A Review on Detection Methods of Chemical Oxygen Demand in Water Bodies
-
摘要: 化学需氧量(COD)是反映水体受有机物污染的重要指标,其环境污染问题引起了广泛关注。2012年我国长江、黄河等十大流域的972个国控断面中有10.2%的断面为劣Ⅴ类水质,COD是主要污染指标之一,因此对水体中COD进行准确监测具有重要的意义。目前我国采用的COD标准方法具有操作繁琐、效率低、检测成本高、对环境容易造成二次污染等问题。针对传统检测方法存在的缺点,研究者对所用仪器设备(样品消解及测定)、消解试剂、检测方法等进行优化与改进。在此基础上,检测效率及准确性更高、环境友好的检测技术也相继被开发与应用。本文总结了近年来COD标准检测方法的改进与优化、新检测技术研究的主要进展。传统检测方法可检测COD含量为30~700 mg/L的轻度、中度污染水样;基于标准方法改进的检测方法将检出下限降低至8.6 mg/L,检出上限则扩展到1600 mg/L。这些方法可显著缩短检测时间,降低检测成本,但不能避免试剂对环境的污染,且对难降解有机物的氧化能力不足。在药物及免疫分析、矿物岩石分析等其他领域或指标检测中成熟的技术方法,如化学发光法、流动注射法或多种技术结合的新的检测方法,已经被应用于COD检测,检出下限仅为0.16 mg/L,检测时间进一步缩短,试剂污染也大幅降低。随着科技的发展,臭氧氧化法、电化学法等不拘泥于传统检测方法的新方法,特别是基于以羟基自由基(·OH)为主要氧化剂与有机物发生反应的光催化法及光电催化氧化技术,进一步将COD的检测范围拓宽至0~23200 mg/L,为COD的准确、快速、低成本及在线监测提供了参考。Abstract: COD is regarded as an important index for representing the degree of organic pollution in water bodies, which has attracted wide attention. The water quality of 10.2% of the 972 state-controlled sections exceeded Ⅴ class among ten water areas such as the Yangtze River and the Yellow River in China in 2012. COD is one of the major pollution indicators in those water bodies. Therefore, it is of great importance to accurately monitor COD in water bodies. However, standard determination methods of COD have some disadvantages including complexity, low efficiency, high cost and severe secondary pollution. Aiming at the difficulties of traditional methods, instruments and equipment (sample digestion and determination), digestion reagents, and determination methods have been optimized and improved. In addition, certain environmentally friendly detection techniques with higher detection efficiency and accuracy have also been developed and applied. The most recent research progress of the determination methods of COD, including two main parts: the improved and optimized methods according to the standard ones, and new technologies or methods are reviewed in this paper. The traditional detection method is suitable for determining COD with the content range of 30-700 mg/L in light or moderate polluted water bodies. The improved and optimized methods extend the detection limits from 8.6 mg/L to 1600 mg/L, with the detection time shortened and cost of detection decreased significantly. However, the environmental pollution caused by chemical reagents could not be avoided, and oxidation ability to the refractory organics was insufficient. Flow injection, chemiluminescence or a combination of several techniques, which had already been used as the mature detection methods in drugs and immune analysis, mineral and rock analysis, have also been employed for the determination of COD in water bodies. Lower detection limit (0.16 mg/L) and faster detection time could be achieved, and the environmental pollution caused by the reagents was reduced dramatically. With the development of science and technology, some new methods such as ozone oxidation, electrochemical ones, especially as photocatalytic and photoelectrocatalytic determination technologies, based upon the reaction between hydroxyl radicals and organic compounds, have been developed recently. A wider detection range (0-23200 mg/L) was achieved by these new methods, which are capable of determining COD in water bodies with different pollution levels. The new techniques could provide a reference for the accurate, rapid, low-cost and on-line monitoring determination of COD.
-
Key words:
- water /
- chemical oxygen demand /
- detection method
-
-
图 1 化学发光系统测定水体中COD示意图[15]
Figure 1.
图 2 微流体装置示意图[24]
Figure 2.
