新疆黄山镁铁-超镁铁岩带锆石Hf同位素特征及源区性质探讨

陈继平, 罗婷, 王晖, 廖群安, 张雄华, 陈恩科, 王杰杰, 孟秦宇, 柳小明. 新疆黄山镁铁-超镁铁岩带锆石Hf同位素特征及源区性质探讨[J]. 西北地质, 2016, 49(4): 51-61.
引用本文: 陈继平, 罗婷, 王晖, 廖群安, 张雄华, 陈恩科, 王杰杰, 孟秦宇, 柳小明. 新疆黄山镁铁-超镁铁岩带锆石Hf同位素特征及源区性质探讨[J]. 西北地质, 2016, 49(4): 51-61.
CHEN Jiping, LUO Ting, WANG Hui, LIAO Qun'an, ZHANG Xionghua, CHEN Enke, WANG Jiejie, MENG Qinyu, LIU Xiaoming. Zircon Hf Isotope Characteristics and Source of Mafic-ultramafic Intrusions in Huangshan Region, Xinjiang[J]. Northwestern Geology, 2016, 49(4): 51-61.
Citation: CHEN Jiping, LUO Ting, WANG Hui, LIAO Qun'an, ZHANG Xionghua, CHEN Enke, WANG Jiejie, MENG Qinyu, LIU Xiaoming. Zircon Hf Isotope Characteristics and Source of Mafic-ultramafic Intrusions in Huangshan Region, Xinjiang[J]. Northwestern Geology, 2016, 49(4): 51-61.

新疆黄山镁铁-超镁铁岩带锆石Hf同位素特征及源区性质探讨

  • 基金项目: 中国地质调查局地质调查工作项目(1212011085469)

Zircon Hf Isotope Characteristics and Source of Mafic-ultramafic Intrusions in Huangshan Region, Xinjiang

  • 黄山东、香山及土墩岩体均为多阶段侵入的杂岩体,岩体与围岩为侵入接触关系,显示热侵位特征。岩石组成单元主要为超镁铁质橄榄岩和镁铁质辉长岩。岩石化学组成以拉斑玄武岩系列为主,存在部分钙碱性系列和碱性系列。稀土元素具平坦的分配型式或轻稀土略富集的分配型式。锆石Hf同位素指示岩石来源于亏损型地幔源区。黄山东、香山及土墩镁铁-超镁铁岩不是俯冲洋壳的残余或者岛弧环境的阿拉斯加型岩体,而是来源于亏损型地幔源区的岩浆底侵形成。
  • 加载中
  • 白云来. 新疆哈密黄山-镜儿泉镍铜成矿系统的地质构造背景[J]. 甘肃地质学报, 2000, 9(2): 1-7.

    BAI Yunlai. Geotectonic settings of Huangshan-Jingerquan Nickel-Copper metallogenic system in Hami, Xinjiang[J]. Acta Geologica Gansu, 2000, 9(2): 1-7.

    朱文斌, 马瑞士, 王赐银. 论新疆东部黄山-镜儿泉杂岩带的构造属性[J]. 地质科学, 1996, 31(1): 22-32.

    ZHU Wenbin, MA Ruishi, WANG Ciyin. Tectonic attribute of Huangshan-Jingerquan complex in Eastern Xinjiang, China[J]. Sceentia Geologica Sinica, 1996, 31(1): 22-32.

    郭继春, 胡受奚, 顾连兴, 等. 东天山 (E85-90) 加里东沟-弧-盆褶皱系的地质特征及其构造演化[J]. 南京大学学报 (自然科学版), 1992, 28(3): 431-438.

    GUO Jichun, HU Shouxi, GU Lianxing, et al. Geological features and tectontc evolution East TianshanCaledonian trench-arc-basin foldbelt[J]. Journal of NanJing University(Natural Sciences Edition), 1992, 28(3): 431-438.

    王润民, 李楚思. 新疆哈密黄山东铜镍硫化物矿床成岩成矿的物理化学条件[J]. 成都地质学院学报, 1987, 14(3): 1-9.

    WANG Runmin, LI Chusi. Physicochemicalcondition of rock formation and mineralization of Huangshandong magmatogenic sulfide deposit HaMi, Xinjiang, China[J]. Journal of Chengdu College of Geology, 1987, 14(3): 1-9(in Chinese with English abstract).

    张耀华. 新疆黄山东基性-超基性杂岩体地质特征及其含矿性[J]. 西北地质, 1987, (4): 15-31.

    蔡土赐. 新疆维吾尔自治区岩石地层[M]. 武汉: 中国地质大学(武汉)出版社, 1999: 1-430.

    陈继平,廖群安,张雄华,等. 东天山地区黄山东与香山镁铁-超镁铁质杂岩体对比[J].地球科学,2013, 38(6):1-14.

