中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

山西平顺西安里铁矿区中生代闪长岩年代学及地球化学特征

王永, 陈正乐, 陈柏林, 董法宪, 张海东, 韩凤彬, 周永贵. 山西平顺西安里铁矿区中生代闪长岩年代学及地球化学特征[J]. 岩矿测试, 2013, 32(1): 131-144.
引用本文: 王永, 陈正乐, 陈柏林, 董法宪, 张海东, 韩凤彬, 周永贵. 山西平顺西安里铁矿区中生代闪长岩年代学及地球化学特征[J]. 岩矿测试, 2013, 32(1): 131-144.
Yong WANG, Zheng-le CHEN, Bai-lin CHEN, Fa-xian DONG, Hai-dong ZHANG, Feng-bin HAN, Yong-gui ZHOU. Chronology and Geochemistry on Mesozoic Diorite from the Xi′anli Iron Ore Area in Pingshun, Shanxi Province[J]. Rock and Mineral Analysis, 2013, 32(1): 131-144.
Citation: Yong WANG, Zheng-le CHEN, Bai-lin CHEN, Fa-xian DONG, Hai-dong ZHANG, Feng-bin HAN, Yong-gui ZHOU. Chronology and Geochemistry on Mesozoic Diorite from the Xi′anli Iron Ore Area in Pingshun, Shanxi Province[J]. Rock and Mineral Analysis, 2013, 32(1): 131-144.

山西平顺西安里铁矿区中生代闪长岩年代学及地球化学特征

  • 基金项目:
    中国地质科学院地质力学研究所基本科研业务费项目(DZLXJK201104);全国危机矿山接替资源找矿项目(20089950); 国家自然科学基金项目(41072701)
详细信息
    作者简介: 王永,博士,助理研究员,主要从事矿床学、地球化学研究。E-mail:firefly008@163.com
  • 中图分类号: P597.3;P618.31;P588.122

Chronology and Geochemistry on Mesozoic Diorite from the Xi′anli Iron Ore Area in Pingshun, Shanxi Province

  • 山西平顺地区位于大型宽缓的太行山复式背斜的西翼,大地构造位置属吕梁-太行断块的太行块隆的东南部,是华北地区重要的矽卡岩铁矿矿集区,中生代闪长质岩石是本区矽卡岩型铁矿重要的成矿母岩。本研究对其进行锆石SHRIMP年龄测定和地球化学分析,结果显示辉长岩和闪长岩的锆石年龄分别为123 Ma和126 Ma,两者侵位时代基本一致。地球化学分析显示区内岩浆岩主要为准铝质高钾钙碱性系列岩石,所有样品(二峰山闪长岩、西安里辉长岩和闪长岩)均有非常相似的稀土配分模式,富集轻稀土元素(∑LREEs平均值分别为94.64 μg/g、110.73 μg/g、118.63 μg/g),轻重稀土分馏不是很强烈,(La/Yb)N平均值分别为9.47、9.17、9.70;Eu异常不明显(δEu平均值分别为1.00、0.96、1.04),富集Ba、Th、U等大离子亲石元素,具有高Sr特征,所有岩性强烈亏损Nb、Ta等高场强元素。研究认为岩体主要来自幔源岩浆与壳源酸性岩浆的混合作用,样品高的Nb/Ta(17~22,平均19)以及Zr/Hf值(35~40,平均37)是继承了岩浆源区高Nb/Ta和Zr/Hf比值特征,表明地幔源区受到俯冲板片熔融体/流体的交代。其地球动力学背景为华北克拉通中生代破坏和岩石圈减薄事件,但是应该注意华北克拉通破坏和岩石圈减薄机制的多样性。
  • 加载中
  • 图 1  平顺地区大地构造位置及地质简图

    Figure 1. 

    图 2  平顺和二峰山地区闪长质岩石(a)R1-R2分类命名图解,(b)A/CNK-A/NK图解,(c)AFM图解和(d)SiO2-K2O图解

    Figure 2. 