表 1 高盐废水检测中推荐的HgSO4/Cl-比例[12]
Table 1. Recommended HgSO4/Cl- ratios for COD analysis at high salinities [12]
COD浓度
ρ/(mg·L-1)推荐的HgSO4/Cl-比例 Cl-浓度上限:2500 mg/L Cl-浓度上限:5000 mg/L Cl-浓度上限:7500 mg/L Cl-浓度上限:10000 mg/L 0~50 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 - - 50~100 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 30∶1 100~150 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 20∶1~30∶1 150~200 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 10∶1~20∶1~30∶1 20∶1~30∶1 表 2 各类检测方法比较
Table 2. Comparison of different detection methods
方法
类型检测方法 线性范围/
(mg·L-1)检出限/
(mg·L-1)样品类型 方法优缺点 文献来源 标准方法改进 Mn3+作氧化剂,微波消解 与标准方法
一致- 废水 微波消解时间仅1 min;与标准方法比对误差 < 4%,无需汞盐;不能避免铬盐的污染 Domini等[11] CuSO4-MnSO4复合催化剂替代 45~1600 45 废水 消解时间12 min;扩展了检测范围;不需银盐,不能避免汞盐、铬盐的二次污染 邱婧伟等[36] 普通分光光度计代替专用COD测定仪 与标准方法
一致与标准方法
一致废水 降低检测成本,消解时间为12 min,降低环境污染;所需试剂与快速法一致无改进 付丽君等[9] 双波长光谱法 8.6~100 8.6 低污染
水体提高了低污染水体的灵敏度,不需标准样品校正;消解时间长,消解温度等无改进 蒋然等[14] 高氯废水检测方法优化 ≤200 - 高氯低
有机物废水优化了HgSO4的加入比例,适合Cl- < 10000 mg/L的高氯废水,增加了汞盐等的污染 Kayaalp等[12] 新的检测技术 化学发光法(KMnO4-戊二醛高通量化学发光系统) 0.16~19.24 0.1 清洁水 操作简单快速,检测效率高及污染少,检出限低,适合低含量水体中COD的检测;线性范围较窄 Yao等[15] 流动注射技术(微波
消解,ICP结合)2.6~850 1.2 清洁水
及废水多种技术结合,显著降低了检出限,Cl-含量 < 3000 mg/L不干扰测定;使用大型仪器,成本高 Almeida等[17] 臭氧氧化法
(O3/UV)与标准方法
一致0.03 海水 盐度无影响,检出限显著降低;适合海水在线监测;臭氧本身的局限导致方法氧化能力不足 刘岩等[19] 电化学法(BDD
电极-超声消解)0~23200 0.19 清洁水
及废水线性范围很宽,检出限低。检测时间仅需5 min,电极制作成本高,不适合推广 Wang等[69] 光催化法(纳米
TiO2- K2Cr2O7
体系)0~150 0.4 轻度污染
水体Cl-含量 < 2000.0 mg/L不干扰测定,无需汞盐。线性范围较窄,有待改进,成本较高 李成芳等[80] 光电催化氧化法(TNFs) 0~250 0.95 中轻度
污染水体测定快速(几分钟),试剂污染少,氧化效率高。线性范围有待提升,成本高 Mu等[24] -
[1] United Nations Educational, Scientific and Cultural Organization, The 4th edition of the UN World Water Development Report[EB/OL].http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012/[2012-03-12].
[2] Noguerol-Arias J, Rodriguez-Abalde A, Romero-Merino E, Flotats X. Determination of chemical oxygen demand in heterogeneous solid or semisolid samples using a novel method combining solid dilutions as a preparation step followed by optimized closed reflux and colorimetric measurement[J].Analytical Chemistry, 2012, 84(13): 5548-5555. doi: 10.1021/ac3003566
[3] 环境保护部.中国环境公报[EB/OL].http://www.mep.gov.cn/gkml/hbb/qt/201306/t20130604_253201.htm[2013-06-04].
