Characteristics of sulfur isotope in water bodies near the Zhaoyuan gold mine area and its indicative function of pollution sources
-
摘要: 稳定同位素因其指纹效应已成为分析矿区污染来源的重要技术手段。文章以招远金矿区为例,应用硫同位素联合水化学分析、聚类分析及氢氧同位素分析招远金矿区水污染特征和成因。通过分析可知,矿区内地表水和地下水主要接受大气降水补给,水力联系密切。水化学类型以SO4—Ca和SO4—Na型为主,阴离子以SO42-为主,地表水和地下水的NO3-和Cl-在空间上变异性较大。地表水硫酸盐含量普遍偏高,硫酸盐污染较为严重,高值区出现在玲珑金矿、金翅岭金矿和张星镇附近;而地下水高值区都出现在玲珑金矿附近,且SO42-浓度沿着径流方向逐渐降低。地表水中硫酸盐δ34S值介于1.8‰~9.8‰,地下水中硫酸盐δ34S值介于2.7‰~9.6‰,地表水和地下水硫酸盐含量受玲珑金矿硫化、玲珑花岗岩和胶东岩群影响明显。在地下水径流途中,有地表水入渗污染地下水的现象。另外,工业废水的排放也是硫酸盐含量升高的主要原因。研究表明:硫同位素在金矿区硫酸盐污染的来源和特征方面有很好的指示作用,是评价矿山开采对地下水污染的有效工具。Abstract: Stable isotopes have become an important technical method for analyzing pollution sources in mining areas due to their fingerprint effect. In the Zhaoyuan gold mine area, most of the studies were based on experiments or hydrochemical data combined with hydrogeological conditions. It is difficult to analyze the compositions of pollution sources. This paper is the first time to analyze the hydrochemical characteristics and pollution causes of the Zhaoyuan gold mine area by combining the 2H, 18O and 34S isotopes of water bodies and hydrochemical methods. 32 samples were collected, including 16 groundwater samples, 10 surface water samples, 3 beneficiation wastewater samples, 2 tailing leachate samples and 1 pit water sample. Based on the analyses, the surface water and groundwater with close hydraulic connection in the mining area are mainly recharged by precipitation. The main hydrochemical components are from the oxidation of sulfide minerals, the dissolution of silicate minerals and the influence of human activities. The main hydrochemical types are of SO4—Ca and SO4—Na, the main anion is SO42-, and the variation of NO3- and Cl- in surface water and groundwater is large in space. The contents of sulfate in the surface water are generally high, and the sulfate pollution is serious. The high value areas appear near the Linglong gold mine, Jinchiling gold mine and Zhangxing Town, while the high value areas of groundwater appear near the Linglong gold mine, and the concentrations of SO42- decreases gradually along the runoff direction. The value of δ34S in the surface water ranges between 1.8‰ and 9.8‰, and that in groundwater, between 2.7‰ and 9.6‰. The groundwater and surface water are obviously affected by the Linglong granite, Jiaodong rock group and sulfide of Linglong gold deposit. In the process of groundwater runoff, there is the phenomenon of groundwater pollution caused by surface water infiltration. In addition, the discharge of industrial and domestic sewage is also the main reason for the increase of sulfate contents. Sulfur isotope can trace the source and characteristics of sulfate pollution in the gold mining area, and it is an effective tool for tracing and evaluating the groundwater pollution caused by mining activities.