    图 3  平顺和二峰山地区闪长质岩石微量和稀土元素配分图 (PM和CHUR引自Sun 和 McDonough,1989)

    Figure 3. 

    图 4  平顺辉长岩(LG01)和闪长岩(B035)中单颗粒锆石的阴极发光图及测试点

    Figure 4. 

    图 5  平顺辉长岩(LG01)和闪长岩(B035)中单颗粒锆石SHRIMP U-Pb年龄

    Figure 5. 

    图 6  平顺和二峰山地区闪长质岩石Ni-Co图解

    Figure 6. 

    图 7  平顺和二峰山地区闪长质岩石(a)SiO2-LREEs和(b)SiO2-Gd/Yb图解

    Figure 7. 

    图 8  平顺和二峰山地区闪长质岩石(a)SiO2-Nb/Ta和(b)SiO2-Zr/Hf 图解

    Figure 8. 

    表 1  平顺地区闪长质岩体岩石样品主量元素、稀土及微量元素分析结果

    Table 1.  Analytical results of major oxides and trace elements for Pingshun dirite

    主量元素 wB/%
    E01-2
    闪长岩
    E05-1
    石英正长岩
    E07-1
    石英正长岩
    P23-1
    辉长岩
    P44-1
    辉长岩
    P47-1
    辉长岩
    P49-1
    辉长岩
    P13-1
    闪长岩
    P17-1
    闪长岩
    P33-1
    闪长岩
    P34-1
    闪长岩
    P34-2
    闪长岩
    P39-1
    闪长岩
    SiO2 62.84 67.52 66.19 52.98 51.17 52.61 50.34 57.19 55.34 56.21 59.45 54.11 57.96
    Al2O3 17.58 17.69 17.41 13.8 13.97 14.25 11.56 18.53 17.54 17.52 17.12 16.61 17.20
    TFe2O3 4.27 1.34 1.46 8.25 11.43 10.06 9.36 6.76 7.72 7.62 6.61 8.4 6.82
    CaO 4.84 2.41 2.35 7.94 8.13 7.29 7.35 6.47 6.83 6.60 5.60 6.92 5.92
    MgO 1.20 0.66 0.91 8.67 6.81 5.71 13.71 2.02 3.39 2.81 2.74 4.77 2.97
    K2O 2.98 2.37 1.54 1.79 2.19 2.65 1.17 2.00 2.19 2.35 2.82 2.56 2.62
    Na2O 5.12 6.73 9.28 3.29 2.31 2.62 2.54 4.47 3.98 3.76 3.85 3.97 3.76
    TiO2 0.36 0.25 0.26 0.57 1.14 0.95 0.66 0.47 0.47 0.53 0.49 0.62 0.49
    MnO 0.11 0.03 0.04 0.15 0.14 0.12 0.17 0.08 0.17 0.15 0.13 0.15 0.14
    P2O5 0.22 0.11 0.16 0.25 0.19 0.20 0.28 0.31 0.32 0.30 0.26 0.30 0.28
    Mg# 40 53 59 71 58 57 77 41 50 46 49 57 50
    LOI 0.33 1.20 0.87 1.67 2.01 3.00 2.44 1.83 1.38 1.58 0.78 1.36 1.21
    总计 99.85 100.31 100.47 99.36 99.49 99.46 99.58 100.13 99.33 99.43 99.85 99.77 99.37
    稀土及
    微量元素
    wB/(μg·g-1)
    E01-2
    闪长岩
    E05-1
    石英正长岩
    E07-1
    石英正长岩
    P23-1
    辉长岩
    P44-1
    辉长岩
    P47-1
    辉长岩
    P49-1
    辉长岩
    P13-1
    闪长岩
    P17-1
    闪长岩
    P33-1
    闪长岩
    P34-1
    闪长岩
    P34-2
    闪长岩
    P39-1
    闪长岩
    Y 15.0 13.8 11.1 14.4 17.6 17.0 15.3 16.4 16.6 16.6 14.4 15.4 15.0
    La 27.2 13.7 17.8 23.2 18.2 21.0 18.0 25.7 23.5 22.8 22.4 20.4 22.5
    Ce 50.8 23.9 34.2 48.1 40.4 45.8 40.6 54.3 49.9 47.2 46.0 46.0 46.5
    Pr 6.24 3.85 4.79 5.66 5.16 5.60 5.26 6.37 6.09 5.60 5.39 5.74 5.50
    Nd 23.7 14.9 17.7 22.0 21.4 23.0 22.7 25.9 24.6 22.2 20.6 23.1 21.9