    CHEN Jiping, LIAO Qunan, ZHANG Xionghua, et al. Contrast of Huangshandong and Xiangshan Mafic-Ultramafic complex, East Tianshan[J]. Earth Science-Journal of China University of Geosciences, 2013, 38(6):1-14(in Chinese with English abstract).

    刘民武. 中国几个镍矿床的地球化学比较研究[D]. 西安:西北大学, 2003.

    LIU Minwu. Geochemical comparison of several nickel deposits in China[D]. Xi'an:Northwest University, 2003(in Chinese with English abstract).

    张魁武, 沈步明, 李达周, 等. 阿拉斯加型超镁铁质岩的岩石化学特征[J]. 地质论评, 1988, 34(3): 377-382.

    顾连兴, 诸建林, 郭继春, 等. 造山带环境中的东疆型镁铁-超镁铁杂岩[J]. 岩石学报, 1994, 10(4): 356-399.

    GU Lianxing, ZHU Jianlin, GUO Jichun, et al. The East Xinjiang-type Mafic-Ultramafic complexes in orogenic environments[J]. Acta Petrologica Sinica, 1994, 10(4): 356-399(in Chinese with English abstract).

    吴福元, 李献华, 郑永飞, 等.Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2):185-220.

    WU Fuyuan, LI Xianhua, ZHENG Yongfei, et al. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2):185-220(in Chinese with English abstract).

    夏林圻, 张国伟, 夏祖春, 等. 天山古生代洋盆开启、闭合时限的岩石学约束-来自震旦纪、石炭纪火山岩的证据[J]. 地质通报, 2002, 21(2): 55-62.

    XIA Linqi, ZHANG Guowei, XIA Zuchun, et al. Constraints on the timing of opening and closing of the Tianshan Paleozonic oceanic basin: ecvidence from Sinina and Carboniferous volcanic rocks[J]. Geological Bulietin of China, 2002, 21(2): 55-62(in Chinese with English abstract).

    夏林圻, 夏祖春, 徐学义, 等. 利用地球化学方法判别大陆玄武岩和岛弧玄武岩[J]. 岩石矿物学杂志, 2007, 26(1): 77-89.

    XIA Linqi, XIA Zuchun, XU Xueyi, et al. The discrimination between continental basalt and islanf arc basalt based on geochemical method[J]. Acta Petroligical et Mineralogica, 2007, 26(1): 77-89(in Chinese with English abstract).

    夏明哲, 姜常义, 钱壮志, 等. 新疆东天山黄山东岩体岩石地球化学特征与岩石成因[J]. 岩石学报, 2010, 26(8): 2413-2430.

    XIA Mingzhe, JIANG Changyi, QIAN Zhuangzhi, et al. Geochemistry and petrogenesis of Huangshandong intrusion, East Tianshan, Xinjiang[J]. Acta Petrologica Sinica, 2010, 26(8): 2413-2430(in Chinese with English abstract).

    唐俊华, 顾连兴, 张遵忠, 等. 东天山黄山-镜儿泉过铝花岗岩矿物学, 地球化学及年代学研究[J]. 岩石学报, 2008, 24(5): 921-946.

    TANG Junhua, GU Lianxin, ZHANG Zunzhong, et al. Peralumious granite in Huangshan-Jingerquan area of eastern Tianshan: Geochemistry, mineralogy and geochronology[J]. Acta Petrologica Sinica, 2008, 24(5): 921-946(in Chinese with English abstract).

    DILEK Y. Ophiolite concept and its evolution. In: Dilek Y, Newcomb S. (Eds.)[J]. Ophiolite concept and the evolution of geological thought: Geological Society of America Special Papers. 2003: 1-16.

    SENGÖR AC, NATAL'IN BA. Phanerozoic analogues of Archaean oceanic basement fragments: Altaid ophiolites and ophirags[J]. Developments in Precambrian Geology, 2004, 13(1): 675-726.

    ROBINSON PT, ZHOU MF. The origin and tectonic setting of ophiolites in China[J]. Journal of Asian Earth Sciences, 2008, 32(5): 301-307.

    PEARCE JA, ROBINSON PT. The Troodos ophiolitic complex probably formed in a subduction initiation, slab edge setting[J]. Gondwana Research, 2010, 18(1): 60-81.

    NALDRETT AJ, VON Gruenewaldt G. Association of platinum-group elements with chromitite in layered intrusions and ophiolite complexes[J]. Economic Geology, 1989, 84(1): 180-187.

    ZHOU MF, ROBINSON PT, MALPAS J, et al. Podiform chromitites in the Luobusa ophiolite (Southern Tibet): Implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 1996, 37(1): 3-21.

    ZHANG Q, WANG CY, LIU DY, et al. A brief review of ophiolites in China[J]. Journal of Asian Earth Sciences, 2008, 32(5): 308-324.

