非硫化物型锌-铅矿床研究现状及其进展

范廷宾, 李昊, 徐兴旺, 董连慧. 非硫化物型锌-铅矿床研究现状及其进展[J]. 西北地质, 2018, 51(2): 147-159.
引用本文: 范廷宾, 李昊, 徐兴旺, 董连慧. 非硫化物型锌-铅矿床研究现状及其进展[J]. 西北地质, 2018, 51(2): 147-159.
FAN Tingbin, LI Hao, XU Xingwang, DONG Lianhui. Research Status and Progress of Nonsulfide Zinc-Lead Deposit[J]. Northwestern Geology, 2018, 51(2): 147-159.
Citation: FAN Tingbin, LI Hao, XU Xingwang, DONG Lianhui. Research Status and Progress of Nonsulfide Zinc-Lead Deposit[J]. Northwestern Geology, 2018, 51(2): 147-159.

非硫化物型锌-铅矿床研究现状及其进展

  • 基金项目: 国家自然科学基金委员会国家自然科学基金项目“喀喇昆仑地区火烧云巨型铅锌碳酸盐矿床形成机制与成矿构造背景”(41672088),新疆地质勘查基金项目管理中心中央返还两权价款资金综合研究项目“新疆西昆仑乔尔天山一带中生代沉积盆地铅锌矿控矿条件及矿床成因研究”(Y15-1-LQ07)资助

Research Status and Progress of Nonsulfide Zinc-Lead Deposit

  • 非硫化物型锌-铅矿床主要由一系列锌、铅"氧化物"组成。非硫化物型锌-铅矿床可以分为表生和深成2种类型。表生非硫化物矿床的形成主要与表生的氧化作用有关,主要含有菱锌矿、异极矿、白铅矿等;根据成矿方式的不同分为直接交代型、围岩交代型、残余-岩溶充填型。深成非硫化物矿床的形成主要与热液流体的有关,主要含有硅锌矿、菱锌矿、白铅矿等;根据形成的不同方式被分为构造控制型矿床与层状矿床。深成矿床显示与表生矿床不同的C-O同位素特点。笔者主要讨论非硫化物型铅锌矿床的特征及成因机制,并介绍中国火烧云锌-铅矿床的研究进展。火烧云铅锌矿已探明锌-铅金属资源量大于1 700万t,已成为中国新的最大铅锌矿。矿床成矿矿物以菱锌矿、白铅矿、方铅矿与闪锌矿为主,最新研究结果表明矿床主要经历2期成矿作用:早期的铅锌碳酸盐阶段(主要)与晚期的铅锌硫化物阶段。其矿床地质特征及稳定同位素特征显示火烧云铅锌矿床为深成层状(喷流)的非硫化物型锌-铅矿床。
  • 加载中
  • 董连慧,冯京,刘德权, 等. 新疆成矿单元划分方案研究[J]. 新疆地质, 2010, 28(1):1-15.

    DONG LH, FENG J, LIU DQ, et al. Research for classification of metallogenic unit of Xinjiang[J]. Xinjiang Geology, 2010, 28(1):1-15.

    董连慧,徐兴旺,范廷宾, 等. 西昆仑火烧云超大型喷流-沉积成因碳酸盐型Pb-Zn矿的发现及区域成矿学意义[J]. 新疆地质, 2015, 33(1):41-50.

    DONG LH, XU XW, FAN TB, et al. Discovery of the Huoshaoyun super-large exhalative-sedimentary carbonate Pb-Zn deposit in the Western Kunlun Area and its great significance for regional metallogeny[J]. Xinjiang Geology, 2015, 33(1):41-50.

    潘裕生.西昆仑构造特征与演化[J]. 地质科学, 1990, 25(2):224-232.

    PANY S. Tectonic features and evolution of the western Kunlun Mountain Region[J]. Scientia Geologica Sinica, 1990, 25(2):224-232.

    王炬川, 崔建堂, 罗乾周, 等. 喀喇昆仑南部侏罗系龙山组沉积环境分析及构造环境初探[J]. 陕西地质, 2004, 22(1):17-23.