    Sm 4.65 2.94 3.29 4.26 4.82 5.05 4.67 5.06 4.84 4.32 4.07 4.55 4.23
    Eu 1.46 0.93 1.08 1.37 1.57 1.56 1.41 1.77 1.59 1.43 1.35 1.46 1.40
    Gd 4.21 2.94 2.89 4.14 4.79 4.95 4.47 4.47 4.35 3.97 3.82 4.24 3.92
    Tb 0.55 0.42 0.39 0.54 0.66 0.67 0.58 0.63 0.63 0.60 0.50 0.58 0.53
    Dy 2.9 2.45 2.12 2.88 3.61 3.51 3.12 3.32 3.39 3.36 2.86 3.13 2.95
    Ho 0.58 0.50 0.43 0.57 0.71 0.71 0.61 0.65 0.69 0.67 0.57 0.62 0.6
    Er 1.69 1.57 1.36 1.68 1.98 2.01 1.69 1.95 2.09 1.96 1.65 1.78 1.73
    Tm 0.24 0.23 0.19 0.22 0.26 0.27 0.24 0.28 0.29 0.27 0.25 0.25 0.24
    Yb 1.63 1.56 1.26 1.45 1.68 1.72 1.49 1.76 1.86 1.78 1.51 1.61 1.66
    Lu 0.23 0.24 0.21 0.21 0.25 0.25 0.22 0.26 0.28 0.27 0.24 0.24 0.26
    Li 1.21 19.2 3.49 12.9 6.32 12.9 7.79 5.85 13.2 19.3 14.8 17.6 16.9
    Be 1.64 1.21 1.69 1.19 1.02 1.24 0.76 1.29 1.27 1.15 1.48 1.32 1.50
    Sc 6.68 2.93 5.10 25.4 55.3 46.5 27.6 11.0 17.6 17.1 15.0 25.3 15.4
    V 90.2 40.00 54.2 172 297 240 192 118 166 158 134 204 141
    Cr 15.4 6.87 5.28 325 73.8 65.5 668 18.3 37.2 11.4 28.2 104 33.9
    Co 7.18 2.52 2.93 40.4 39.9 35.3 57.2 11.5 19.6 19.4 15.4 26.1 17.3
    Ni 3.8 3.44 2.95 271 21.6 20.7 537 11.2 20.3 9.12 15.7 58.0 18.7
    Cu 3.78 7.69 56.5 605 23.7 20.4 68.5 3.98 40.8 15.8 13.0 33.5 21.7
    Zn 45.3 28.00 13.3 93.0 79.9 66.1 98.8 30.6 81.5 81.0 72.0 99.2 95.2
    Ga 19.9 19.7 18.1 17.2 18.6 18.3 14.9 21.6 20.4 21.0 19.3 19.0 19.7
    Rb 28.2 23.5 16.1 37.0 28.0 36.2 20.3 16.0 36.9 42.0 51.0 46.0 44.4
    Sr 982 615 354 691 463 647 558 1003 1036 776 734 819 770
    Zr 130 120.0 113 100 92.0 102 83.8 87.9 117 106 111 85.3 118
    Nb 5.23 6.52 4.77 4.05 3.46 3.75 3.70 3.42 3.79 3.78 4.19 4.56 4.03
    Cd 0.05 0.05 0.05 0.09 0.06 0.05 0.13 0.05 0.06 0.06 0.07 0.08 0.07
    Cs 0.32 1.21 0.45 1.16 0.2 0.19 0.98 0.26 0.57 0.85 0.98 1.16 1.50
    Ba 1203 1187 659 829 686 888 458 1018 842 974 1022 1203 958
    Hf 3.34 3.16 2.85 2.58 2.56 2.74 2.32 2.45 3.31 2.86 2.99 2.36 3.03
    Ta 0.26 0.34 0.24 0.22 0.18 0.20 0.19 0.17 0.21 0.17 0.25 0.24 0.22
    Pb 8.10 11.4 2.22 10.3 4.48 3.30 4.82 3.43 6.20 7.35 9.35 4.49 7.49
    Th 3.44 1.64 2.23 2.66 1.72 1.98 1.66 3.23 1.99 1.68 2.47 1.97 2.60
    U 0.81 0.48 0.73 0.72 0.44 0.52 0.43 0.97 0.58 0.48 0.81 0.43 0.62
    注:LOI—烧失量。Mg#=100×Mg/(Mg+∑Fe),原子比。TZr(℃)=12900/[2.95(0.85M+ln(496000/Zrmelt)],M=(Na+K+2Ca)/(Al×Si),原子比,见Watson等(1983年)。
    下载: 导出CSV
  • [1]