[4] Wang H, Zhong S H, He Y, Song G W. Molecular sieve 4A-TiO2-K2Cr2O7 coexisted system as sensor for chemical oxygen demand[J].Sensors and Actuators B: Chemical, 2011, 160(1): 189-195. doi: 10.1016/j.snb.2011.07.032
[5] Tian J J, Hu Y G, Zhang J. Chemiluminescence detection of permanganate index (CODMn) by a luminol-KMnO4 based reaction[J].Journal of Environmental Sciences, 2008, 20(2): 252-256. doi: 10.1016/S1001-0742(08)60039-X
[6] Zhao H J, Jiang D L, Zhang S Q, Catterall K, John R. Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J].Analytical Chemistry, 2004, 76(1): 155-160. doi: 10.1021/ac0302298
[7] 罗国兵.自配消解液分光光度法测定污水中COD[J].中国给水排水, 2008, 24(4): 83-85. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200911006.htm
[8] Dharmadhikari D M, Vanerkar A P, Barhate N M. Chemical oxygen demand using closed microwave digestion system[J].Environmental Science & Technology, 2005, 39(16): 6198-6201.
[9] 付丽君,李冰璟,蒋文新,林志敬,应维琪.低耗环保COD测定方法的研究[J].环境污染与防治,2008,30(3): 57-61. http://www.cnki.com.cn/Article/CJFDTOTAL-HJWR200803023.htm
[10] Li J, Tao T, Li X B, Zuo J L, Li T, Lu J, Li S H, Chen L Z, Xia C Y, Liu Y, Wang Y L. A spectrophotometric method for determination of chemical oxygen demand using home-made reagents[J].Desalination, 2009, 239(1-3): 139-145. doi: 10.1016/j.desal.2008.03.014
[11] Domini C E, Vidal L, Canals A. Trivalent manganese as an environmentally friendly oxidizing reagent for microwave- and ultrasound-assisted chemical oxygen demand determination[J].Ultrasonics Sonochemistry, 2009, 16(5): 686-691. doi: 10.1016/j.ultsonch.2009.01.008
[12] Kayaalp N, Ersahin M E, Ozgun H, Koyuncu I, Kinaci C. A new approach for chemical oxygen demand (COD) measurement at high salinity and low organic matter samples[J].Environmental Science and Pollution Research, 2010, 17(9): 1547-1552. doi: 10.1007/s11356-010-0341-z
[13] 薛文平,刘文伟,黄德智,元世勇.利用微波消解-无银催化法检测水中化学需氧量[J].黄金,2011,32(4): 48-50. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201104015.htm
[14] 蒋然, 柴欣生,张翠,唐红亮.一种检测低浓度化学需氧量的双波长光谱方法[J].光谱学与光谱分析,2011,31(7): 2007-2010. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201107068.htm
[15] Yao H, Wu B, Qu H B, Cheng Y Y.A high throughput chemiluminescence method for determination of chemical oxygen demand in waters[J].Analytica Chimica Acta, 2009, 633(1): 76-80. doi: 10.1016/j.aca.2008.11.046
[16] 乐琳,张晓鸣.超声消解FIA-FAAS快速测定环境水样中COD[J].分析试验室,2008,27(11): 119-122. doi: 10.3969/j.issn.1000-0720.2008.11.032
[17] Almeida C A, González P, Mallea M, Martinez L D, Gil R A.Determination of chemical oxygen demand by a flow injection method based on microwave digestion and chromium speciation coupled to inductively coupled plasma optical emission spectrometry[J].Talanta,2012, 97: 273-278. doi: 10.1016/j.talanta.2012.04.030
[18] Almeida C A, Savio M, González P, Martinez L D, Gil R A.Determination of chemical oxygen demand employed manganese as an environmentally friendly oxidizing reagent by a flow injection method based on microwave digestion and speciation coupled to ICP-OES[J].Microchemical Journal, 2013, 106: 351-356. doi: 10.1016/j.microc.2012.09.007