    WANG JC, CUI JT, LUO QZ, et al. Analysis of the sedimentary environment and discussion of the structural setting of the Jurassic Longshan formation in the southern Kunlun of Gela[J]. Shaanxi Geology, 2004, 22(1):17-23.

    徐仕琪, 冯京, 田江涛, 等. 西昆仑落石沟一带铅锌矿成矿特征及区域预测[J].吉林大学学报(地球科学版), 2013, 43(4):1190-1199.

    XU SQ, FENG J, TIAN JT, et al. Metallogenic rules and regional prediction of lead-zinc deposits in Luoshigou of West Kunlun[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(4):1190-1199.

    徐仕琪, 冯京, 田江涛, 等.西昆仑落石沟一带铅锌矿成矿规律与找矿前景[J]. 新疆地质, 2014, 31(1):70-75.

    XU SQ, FENG J, TIAN JT, et al. Metallogenic rules and prospecting potential of lead-zinc deposits in Luoshigou of West Kunlun[J]. Xinjiang Geology, 2014, 31(1):70-75.

    杨永强,李丽.非硫化物型锌矿床的地质特征和成因机制[J]. 世界地质,2010,(01):56-59.

    YANGY Q, LI L. Geological characteristics and formation mechanism of nonsulfide zinc deposits[J]. Global Geology, 2010, (01):56-59.

    AL GANADI, LAGNY P, LESCUYER J L, et al. Jabali, a Zn-Pb-(Ag) carbonate-hosted deposit associated with Late Jurassic rifting in Yemen[J]. Mineralium Deposita, 1994, 29(1):44-56.

    BAGUETTE A. Les gisements calaminaires de Thasos[J]. Annales Géologiques des Pays Hélleniques, Série 1, Tom Ⅱ, 1947, 143-183.

    BALASSONE G, ROSSI M, BONI M, et al. Mineralogical and geochemical characterization of nonsulfide Zn-Pb mineralization at Silvermines and Galmoy (Irish Midlands)[J]. Ore Geology Reviews, 2008, 33(2):168-186.

    BEATY D W, LANDIS G P, THOMPSON T B, et al. Carbonate-hosted sulfide deposits of the Central Colorado mineral belt[M]. Littleton:Economic Geology Monograph, 1990, 7:424.

    BOLFAM J. Contribution a l'étude du gisement de Hammam N'Baïls (Province de Constantine, Algérie)[J]. Compte Rendu du Congrès des Sociétés Savantes,Section des Sciences, 1953:171-182.

    BONI M, BALASSONE G, ARSENEAU V, et al. The nonsulfide zinc deposit at Accha (Southern Peru):geological and mineralogical characterization[J]. Economic Geology, 2009, 104(2):267-289.

    BONI M, GILG H A, BALASSONE G, et al. Hypogene Zn carbonate ores in the Angouran deposit, NW Iran[J]. Mineralium Deposita, 2007, 42(8):799-820.

    BONI M, GILG H A., AVERSA G, et al. The "Calamine" of SW Sardinia (Italy):geology, mineralogy and stable isotope geochemistry of a supergene Zn-mineralization[J]. Economic Geology, 2003, 98:731-748.

    BONI M, LARGE D. Nonsulfide zinc mineralization in Europe:An overview[J]. Economic Geology, 2003, 98(4):715-729.

    BONI M, MONDILLO N. The "calamines" and the "others":The great family of supergene nonsulfide zinc ores[J]. Ore Geology Reviews, 2015, 67:208-233.

    BONIM. A new ("old") type of Zn ore resource:The "calamine" of SW Sardinia (Italy)[A]//Geological Society of America Abstracts with Programs[C], 2001, 33:A-336.

    BORG G, KÄRNER K, BUXTON M, et al. Geology of the Skorpion supergene zinc deposit, southern Namibia[J]. Economic Geology, 2003, 98(4):749-771.