    Ma C Q, Li Z, Ehlers C, Yang K, Wang R. A post-collisional magmatic plumbing sysyem: Mesozonic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone, east-central China[J]. Lithos, 1998, 45: 431-456. doi: 10.1016/S0024-4937(98)00043-7

    [2]

    Jahn N M, Wu F Y, Lo C H, Tsai C H. Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the north Dabie complex, central China [J]. Chemical Geology, 1999, 157: 119-146. doi: 10.1016/S0009-2541(98)00197-1

    [3]

    Fan W M, Zhang H F, Baker J, Jarvis K E, Mason P R D, Menzies M A. On and off the North China Craton: Where is the Archaean keel? [J]. Journal of Petrology, 2000, 41: 933-950. doi: 10.1093/petrology/41.7.933

    [4]

    邱检生,徐夕生,罗清华.鲁西富钾火山岩和煌斑岩的40Ar-39Ar定年及源区示踪 [J]. 科学通报, 2001, 46(18): 1500-1508. doi: 10.3321/j.issn:0023-074X.2001.18.002

    [5]

    钱青,钟孙霖,李通艺,温大任.八达岭基性岩和高Ba-Sr花岗岩地球化学特征及成因探讨:华北和大别-苏鲁造山带中生代岩浆岩的对比[J].岩石学报, 2002, 18: 275-292. doi: 10.3321/j.issn:1000-0569.2002.03.002

    [6]

    Zhang H F, Sun M, Zhou X H, Fan W M, Zhai M G, Yin J F. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major-trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts [J]. Contributions to Mineralogy and Petrology, 2002, 144: 241-253. doi: 10.1007/s00410-002-0395-0

    [7]

    Chen B, Zhai M G. Geochemistry of late Mesozoic lamprophyre dykes from the Taihang Mountains, north China, and implications for the sub-continental lithospheric mantle [J].Geological Magazine,2003,140: 87-93. doi: 10.1017/S0016756802007124

    [8]

    翟明国,朱日祥,刘建明,孟庆任,侯泉林,胡圣标,李忠,张宏福,刘伟.华北中生代构造体制转折的关键时限 [J].中国科学:D辑, 2003, 33: 913-920. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200310000.htm

    [9]