[19] 刘岩,白强,侯广利,杜立彬,陈江麟.臭氧法海水化学需氧量(COD)现场快速分析技术研究[J].海洋环境科学,2008,27(2): 182-185. http://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200802020.htm
[20] Han Y H, Qiu J X, Miao Y Q, Han J S, Zhang S Q, Zhang H M, Zhao H J.Robust TiO2/BDD heterojunction photoanodes for determination of chemical oxygen demand in wastewaters[J].Analytical Methods, 2011, 3(9): 2003-2009. doi: 10.1039/c1ay05193h
[21] Zhou Y S, Jing T, Hao Q L, Zhou Y K, Mei S R.A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode[J].Electrochimica Acta, 2012, 74: 165-170. doi: 10.1016/j.electacta.2012.04.048
[22] 吴灿,吴康兵.基于纳米Pt形貌调控的化学需氧量电化学传感研究[J].分析化学,2013,41(5): 704-708. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201305016.htm
[23] Silvestre C I C, Frigerio C, Santos J L M, Lima J L F C.Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system[J].Analytica Chimica Acta, 2011, 699(2): 193-197. doi: 10.1016/j.aca.2011.05.018
[24] Mu Q H, Li Y G, Zhang Q H, Wang H Z.TiO2 nanofibers fixed in a microfluidic device for rapid determination of chemical oxygen demand via photoelectrocatalysis[J].Sensors and Actuators B: Chemical, 2011, 155(2): 804-809. doi: 10.1016/j.snb.2011.01.051
[25] Wang C, Wu J C, Wang P F, Ao Y H, Hou J, Qian J.Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand[J].Analytica Chimica Acta, 2013, 767: 141-147. doi: 10.1016/j.aca.2013.01.028
[26] Wang C, Wu J C, Wang P F, Ao Y H, Hou J, Qian J.Photoelectrocatalytic determination of chemical oxygen demand under visible light using Cu2O-loaded TiO2 nanotube arrays electrode[J].Sensors and Actuators B: Chemical, 2013, 181: 1-8. doi: 10.1016/j.snb.2013.02.011
[27] 沈加正,侯沙沙,刘鹰,罗荣强.海水化学需氧量烘箱加热测定方法的研究[J].海洋科学,2011,35(8): 1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201108002.htm
[28] 崔建平,李黎.一种快速测定废水化学需氧量的方法[J].工业水处理,2008,28(8): 66-67. doi: 10.11894/1005-829x.2008.28(8).66
[29] 张安龙,曹萌.微波消解法测定造纸废水中COD的研究[J].环境科学与技术,2010,33(6E): 287-288. http://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2010S1077.htm
[30] Miller D G, Brayton S V, Boyles W T.Chemical oxygen demand analysis of wastewater using trivalent manganese oxidant with chloride removal by sodium bismuthate pretreatment[J].Water Environment Research, 2001, 73(1): 63-71. doi: 10.2175/106143001X138705
[31] Kim Y C, Sasaki S, Yano K, Ikebukuro K, Hashimoto K, Karube I.Relationship between theoretical oxygen demand and photocatalytic chemical oxygen demand for specific classes of organic chemicals[J].Analyst, 2000, 125(11): 1915-1918. doi: 10.1039/b007005j
[32] 刘咏,赵仕林,李瑞桢,张爱平.难降解垃圾渗滤液COD的硫酸高铈法测定[J].环境工程学报,2010,33(3): 348-351. http://www.cnki.com.cn/Article/CJFDTOTAL-SCSD201003019.htm
[33] 王俊荣,韩永红,刘宗斌.银盐沉淀-铬酸盐法测定高氯离子水样中化学需氧量[J].冶金分析,2008,28(3): 43-45. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200803008.htm
[34] 褚有群,冯建松,李丹丹,李照华,马淳安.电位滴定法同时标定硫酸高铈和硫酸亚铁铵溶液[J].理化检验(化学分册),2012,48(7): 841-844. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201207029.htm
[35] 林穗云.无汞、无银国标COD测定法的改进[J].精细化工,2008,25(1): 83-86. http://www.cnki.com.cn/Article/CJFDTOTAL-JXHG200801020.htm
[36] 邱婧伟,于国峰,赵静,王潇,程海岩,潘理黎.低污染低成本COD快速测定方法的研究[J].环境科学与技术,2012,35(8): 129-132. http://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201208030.htm