    BORG G. A Review of Supergene Nonsulphide Zinc (SNSZ) Deposits-the 2014 Update[A]. Archibald S M and Piercey S J, eds. In book:Current Perspectives on Zinc Deposits, Ireland[C]:Irish Association for Economic Geology. 2015:123-147.

    BRUGGER J, MCPHAIL D C, WALLACE M, et al. Formation of willemite in hydrothermal environments[J]. Economic Geology, 2003, 98(4):819-835.

    BUSH J B, COOK D R. The Chief Oxide-Burgin area discoveries, East Tintic District, Utah; a case history; Part Ⅱ, Bear Creek Mining Company studies and exploration[J]. Economic Geology, 1960, 55(7):1507-1540.

    CAIRNCROSS B. The Otavi Mountain Land Cu-Pb-Zn-V deposits[J]. Mineralogical Record, 1997, 28:109-130, 157.

    CERLING T E. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 1984, 71(2):229-240.

    CHAPPLE K. The Mehdiabad zinc deposit-a Tethyan giant[J]. Mineral Exploration and Sustainable Development. Millpress, Rotterdam, 2003:1149-1152.

    COPPOLA V, BONI M, GILGH A, et al. The "calamine" nonsulfide Zn-Pb deposits of Belgium:petrographical, mineralogical and geochemical characterization[J]. Ore Geology Reviews, 2008, 33(2):187-210.

    DALIRAN F, PRIDE K, WALTHER J, et al. The Angouran Zn (Pb) deposit, NW Iran:evidence for a two stage, hypogene zinc sulfide-zinc carbonate mineralization[J]. Ore Geology Reviews, 2013, 53:373-402.

    EL SAMANI Y, TOURAY J C, POUITG, et al. La minéralisation en Zn-Cu-Mn-Ba d'Abu Samar et les indices de la plaine d'Allalka-leib (Soudan)[J].des accumulations métallifères métamorphisées d'origine exhalative-sédimentaire:Chronique de la Recherche Minière, 1986, 483:3-18.

    FEDIUK F, KUSNÍR I. Groupe de gétes polymétalliques de Cho Dien en Républic Démocratique du Vietnam[J]. Acta Universitas Carolinae-Geologica, 1967, 1:29-58.

    GILG H A, ALLEN C, BALASSONE G, et al. The 3-stage evolution of the Angouran Zn "oxide"-sulfide deposit, Iran[J]. Mineral Exploration and Sustainable Development. Millpress, Rotterdam, 2003a:77-80.

    GILG H A, BONI M, HOCHLEITNERR, et al. Stable isotope geochemistry of carbonate minerals in supergene oxidation zones of Zn-Pb deposits[J]. Ore Geology Reviews, 2008, 33(2):117-133.

    GILG H A, BONI M. Stable isotope studies on Zn and Pb carbonates:their role in mineral exploration of non-sulphide deposits[A]//Proceedings[C], SEG Conference, Perth WA. 2004:361-365.

    GILG H A, HOCHLEITNER R, KELLER P, et al. A fluid inclusion and stable isotope study of secondary oxidation minerals from the Tsumeb Cu-Pb-Zn deposit, Namibia[J]. Proceedings ECROFI XI, Budapest, Hungary, 2003b, 2:78-79.

    GNOINSKI J. Skorpion Zinc:optimization and innovation[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2007, 107(10):657-662.

    GOODFELLOW W D, LYDON J W. Sedimentary-exhalative (SEDEX) deposits[J]. Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, 5:163-183.

    GRIFFITH S V. The mineral resources of Burma[M]. London:Mining Magazine, 1956, 95:9-18.

    GROVES I, GREGORY I, CARMAN C. Reliance-a new high-grade zinc silicate-oxide discovery in the Flinders Ranges[J]. Mines and Energy South Australia Journal, 2002, 25:6-10.

    HEYLA V. Oxidized zinc deposits of the United States, Part 2. Utah[J]. U.S. Geologicial Survey Bulletin, 1963, 1135-B:104.