    Chen B, Jahn B M, Zhai M G. Sr-Nd isotopic charact-eristics of the Mesozoic magmatism in the Taihang-Yanshan orogen, north China Craton, and implications for Archean lithosphere thinning [J]. Journal of Geological Society, 2003, 160: 963-970. doi: 10.1144/0016-764902-129

    [10]

    Chen B, Jahn B M, Arakawa Y, Zhai M G. Petrogenesis of the Mesozoic intrusive complexes from the southern Taihang orogen, North China craton: Elemental and Sr-Nd-Pb isotopic constraints [J]. Contributions to Mineralogy and Petrology, 2004, 148: 489-501. doi: 10.1007/s00410-004-0620-0

    [11]

    陈斌,崔明国,田伟,江博明.太行山南段中生代杂岩体的岩石成因:元素和Nd-Sr-Pb 同位素地球化学证据 [J].矿物岩石地球化学通报, 2005, 24(2): 93-101. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200502001.htm

    [12]

    陈斌,刘超群,田伟.太行中生代岩浆作用过程中的壳幔岩浆混合作用:岩石学和地球化学证据[J].地学前缘, 2006, 13(2): 140-147. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602016.htm

    [13]

    刘红涛,孙世华,刘建明,翟明国.华北克拉通北缘中生代高Sr花岗岩类:地球化学与源区性质 [J].岩石学报,2002, 14(9): 14-23. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203000.htm

    [14]

    张旗,王焰,熊小林,李承东.埃达克岩和花岗岩:挑战与机遇[M].北京:中国大地出版社, 2008: 1-340.

    [15]

    郑建平,路凤香, O′Reilly S Y, Griffin W L, 张明.华北地台东部古生代与新生代岩石圈地幔特征及其演化[J].地质学报, 1999, 73(1): 47-56. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199901005.htm

    [16]

    邓晋福,赵国春,赵海玲,罗照华,戴圣潜,李凯明.中国东部燕山期火山岩构造组合与造山:深部过程 [J].地质论评, 2000, 46(1): 41-43. http://cdmd.cnki.com.cn/Article/CDMD-11415-2003092909.htm

    [17]

    董建华,程斌,周凌.太行山南段浮山岩体的成因: 岩石学和地球化学证据[J].自然科学通报, 2003, 13(7): 767-774. http://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200307018.htm

    [18]

    陈斌,田伟,翟明国,荒川洋二.太行山和华北其他地区中生代岩浆作用的锆石U-Pb 年代学和地球化学特征及其岩浆成因和地球动力学意义[J].岩石学报, 2005b, 11(1): 13-23. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200501002.htm

    [19]

    黄克杰,黄克强,李金龙.晋南塔儿山地区夕卡岩型铁矿岩浆岩特征及对成矿的控制作用[J].地质与资源, 2006, 15(3): 205-212. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSD200603007.htm

    [20]

    曾键年,左大华,马宪.山西塔儿山地区燕山期岩浆演化及其对金属成矿的控制作用[J].华北地质矿产志, 1997,12(1): 33-44. http://www.cnki.com.cn/Article/CJFDTOTAL-HBDZ701.003.htm

    [21]

    张海东.晋南平顺铁矿床成岩成矿作用及成矿预测[D].西安: 长安大学, 2011.

    [22]

    李宁,冯钟燕,于方.山西北落峡铁矿床流体包裹体研究与矿床成因讨论 [J].矿床地质, 1989,8(3): 113-124. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ198903006.htm

    [23]

    Williams I S. U-Th-Pb geochronology by ion microprobe//McKibben M A,Shanks W C,Ridley W I. Applications of microanalytical techniques to under-standing mineralizing processes [J]. Reviews in Economic Geology, 1998, 7: 1-35.

    [24]

    Ludwig K R. Squid 1.02: A User′s Manual [M]. Berkeley: Berkeley Geochronological Center Special Publication, 2001: 1-19.