    SHI R, GRIFFIN W L, O'REILLY S Y, et al. Melt/mantle mixing produces podiform chromite deposits in ophiolites: Implications of Re-Os systematics in the Dongqiao Neo-Tethyan ophiolite, northern Tibet[J]. Gondwana Research, 2012, 21(1): 194-206.

    HIMMELBERG GR, LONEY RA. Characteristics and petrogenesis of Alaskan-type ultramafic-mafic intrusions, southeastern Alaska[M]. Washington: United States Government Printing Office, 1995:1-47.

    KUSKY TM, GLASS A, TUCKER R. Structure, Cr-chemistry, and age of the Border Ranges Ultramafic-Mafic Complex: A suprasubduction zone ophiolite complex. In: Ridgway KD, Trop JM, Glen JM G, O'Neill JM.(Eds.), Tectonic growth of a collision continental margin: crustal evolution of Southern Alaska: Geological Society of America Special Papers, 2007, 431: 207-225.

    PIRAJNO F, MAO JW, ZHANG ZH, et al. The association of mafic-ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: implications for geodynamic evolution and potential for the discovery of new ore deposits[J]. Journal of Asian Earth Sciences, 2008, 32(2): 165-183.

    SANTOSH M, MARUYAMA S, YAMAMOTO S. The making and breaking of supercontinents: some speculations based on superplumes, super downwelling and the role of tectosphere[J]. Gondwana Research, 2009, 15(3): 324-341.

    AO SJ, XIAO WJ, HAN CM, et al. Geochronology and geochemistry of Early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 2010, 18(2): 466-478.

    CAI KD, SUN M, YUAN C, et al. Keketuohai mafic-ultramafic complex in the Chinese Altai, NW China: Petrogenesis and geodynamic significance[J]. Chemical Geology, 2012, 294(295): 26-41.

    SU BX, QIN K Z, SAKYA P A, et al. U-Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in the southern Central Asian Orogenic Belt: Tectonic implications and evidence for an Early-Permian mantle plume[J]. Gondwana Research, 2011, 20(2): 516-531.

    ZHOU MF, MICHAEL LESHER C, YANG ZX, et al. Geochemistry and petrogenesis of 270Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, Eastern Xinjiang, Northwest China: implications for the tectonic evolution of the Central Asian orogenic belt[J]. Chemical Geology, 2004, 209(3): 233-257.

    GU L X, ZHU JL, GUO JC, et al. Geology and genesis of the mafic-ultramafic complexes in the Huangshan-Jingerquan (HJ) belt, East Xinjiang[J]. Chinese Journal of Geochemistry, 1995, 14(2): 97-116.

    YUAN HL, GAO S, DAI MN, et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS[J]. Chemical Geology, 2008, 247(1): 100-118.

    MCDONOUGH WF, SUN SS. The composition of the Earth[J]. Chemical Geology, 1995, 120(3): 223-253.

    FREY FA, PRINZ M. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis[J]. Earth and Planetary Science Letters, 1978, 38(1): 129-176.

    MIDDLEMOST E AK. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994, 37(3): 215-224.

    MIYASHIOR A. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science, 1974, 274(4): 321-355.

    COLEMAN RG, Ophiolites: ancient oceanic lithosphere[M]. Berlin: Springer-Verlag Berlin, 1977: 1-230.

    IRVINE T, BARAGAR W. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971, 8(5): 523-548.

    SUN SS, MCDONGOUGH WF. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

    SUN SS. Chemical composition and origin of the Earth's primitive mantle[J]. Geochimica et Cosmochimica Acta, 1982, 46(2): 179-192.

    BLICHERT-TOFT J, Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1): 243-258.

    GRIFFIN WL, PEARSON NJ, BELOUSOVA E, et al. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

    AMELIN Y, LEE D, HALLIDAY AN, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 1999, 399(6733): 252-255.

    SöDERLUND U, PATCHETT PJ, VERVOORT JD, et al. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219(3): 311-324.

    IONOV DA, HOFMANN AW. Nb-Ta-rich mantle amphiboles and micas: Implications for subduction-related metasomatic trace element fractionations[J]. Earth and Planetary Science Letters, 1995, 131(3): 341-356.

    TANG DM, QIN KZ, SU BX, et al. Magma source and tectonics of the Xiangshanzhong mafic-ultramafic intrusion in the Central Asian Orogenic Belt, NW China, traced from geochemical and isotopic signatures[J]. Lithos, 2013, 2(13):144-163

    SYLVESTER PJ. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1): 29-44.

  • 加载中
计量
  • 文章访问数:  2261
  • PDF下载数:  2247
  • 施引文献:  0
出版历程
收稿日期:  2016-03-02
修回日期:  2016-05-03
刊出日期:  2016-12-15

目录