    HEYL A V. Oxidized zinc deposits of the United States, Part 3. Colorado[J]. U.S. Geological Survey Bulletin, 1964, 1135-C:98.

    HEYL A V, BOZION C N. Oxidized zinc deposits of the United States, Part 1[J]. General Geology:U.S. Geological Survey Bulletin, 1962, 1135-A:52.

    HITZMAN M W, BEATY D W. The Irish Zn-Pb-(Ba) orefield[A]. In Sangster D F, ed. Carbonate-hosted lead-zinc deposits:Society of Economic Geologists Special Publication[C], 1996, 4:112-143.

    HITZMAN M W, REYNOLDS N A, SANGSTER D F, et al. Classification, genesis, and exploration guides for nonsulfide zinc deposits[J]. Economic Geology, 2003, 98(4):685-714.

    HITZMAN M W, THORMAN C H, ROMAGNA G, et al. The Morro Agudo Zn-Pb deposit, Minas Gerais, Brazil:a Proterozoic Irish-type carbonate hosted sedex replacement deposit[A]//Abstracts with Programs-Geological Society of America[C]. 1995, 27:A408.

    HITZMAN M W. Zinc oxide and zinc silicate deposits-a new look[A]//GSA Annual Meeting, Abstracts with Programs[C], 2001, 33:A-336.

    JOHNSON C A, SKINNER B J. Geochemistry of the furnace magnetite bed, Franklin, New Jersey, and the relationship between stratiform iron oxide ores and stratiform zinc oxide-silicate ores in the new Jersey Highlands[J]. Economic Geology, 2003, 98(4):837-854.

    JOHNSONC A. Geochemical constraints on the origin of the Sterling Hill and Franklin zinc deposits, and the Furnace magnetite bed, northwestern New Jersey[M]. Littleton:Society of Economic Geologists Guidebook Series, 2001, 35:89-97.

    KAMONA F. The carbonate hosted Kabwe Pb-Zn deposit, central Zambia[D]. Aachen:Rheinisch-Westfalischen Technischen Hoschschule, 1993.

    KÄRNER K. The Metallogenesis of the Skorpion Non-sulphide Zinc Deposit, Namibia[D]. Unpublished Ph.D. Thesis (Dr. rer. nat.) Wittenberg, Germany, Mathemattisch Naturwissenschaftlich-Technischen Fakultat der Martin-Luther-Universitat Halle, 2006, 133 pp.

    KELLY W C. Topical study of lead-zinc gossans[J]. State Bureau of Mines and Mineral Resources, New Mexico Institute of Mining and Metallurgy Bulletin, 1958, 46:42-47.

    LARGE D. The geology of n牯慮楳湵獬??汩獤敥瘠楺敩牮??慤湥摰扯潳潩歴?漭晁??硯灶汥潲牶慩瑥楷潛湊??攠潅捲桺敭浥楴獡瑬牬礬?′???水?‵???ㄩ???????戴爮?呢?伾剌久??剈???剌??呓桁敎?捓桔故浒椠捄愠汆?洠潋扅楌汌楅瑙礠?愠湄搬?瑥牴愠湡獬瀮漠牓瑥?潩晭?敮汴攭浨敯湳瑴獥?椠湬?瑡桤攭?睩敮慫琠桤敥牰楯湳杩?攺湁瘠楧牬潯湢浡敬渠瑰孥?嵳???湴??略瑛瑊???剅????慭湩摣?婇敥敯杬敯牧獹???‰整摨猠??剮敩杶潥汲楳瑡桲??硖灯汬潵牭慥琬椠漲渰‰?攺漵挶栱攭洶椰猷琮爼祢?椾湌?呁牖潅灎楓挠慐氠?愬渠摐?協畔扏瑎爠潊瀠楄挮愠汔?呥攠牄牥慳楥湲獴嬠?嵩???湭??潥瘬攠瑓瑡??????卡??敩摮???慯湵摮扴潡潩歮?漬映??硬灩汦潯牲慮瑩楡漺湁??敯潳捳桩敢浬楥猠瑩牮祴?????????????????戠牌?嘣?嘲???佧?坡???剓佷??乥????敤渠敆獲楡獮?潬晩?琬栠敎?敷愠牊瑥桲祳?潹牛敊獝?愠瑓??愠牂灥敲湮扡敲牤杩??猠潃畯瑵桮?捹攠湍瑵牳慥汵?匠睁敳摳敯湣孩?嵴???攠潑汵潡杲楴獥歲慬????日???爠攴渷椺渱朷攭渲猱?椼?卲琾潌捉欠桎漬氠测?晌??????爠桇慥湯摬汯楧湩杣愠牣?????????????の??????-hosted Zn-Pb-(Sr) mineralization, Jinding deposit, Yunnan Province, China-a new environment for sediment-hosted Zn-Pb deposits[A]//Energy and Mineral Resources for the 21st Century[C]:Geology of Mineral Deposits:Mineral Economics:Proceedings of the 30th International Geological Congress, Beijing:4-14 August 1996. VSP, 1998, 9:67-82.