    [25]

    Rapp R P, Watson E B. Dehydration melting of meta-basalt at 8-32 kbar: Implications for continental growth and crust-mantle mantle recycling [J].Journal of Petrology,1995, 36: 891-931. doi: 10.1093/petrology/36.4.891

    [26]

    Rapp R P, Xiao L, Shimizu N. Experimental constra-ints on the origin of potassium-rich adakites in eastern China [J]. Sinica Acta Petrologica, 2002, 18(3): 293-302.

    [27]

    Xu J F, Shinjo R, Defant M J, Wang Q, Rapp R P. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust [J].Geology,2002, 30: 1111-1114. doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2

    [28]

    张宏福.橄榄岩-熔体相互作用:克拉通型岩石圈地幔能够被破坏之关键 [J].科学通报,2009,54(14): 2008-2026. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200914007.htm

    [29]

    [30]

    张宏福,邵济安.辽西义县组火山:拆沉作用还是岩浆混合作用的产物? [J].岩石学报,2008, 24(1): 37-48. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200801004.htm

    [31]

    Barth M G, McDonough W F, Rudnick R L. Tracking the budget of Nb and Ta in the continental crust [J]. Chemical Geology, 2000, 165(3-4): 197-213. doi: 10.1016/S0009-2541(99)00173-4

    [32]

    Kamber B S, Collerson K D. Role of “hidden” deeply subducted slabs in mantle depletion [J]. Chemical Geology, 2000, 166: 241-254. doi: 10.1016/S0009-2541(99)00218-1

    [33]

    Liang J L, Ding X, Sun X M, Zhang Z M, Zhang H, Sun W D. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientifc Drilling Project [J].Chemical Geology,2009,268(1-2): 27-40. doi: 10.1016/j.chemgeo.2009.07.006

    [34]

    Münker C, Pfünder J A, Weyer S, Büchl A, Kleine T, Mezger K Evolution of planetary cores and the Earth-Moon system from Nb/Ta systematics [J]. Science,2003, 301: 84-87. doi: 10.1126/science.1084662

    [35]

    Green T H. Significance of Nb/Ta as an indicator of geochemical processes in the crust mantle system [J]. Chemical Geology,1995, 120: 347-359. doi: 10.1016/0009-2541(94)00145-X

    [36]

    Pfänder J A, Münker C, Stracke A, Mezger K. Nb/Ta and Zr/Hf in ocean island basalts- Implications for crust mantle differentiation and the fate of Niobium [J]. Earth and Planetary Science Letters,2007, 254:158-172. doi: 10.1016/j.epsl.2006.11.027

    [37]

    Foley S F, Barth M G, Jenner G A. Rutile/melt partition coeffecients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas [J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 933-938. doi: 10.1016/S0016-7037(99)00355-5

    [38]

    Foley S, Tiepolo M, Vannucci R. Growth of early conti-nental crust controlled by melting of amphibolite in subduction zones [J]. Nature, 2002, 417(6891): 837-840. doi: 10.1038/nature00799

    [39]

    Horng W S, Hess P C. Partition coeffcients of Nb and Ta between rutile and anhydrous haplogranite melts [J]. Contributions to Mineralogy and Petrology, 2000, 138(2): 176-185. doi: 10.1007/s004100050016

    [40]

    Schmidt M W, Dardon A, Chazot G, Vannucci R. The dependence of Nb and Ta rutile-melt partitioning on melt composition and Nb/Ta fractionation during subduction processes [J]. Earth and Planetary Science Letters, 2004, 226(3-4): 415-432. doi: 10.1016/j.epsl.2004.08.010

    [41]

    Klemme S, Prowatke S, Hametner K, Günther D. Parti-tioning of trace elements between rutile and silicate melts: Implications for subduction zones [J].Geochimica et Cosmochimica Acta, 2005, 69(9): 2361-2371. doi: 10.1016/j.gca.2004.11.015

    [42]