[37] 周俊,杨新萍,周立祥.自配消解液分光光度法测定污水中的COD[J].环境工程学报,2009,3(11): 1956-1961. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200911006.htm
[38] 孙海波,薛建军,金丹萍,倪守高,雷斌.HE 99721型COD测定仪专用试剂包的配制[J].理化检验(化学分册),2009,45(6): 732-734. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200906042.htm
[39] 税永红,李巧巧.快速消解721分光光度法测定废水COD值[J].印染,2011,37(8): 44-46. http://www.cnki.com.cn/Article/CJFDTOTAL-YIRA201108013.htm
[40] Ogura N.Studies of ultaviolet absorbing materials in natural water. Ⅱ.Relation between ultraviolet absorbing materials in natural water[J].Nippon Kagaku Zasshi, 1965, 86(12): 1286-1288. doi: 10.1246/nikkashi1948.86.1286
[41] 吴同华,郭虹,郭敬慈.连续紫外扫描光谱法快速测定废水的化学需氧量[J].中国环境监测,2009,25(4): 57-59. http://www.cnki.com.cn/Article/CJFDTOTAL-IAOB200904016.htm
[42] 谭淞文,程刚,王志成,公天齐,朱恋.应用改进分光光度法测定多组分水样的COD[J].环境工程学报,2012,6(5): 1755-1760. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201205066.htm
[43] 张浩,孙力平.双波长紫外分光光度法测定渗滤液COD的研究[J].环境工程学报,2009,3(10): 1755-1758. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200910006.htm
[44] 陈洪雷,陈元彩,詹怀宇,付时雨.导数光谱-化学计量学方法测定制浆废水COD[J].华南理工大学学报(自然科学版),2009,37(10): 150-154. doi: 10.3321/j.issn:1000-565X.2009.10.029
[45] 赵亚乾.Cl-,NH3,和H2O2对COD测定的影响[J].上海环境科学,1995,14(8): 32-34.
[46] 林诗敏,王茀跃,白书明.差减法测定高氯废水的COD值[J].中国给水排水,2009,25(24): 79-81. doi: 10.3321/j.issn:1000-4602.2009.24.022
[47] Vyrides I, Stuckey D C.A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics[J].Bioresource Technology, 2009, 100(2): 979-982. doi: 10.1016/j.biortech.2008.06.038
[48] 运如艳.叠加法测定污水处理厂高氯出水水样的COD[J].中国给水排水,2009,25(4): 79-81. http://www.cnki.com.cn/Article/CJFDTOTAL-GSPS200904030.htm
[49] 刘娟,吴浩宇.高氯废水COD测定方法的探究[J].工业水处理,2011,31(4): 66-69. doi: 10.11894/1005-829x.2011.31.(4).66
[50] 呼晋江,兰生富,曹佳红.二苯碳酰二肼光度法测定低含量CODCr[J].四川环境,2008,27(4): 20-23.
[51] 王亚林,徐乾前,章琴琴.H2O2对COD测定的干扰及消除研究[J].环境污染与防治,2012,34(12): 52-56. doi: 10.3969/j.issn.1001-3865.2012.12.012
[52] 曹国民,盛梅,钟晨,周凤珍.工业废水中溴离子对COD测定的影响[J].中国给水排水,2007,23(20): 85-88. doi: 10.3321/j.issn:1000-4602.2007.20.022
[53] Hu Y G, Yang Z Y.A simple chemiluminescence method for determination of chemical oxygen demand values in water[J].Talanta, 2004, 63(3): 521-526. doi: 10.1016/j.talanta.2003.11.037
[54] 杨泽玉,胡涌刚.化学发光-化学需氧量测定新方法[J].分析化学,2003,31(12): 1430-1432. doi: 10.3321/j.issn:0253-3820.2003.12.006
[55] Liu W, Zhang Z J, Zhang Y Y.Chemiluminescence micro-flow system for rapid determination of chemical oxygen demand in water[J].Microchim Acta, 2008, 160(1-2): 141-146. doi: 10.1007/s00604-007-0824-x
[56] 乐琳,张晓鸣.流动注射合并带停留光度法快速测定环境水样中化学需氧量[J].岩矿测试,2008,27(2): 87-90. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200802004.htm
[57] 刘光虹,庞志涛,胡涌刚.流动注射式化学发光法测定化学需氧量[J].实验技术与管理,2008,25(7): 58-61. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJL200807015.htm
[58] 乐琳,张晓鸣.流动注射-火焰原子吸收法快速测定水样化学需氧量[J].环境污染与防治,2008,30(10): 67-70. doi: 10.3969/j.issn.1001-3865.2008.10.019
[59] 郑青,韩海波,周保学,李金花,白晶,蔡伟民.化学需氧量(COD)快速测定新方法研究进展[J].科学通报,2009,54(21): 3241-3250. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200921002.htm
[60] 靳保辉,何鹰,庄峙厦,王小如,Lee F S C.液相臭氧化流动注射化学发光法测定水体化学耗氧量(COD)的研究: 苯酚溶液COD测定[J].厦门大学学报(自然科学版),2005,44(2): 224-229. http://www.cnki.com.cn/Article/CJFDTOTAL-XDZK20050200I.htm
[61] 徐珊珊.臭氧法COD测量仪测量海水COD的研究[D].青岛: 中国海洋大学,2008.