    LIAGHAT S, MOORE F, JAMI M. The Kuh-e-Surmeh mineralization, a carbonate-hosted Zn-Pb deposit in the simply folded belt of the Zagros Mountains, SW Iran[J]. Mineralium Deposita, 2000, 35(1):72-78.

    LIAKOPOULOS A., Hydrothermalisme et mineralisations métallifères de l'île de Milos (Cyclades, Grece)[D]. Paris:Memoires des Sciences de la Terre, Academie de Paris, Université Pierre et Marie Curie, 1987.

    LINDGREN W, LOUGHLIN G F, HEIKES V C. Geology and ore deposits of the Tintic mining district, Utah[M]. Reston:U.S. Geological Survey Professional Paper. 1919, 107:282 p.

    LYDON J W. Sedimentary exhalative sulphides (Sedex)[A]. In:Eckstrand O R, Sinclair W D, and Thorpe R I, eds., Geology of Canadian Mineral Deposit Types[C], Geological Survey of Canada, 1995, 8:130-152.

    MARINOS G. The ores of lead and zinc in Greece[J]. In:Dunham K C, ed., The Geology, Paragenesis, and Reserves of Lead and Zinc:International Geological Congress, 18th, Proceedings Part VⅡ, 1950:308-313.

    MEGAW P K M, RUIZ J, TITLEY S R. High-temperature, carbonate-hosted Ag-Pb-Zn (Cu) deposits of northern Mexico[J]. Economic Geology, 1988, 83(8):1856-1885.

    MELCHIORRE E B, ENDERS M S. Stable isotope geochemistry of copper carbonates at the Northwest Extension deposit, Morenci district, Arizona:implications for conditions of supergene oxidation and related mineralization[J]. Economic Geology, 2003, 98:607-621.

    MELCHIORRE E B, WILLIAMS P A, BEVINS R E. A low temperature oxygen isotope thermometer for cerussite, with application at Broken Hill, New South Wales, Australia[J]. Geochimica et Cosmochimica Acta, 2001, 65:2527-2533.

    MONDILLO N, BONI M, BALASSONE G, et al. The Jabali nonsulfide Zn-Pb-Ag deposit, western Yemen[J]. Ore Geology Reviews, 2014, 61:248-267.

    MONTEIRO L V S, BETTENCOURT J S, JULIANIC, et al. Geology, petrography, and mineral chemistry of the Vazante non-sulfide and Ambrósia and Fagundes sulfide-rich carbonate-hosted Zn-(Pb) deposits, Minas Gerais, Brazil[J]. Ore Geology Reviews, 2006, 28(2):201-234.

    MORRIS H T, LOVERING T S. General geology and mines of the East Tintic mining district, Utah and Juab counties, Utah[M]. Reston:U.S. Geological Survey Professional Paper, 1979, 1024:203.