    Bromiley G D, Reffern S A T. The role of TiO2 phases during melting of subduction-modified crust: Implications for deep mantle melting [J]. Earth and Planetary Science Letters, 2008, 267(1-2): 301-308. doi: 10.1016/j.epsl.2007.11.033

    [43]

    Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: Implications for TTG genesis [J]. Chemical Geology, 2005, 218(3-4): 339-359. doi: 10.1016/j.chemgeo.2005.01.014

    [44]

    吴福元,徐义刚,高山,郑建平.华北岩石圈减薄与克拉通破坏研究的主要学术争论 [J].岩石学报, 2008, 24(6): 1145-1174. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806001.htm

    [45]

    邓晋福,莫宣学,赵海玲,罗照华,杜杨松.中国东部岩石圈根/去根作用与大陆“活化”——东亚型大陆动力学模式研究计划[J].现代地质, 1994, 8(8): 349-355. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ403.017.htm

    [46]

    邓晋福,苏尚国,刘翠.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉, 还是热侵蚀和化学交代[J]. 地学前缘, 2006, 13(2): 105-119. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602012.htm

    [47]

    邓晋福, 赵海玲,莫宣学,吴宗絮,罗照华.中国大陆根-柱构造——大陆动力学的钥匙 [M].北京:地质出版社, 1996.

    [48]

    Gao S, Rudnick R L, Carlson R W, McDonough W F, Liu Y S. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton [J]. Earth Planet Science Letter, 2002(198): 307-322.

    [49]

    吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报, 1999, 29(4): 313-318. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ199904000.htm

    [50]

    吴福元,孙德有,张广良,任向文.论燕山运动的深部地球动力学本质 [J].高校地质学报, 2000, 6(3): 378-388. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200003001.htm

    [51]

    吴福元,葛文春,孙德有,郭春丽.中国东部岩石圈减薄研究中的几个问题[J].地学前缘,2003,10(3): 51-60. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200303005.htm

    [52]

    Wu F Y, Walker R J, Ren X W, Sun D Y, Zhou X H. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China [J]. Chemical Geology, 2003, 197: 107-12.

    [53]

    Wu F Y, Lin J Q, Wilde S A, Zhang X O, Yang J H. Nature and significance of the Early Cretaceous giant igneous event in eastern China [J]. Earth and Planetary Science Letters, 2005, 233: 103-119. doi: 10.1016/j.epsl.2005.02.019

    [54]

    Wu F Y, Walker R J, Yang Y H, Yuan H L, Yang J H. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton [J]. Geochimica et Cosmochimica Acta, 2006,70: 5013-5034. doi: 10.1016/j.gca.2006.07.014

    [55]

    Menzies M A, Fan W M, Zhang M. Paleozlic and Cenozoic lithosphere and the loss of > 120km of Archean lithosphere, Sino-Korean craton, China [M]//Prichard H M, eds. Magmatic Processes and Plate Tectonics. Geological Society Special Publication, 1993: 71-81.

    [56]

    Menzies M A, Xu Y G. Geodynamics of the North China Craton [M]//Flower M F J, Chung S L, Lo C H, Lee T Y,eds. Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, 1998: 155-165.

    [57]

    Griffin W L, Zhang A D, O′Reilly S Y, Ryan C G. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton[M]//Flower M F J, Chung S L, Lo C H, Lee T Y, eds. Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union-Geodynamics Series, 1998, 27: 107-126.

    [58]

    Xu Y G, Huang X L, Ma J L, Wang Y B, Iizuka Y, Xu J F, Wang Q, Wu X Y. Crust mantle interaction during thetectono-thermal reactivation of the North China Craton: Constraints from SHRIMP zircon U Pb chronology and geochemistry of Mesozoic plutons from western Shandong [J]. Contributions to Mineralogy and Petrology, 2004, 147: 750-767. doi: 10.1007/s00410-004-0594-y

    [59]