-
Key words:
- gold mine area /
- hydrochemical characteristics /
- sulfur isotope /
- sulfate
-
-
[1] 李社红,郑宝山,朱建明,等.金矿尾矿渣及其污染土壤中氰化物的分布及自然降解[J]. 环境科学, 2001,22(3):126-128.[LI S H, ZHENG B S, ZHU J M, et al. The distribution and natural degradation of cyanide in goldmine waste-solid and polluted soil[J]. Chinese Journal of Environmental Science, 2001, 22(3):126-128.(in Chinese)]
[2] 徐友宁,张江华,柯海玲,等. 某金矿污染区人群头发重金属累积及其变化[J]. 地质通报,2014, 33(7):1089-1095.[XU Y N, ZHANG J H, KE H L, et al. Accumulation level and content variation of heavy metals in people's hair in the environmental contamination area of a gold mine area[J]. Geological Bulletin of China, 2014,33(7):1089-1095.(in Chinese)]
[3] 梁宁. 招远金矿区地表水重金属污染特征研究[D]. 济南:济南大学, 2012.[LIANG N. Study on heavy metal pollution characteristics in surface water of Zhaoyuan gold mine area[D]. Jinan:University of Jinan, 2012.(in Chinese)]
[4] 李小倩,张彬,周爱国,等. 酸性矿山废水对合山地下水污染的硫氧同位素示踪[J]. 水文地质工程地质, 2014, 41(6):103-109.[LI X Q, ZHANG B, ZHOU A G, et al. Using sulfur and oxygen isotopes of sulfate to track groundwater contamination from coal mine drainage in Heshan[J]. Hydrogeology & Engineering Geology, 2014, 41(6):103-109.(in Chinese)]
[5] 张秋霞,周建伟,康凤新,等. 淄博煤矿区地下水污染水动力和同位素解析[J]. 环境科学与技术,2016, 39(8):116-122.[ZHANG Q X, ZHOU J W, KANG F X, et al. Hydrodynamic analysis and isotope tracing for probing into groundwater pollution of Zibo mining area[J]. Environmental Science and Technology, 2016,39(8):116-122.(in Chinese)]
[6] 马燕华,苏春利,刘伟江,等. 水化学和环境同位素在示踪枣庄市南部地下水硫酸盐污染源中的应用[J]. 环境科学,2016, 37(12):4690-4699.[MA Y H, SU C L, LIU W J, et al. Identification of sulfate sources in the groundwater system of Zaozhuang:Evidences from isotopic and hydrochemical characteristics[J]. Chinese Journal of Environmental Science, 2016, 37(12):4690-4699.(in Chinese)]
[7] 张江华, 梁永平, 王维泰, 等. 硫同位素技术在北方岩溶水资源调查中的应用实例[J]. 中国岩溶,2009, 28(3):235-241.[ZHANG J H, LIANG Y P, WANG W T, et al. A practical use of 34S in the investigation of karst groundwater resource in North China[J]. Carsologica Sinica, 2009, 28(3):235-241.(in Chinese)]
[8] 霍建光,赵春红,梁永平,等. 娘子关泉域径流-排泄区岩溶水污染特征及成因分析[J]. 地质科技情报, 2015, 34(5):147-152.[HUO J G, ZHAO C H,LIANG Y P, et al. Characteristic and cause analysis in the runoff-drainage area of Niangziguan spring[J].Geological Science and Technology Information, 2015, 34(5):147-152.(in Chinese)]
[9] EINSIEDL F, SCHAFER T, NORTHRUP P. Combined sulfur K-edge XANES spectroscopy and stable isotope analyses of fulvic acids and groundwater sulfate identify sulfur cycling in a karstic catchment area[J]. Chemical Geology, 2007, 238(3):268-276.
[10] 邱述兰. 利用多同位素(δ34S,δ15N,87Sr/86Sr和δ13CDIC)方法示踪岩溶农业区地下水中硝酸盐和硫酸盐的污染[D]. 重庆:西南大学, 2012.[QIU S L. Use of multiple environmental isotopes (δ34S, δ15N, 87Sr/86Sr and δ13CDIC) to trace sulfate and nitrate contaminations of karst groundwater in an agricultural area[D].Chongqing:Southwest University,2012.(in Chinese)]
[11] 臧红飞,郑秀清,张永波,等. 柳林泉域岩溶水中SO42-的来源探讨[J]. 水文地质工程地质,2017, 44(1):9-15.[ZANG H F, ZHENG X Q,ZHANG Y B, et al. Source of SO42- in karst groundwater in the Liulin spring area[J]. Hydrogeology & Engineering Geology, 2017, 44(1):9-15.(in Chinese)]
[12] 李小倩,周爱国,刘存富,等. 河北平原地下水硫酸盐34S和18O同位素演化特征[J]. 地球学报,2008, 29(6):745-751.[LI X Q, ZHOU A G, LIU C F, et al.34S and 18O isotopic evolution of residual sulfate in groundwater of the Hebei plain[J]. Acta Geoscientica Sinica, 2008, 29(6):745-751.(in Chinese)]
[13] ZHANG D, LI X D, ZHAO Z Q, et al. Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the western North China Plain[J]. Applied Geochemistry, 2015, 52:43-56.
[14] PATERNOSTER M, PARISI S, CARACAUSI A, et al. Groundwaters of Mt. Vulture volcano, southern Italy:Chemistry and sulfur isotope composition of dissolved sulfate[J]. Geochemical Journal, 2010, 44(2):125-135.