    MORRISH T. The Main Tintic mining district, Utah[J]. In:Ridge J D, ed., Ore deposits of the United States, 1933-1967 (Graton-Sales volume):American Institute of Mining, Metallurgy, and Petroleum Engineers, 1968:1043-1073.

    NUSPL A. Genesis of nonsulfide zinc deposits and their future utilization[J]. TU Bergakademie Freiberg, 2009:1-9.

    OHMOTO H, RYE R O. Isotopes of sulfur and carbon[A]//Barnes H L, ed. Geochemistry of Hydrothermal Ore Deposits[M], 2nd edition. New York:Wiley, 1979:509-567.

    PAN G T, WANG L Q, LI R S, et al. Tectonic evolution of the Qinghai-Tibet Plateau[J]. Journal of Asian Earth Sciences, 2012, 53:3-14.

    PRIDE K, SALEHI H. Angouran zinc deposit, Iran[J]. Prospectors and Developers Association of Canads, Abstracts, 2003, 24.

    REICHERT J, BORGG. Numerical simulation and a geochemical model of supergene carbonate-hosted non-sulphide zinc deposits[J]. Ore Geology Reviews, 2008, 33(2):134-151.

    RELVAS J M R S, BARRIGA F J A S, LONGSTAFFE F J. Hydrothermal alteration and mineralization in the Neves-Corvo volcanic-hosted massive sulfide deposit, Portugal. Ⅱ. Oxygen, hydrogen, and carbon isotopes[J]. Economic Geology, 2006, 101(4):791-804.

    REYNOLDS N A, CHISNALL T W, KAEWSANG K, et al. The padaeng supergene nonsulfide zinc deposit, Mae Sod, Thailand[J]. Economic Geology, 2003, 98(4):773-785.

    ROBINSON B W. The origin of mineralization at the Tui mine, Te Aroha, New Zealand, in the light of stable isotope studies[J]. Economic Geology, 1974, 69:910-925.

    ROSE A W, HAWKES H E, WEBBJ S. Geochemistry in mineral exploration[M]. London:Academic Press, 1979, 657 p.

    SANGAMESHWAR S R, BARNES HL. Supergene processes in zinc-lead-silver sulfide ores in carbonates[J]. Economic Geology, 1983, 78(7):1379-1397.

    SANTORO L, BONI M, HERRINGTONR, et al. The Hakkari nonsulfide Zn-Pb deposit in the context of other nonsulfide Zn-Pb deposits in the Tethyan Metallogenic Belt of Turkey[J]. Ore Geology Reviews, 2013, 53:244-260.

    SCHNEIDER J, BONI M, LAUKAMPC, et al. Willemite (Zn2SiO4) as a possible Rb-Sr geochronometer for dating nonsulfide Zn-Pb mineralization:examples from the Otavi Mountainland (Namibia)[J]. Ore Geology Reviews, 2008, 33(2):152-167.

    SHEPARD W M, MORRIS H T, COOK DR. Geology and ore deposits of the Tintic mining district, Utah[A]. In:Ridge J D, ed., Ore deposits of the United States, 1933-1967 (Graton-Sales volume):American Institute of Mining, Metallurgy, and Petroleum Engineers[C], 1968:956-959.

    TAKAHASHI T. Supergene alteration of zinc and lead deposits in limestone[J]. Economic Geology, 1960, 55(6):1083-1115.

    THOMPSON T B, AREHARTG B. Geology and the origin of ore deposits in the Leadville district, Colorado-Part I. Geologic studies of orebodies and wall rocks[J]. Carbonate-hosted sulfide deposits of the central Colorado mineral belt:Economic Geology Monograph, 1990, 7:130-155.

    THORNBER M R, TAYLOR G F. The mechanisms of sulphide oxidation and gossan formation[J]. Regolith exploration geochemistry in tropical and subtropical ter

  • 加载中
计量
  • 文章访问数:  2534
  • PDF下载数:  1827
  • 施引文献:  0
出版历程
收稿日期:  2017-10-02
修回日期:  2017-12-29
刊出日期:  2018-06-15

目录