    Xu Y G, Blusztajn J, Ma J L, Suzuki K, Liu J F, Hart S R. Late Archean to Early Proterozoic lithospheric mantle beneath the western North China Craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi [J]. Lithos, 2008, 102: 25-42. doi: 10.1016/j.lithos.2007.04.005

    [60]

    Zhang H F, Sun M, Zhou X H, Zhou M F, Fan W M, Zheng J P. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites [J]. Geochim Cosmochim Acta, 2003, 67: 4373-4387. doi: 10.1016/S0016-7037(03)00377-6

    [61]

    Zhang H F, Ying J F, Xu P, Ma Y G. Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China Craton: Implication for replacement process of lithospheric mantle [J]. Chinese Science Bulletin, 2004, 49: 961-966. doi: 10.1007/BF03184019

    [62]

    Zheng J P, O′Reilly S Y, Griffin W L, Lu F X, Zhang M. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong Peninsula, Sino Korean Craton, Eastern China [J]. International Geology Review, 1998, 40: 471-499. doi: 10.1080/00206819809465220

    [63]

    Zheng J P, O′Reilly S Y, Griffin W L, Lu F X, Zhang M, Pearson N J. Relict refractory mantle beneath the eastern North China block: Significance for lithosphere evolution [J]. Lithos, 2001, 57: 43-66. doi: 10.1016/S0024-4937(00)00073-6

    [64]

    Zheng J P, Griffin W L, O′Reilly S Y, Yang J S, Li T F, Zhang M, Zhang R Y, Liou J G. Mineral chemistry of period tites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraintson mantle evolution beneath Eastern China [J]. Journal of Petrology, 2006, 47: 2233-2256. doi: 10.1093/petrology/egl042

    [65]

    Zheng J P, Griffin W L, O′Reilly S Y, Yu C M, Zhang H F, Pearson N, Zhang M. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: Peridotitic xenoliths from the 100Ma Fuxin basalts and are gional synthesis [J]. Geochimica et Cosmochimica Acta, 2007, 71: 5203-5225. doi: 10.1016/j.gca.2007.07.028

    [66]

    Zhang H F. Transformation of lithospheric mantle through peridotitmeltreaction: A case of Sino Korean Craton [J].Earth Planet Science Letter,2005,237: 768-780. doi: 10.1016/j.epsl.2005.06.041

    [67]

    Zhang H F, Nakamura E, Sun M, Kobayashi K, Zhang J, Ying J F, Tang Y J, Niu L F. Transformation of subcontinental lithospheric mantle through peridotite meltreaction: Evidence from a highly fertile mantle xenolith from the North China Craton [J]. International Geology Review, 2007, 49: 658-679. doi: 10.2747/0020-6814.49.7.658

    [68]

    张宏福,周新华,范蔚茗,孙敏,郭锋,英基丰,汤艳杰,张瑾,牛利锋.华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理 [J].岩石学报, 2005, 21(4): 1271-1280. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200504024.htm

    [69]

    张宏福. 橄榄岩-熔体的相互作用: 岩石圈地幔组成转变的重要方式[J].地学前缘, 2006, 13(1): 65-75. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200602006.htm

    [70]

    Lan T G, Fan H R, Hu F, TomkinsA G, Yang K F, Liu Y S. Multiple crust-mantle interactions for the destruction of the North China Craton: Geochemical and Sr-Nd-Pb-Hf isotopic evidence from the Longbaoshan alkaline complex [J]. Lithos, 2011, 122: 87-106. doi: 10.1016/j.lithos.2010.12.001

    [71]

    Tang Y J, Zhang H F, Ying J F, Zhang J, Liu X M. Refer tilization of ancient lithospheric mantle beneath the central North China Craton: Evidence from petrology and geochemistry of peridotite xenoliths [J]. Lithos, 2008, 101: 435-452. doi: 10.1016/j.lithos.2007.09.006

  • 加载中

(8)

(1)

计量
  • 文章访问数:  555
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2012-02-20
录用日期:  2012-07-24

目录