[15] 邓军, 王庆飞, 杨立强, 等. 胶西北金矿集区成矿作用发生的地质背景[J]. 地学前缘, 2004, 11(4):527-533.[DENG J, WANG Q F, YANG L Q, et al. The geological settings to the gold metallogeny in northwestern Jiaodong Peninsula, Shandong Province[J]. Earth Science Frontiers, 2004, 11(4):527-533.(in Chinese)]
[16] 刘玉桥. 对夏甸金矿北耩矿区上盘矿体成矿规律的研究[J]. 科学技术创新,2018(13):42-43.[LIU Y Q. A study on the metallogenic regularity of the hanging wall ore body in Beihuang mining area of Xiadian gold mine[J].Scientific and Technological Innovation, 2018(13):42-43.(in Chinese)]
[17] 林吉照,王效杰. 招远金矿集中区地质与找矿[J]. 黄金,2002, 23(8):1-6.[LIN J Z, WANG X J. Scientific research on geology and exploration in Zhaoyuan gold ore concentration region[J].Gold, 2002, 23(8):1-6.(in Chinese)]
[18] 赵财胜, 匡俊, 李碧乐, 等. 山东招远大河金矿断裂构造控矿规律及成矿预测[J]. 黄金,2003, 24(5):17-20.[ZHAO C S, KUANG J, LI B L, et al. The ore-controlling regularity of the fault structure of Dahe Gold Deposit, Zhaoyuang City of Shandong Province and its mineralizing prognosis[J]. Gold, 2003, 24(5):17-20. (in Chinese)]
[19] 董健,陈磊,张贵丽. 山东夏甸地区金矿床地球物理场特征[J]. 地质与勘探,2018, 54(1):138-147.[DONG J, CHEN L, ZHANG G L. Characteristics of geophysical fields around gold deposits in Xiadian region, Shandong Province[J].Geology and Prospecting, 2018, 54(1):138-147.(in Chinese)]
[20] 张燕. 山东招远市夏甸金矿矿床水文地质条件浅析[J]. 世界有色金属,2018(8):219-220.[ZHANG Y. Analysis hydrogeological conditions of the Xiadian gold deposit in Zhaoyuan City, Shandong[J].World Nonferrous Metals, 2018(8):219-220.(in Chinese)]
[21] 宋吉志,刘士剑,刘建华,等. 招远市黄金生产对水环境的影响及对策[J]. 山东水利,2005(8):24-25.[SONG J Z, LIU S J, LIU J H, et al. Influence of gold production on water environment in Zhaoyuan City and Countermeasures[J]. Shandong Water Resources, 2005(8):24-25.(in Chinese)]
[22] 侯新文, 尹明泉, 尹志轩, 等. 招远玲珑金矿废石模拟淋滤试验分析[J]. 北京工业大学学报, 2010, 36(11):1541-1547.[HOU X W, YIN M Q, YIN Z X, et al. Analysis of simulating eluviations experimentation for waste ore in Linglong Goldfield of Zhaoyuan[J]. Journal of Beijing University of Technology, 2010, 36(11):1541-1547.(in Chinese)]
[23] BAO H M. Purifying barite for oxygen isotope measurement by dissolution and reprecipitation in a chelating solution[J]. Analytical chemistry. 2006, 78(1):304-309.
[24] 秦文婧,宋献方,谷洪彪. 基于层次聚类法的柳江煤矿对地下水水质影响分析[J]. 水文地质工程地质, 2018, 45(3):30-39.[QIN W J, SONG X F, GU H B. Impacts of the Liujiang coal mine on groundwater quality based on hierarchical cluster analysis[J]. Hydrogeology & Engineering Geology, 2018, 45(3):30-39.(in Chinese)]
[25] 尹子悦, 林青, 徐绍辉. 青岛市大沽河流域地下水水化学时空演化及影响因素分析[J]. 地质论评, 2018, 64(4):1030-1043.[YIN Z Y, LIN Q, XU S H. Spatial-temporal variations and controlling factors of groundwater hydrochemical characteristics in the Dagu River Basin[J]. Geological Review, 2018, 64(4):1030-1043.(in Chinese)]
[26] 王义文,朱奉三,宫润谭. 构造同位素地球化学——胶东金矿集中区硫同位素再研究[J]. 黄金,2002,23(4):1-16.[WANG Y W, ZHU F S, GONG R T. Tectonic isotope geochemistry——Further study on sulfur isotopes of Jiaodong gold concentration area[J].Gold, 2002,23(4):1-16.(in Chinese)]
[27] VITÒRIA L, OTERO N, SOLER A, et al. Fertilizer characterization:isotopic data (N, S, O, C, and Sr)[J]. Environmental Science & Technology, 2004, 38(12):3254-3262.
-
计量
- 文章访问数: 805
- PDF下载数: 82
- 施引文献: 0