, 100: 6093-6095.

    [6]

    Hoffmann J, Zebker H A, Galloway D L, et al. Seasonal subsidence and rebound in Las Vegas Valley,Nevada,observed by Synthetic Aperture Radar Interferometry[J]. Water Resources Research, 2001, 37(6): 1551-1566.

    [7]

    岳建平, 方露. 城市地面沉降监控技术研究进展[J]. 测绘通报, 2008, 3: 1-4.

    [8]

    张阿根, 刘毅, 龚世良. 国际地面沉降研究综述[J]. 上海地质, 2000, 4: 1-7.

    [9]

    蔡向民, 栾英波, 郭高轩, 等. 北京平原区第四系的三维结构[J]. 中国地质, 2009, 36(5): 1021-1029.

    [10]

    郭高轩, 蒋汉朝, 蔡向民, 等. 北京新5孔第四纪孢粉记录及其对更新世气候变化的响应[J]. 第四纪研究, 2013, 33(6): 1160-1170.

    [11]

    蔡向民, 栾英波, 郭高轩, 等. 北京平原地区地质系统[J]. 城市地质, 2009, 4(3): 6-11.

    [12]

    周毅, 罗郧, 贾三满, 等. 灰色线性回归组合模型在北京地面沉降分层预测中的应用[J]. 城市地质, 2014, 9(4): 52-56.

    [13]

    姚轶锋, 叶超, 寇香玉, 等. 北京天竺晚上新世以来植被演替与气候变迁[J]. 古地理学报, 2007, 9(1): 45-58.

    [14]

    刘予, 叶超, 贾三满. 北京市平原地面沉降区含水岩组和可压缩层划分[J]. 城市地质, 2007, 2(1): 10-15.

    [15]

    田芳, 郭萌, 罗勇, 等. 北京地面沉降区土体变形特征[J]. 中国地质, 2012, 39(1): 236-241.

    [16]

    罗勇, 贾三满, 赵波, 等. 北京南部地区地面沉降发育特征及成因分析[J]. 城市地质, 2011, 6(3): 6-12.

    [17]

    李华章. 北京地区第四纪古地理研究[M]. 北京: 地质出版社, 1995: 1-152.

    [18]

    张世民, 王丹丹, 刘旭东, 等. 北京南口-孙河断裂带北段晚第四纪活动的层序地层学研究[J]. 地震地质, 2007, 29(4): 729-743.

    [19]

    汪良谋, 徐杰, 黄秀铭, 等. 北京坳陷构造活动性分析[J]. 中国地震, 1990, 6(2): 25-36.

    [20]

    郭旭东. 北京第四纪地质导论[M]. 重庆: 重庆出版社, 2006: 1-214.

    [21]

    张安京, 叶超, 李宇, 等. 北京地下水[M]. 北京: 中国大地出版社, 2008.

    [22]

    姜媛, 田芳, 罗勇, 等. 北京典型地区分层地面沉降与地下水位变化关系[J]. 南水北调与水利科技, 2015, 1(13): 95-99.

    [23]

    刘传正. 论地质环境变化与地质灾害减轻战略[J]. 地质通报, 2005, 7: 597-602.

    [24]

    李涛, 潘云, 娄华君, 等. 人工神经网络在天津市区地面沉降预测中的应用[J]. 地质通报, 2005, 7: 677-681.

    [25]

    王宏, 宋美钰, 王福, 等. 渤海湾西岸泥质海岸带地质环境现状与趋势预测[J]. 地质通报, 2008, 6: 726-738.

    [26]

    杨丽芝, 张光辉, 刘中业, 等. 开采条件下山东德州深层水资源组成及其与地面沉降的关系[J]. 地质通报, 2010, 04: 589-597.

  • 加载中
计量
  • 文章访问数:  1165
  • PDF下载数:  41
  • 施引文献:  0
出版历程
收稿日期:  2015-12-11
修回日期:  2016-03-24
刊出日期:  2016-12-15

目录