[62] Wang J Q, Wu C, Wu K B, Cheng Q, Zhou Y K.Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film[J].Analytica Chimica Acta, 2012, 736: 55-61. doi: 10.1016/j.aca.2012.05.046
[63] Silva C, Conceicao C D C, Bonifácio V, Fatibello O, Teixeira M.Determination of the chemical oxygen demand (COD) using a copper electrode: A clean alternative method[J].Journal of Solid State Electrochemistry, 2009, 13(5): 665-669. doi: 10.1007/s10008-008-0580-9
[64] Jing T, Zhou Y S, Hao Q L, Zhou Y K, Mei S R.A nano-nickel electrochemical sensor for sensitive determination of chemical oxygen demand[J].Analytical Methods, 2012, 4(4): 1155-1159. doi: 10.1039/c2ay05631c
[65] Li J Q, Li L P, Zheng L, Xian Y Z, Jin L T.Rh2O3/Ti electrode preparation using laser anneal and its application to the determination of chemical oxygen demand[J].Measurement Science & Technology, 2006, 17(7): 1995-2000.
[66] 倪翠芳,高晨,王芬.电化学催化氧化法快速测定化学需氧量[J].科技通报,2013,29(4): 180-182. http://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201304063.htm
[67] Yu H B, Ma C J, Quan X, Chen S, Zhao H M.Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode[J].Environmental Science & Technology, 2009, 43(6): 1935-1939.
[68] Wang J, Li K, Zhang H B, Wang Q, Wang Y L, Yang C, Guo Q B, Jia J P.Condition optimization of amperometric determination of chemical oxygen demand using boron-doped diamond sensor[J].Research on Chemical Intermediates, 2012, 38(9): 2285-2294. doi: 10.1007/s11164-012-0545-6
[69] Wang J, Li K, Yang C, Wang Y L, Jia J P.Ultrasound electrochemical determination of chemical oxygen demand using boron-doped diamond electrode[J].Electrochemistry Communications, 2012, 18: 51-54. doi: 10.1016/j.elecom.2012.02.002
[70] Jeong B G, Yoon S M, Choi C H, Kwon K K, Hyun M S, Yi D H, Park H S, Kim M, Kim H J.Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit[J].Journal of Environmental Monitoring, 2007, 9(12): 1352-1357. doi: 10.1039/b713393f
[71] 杜宝中,路蕾蕾,唐建红,孙莎,屈敏佳.安培法直接测定水体中COD的方法研究[J].西安理工大学学报,2011,27(1): 69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-XALD201101014.htm
[72] Ma C J, Tan F, Zhao H M, Chen S, Quan X.Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode[J].Sensors and Actuators B: Chemical, 2011, 155(1): 114-119. doi: 10.1016/j.snb.2010.11.033
[73] Zheng Q, Zhou B X, Bai J, Li L H, Jin Z J, Zhang J L, Li J H, Liu Y B, Cai W M, Zhu X Y.Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J].Advanced Materials, 2008, 20(5): 1044-1049. doi: 10.1002/(ISSN)1521-4095
[74] 丁颜丽.流动注射技术结合掺硼金刚石薄膜电极用于COD的快速测定[D].大连: 大连理工大学,2012.
[75] Yu H B, Wang H, Quan X, Chen S, Zhang Y B.Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor[J].Electrochemistry Communications, 2007, 9(9): 2280-2285. doi: 10.1016/j.elecom.2007.06.037
[76] Bogdanowicz R, Czupryniak J, Gnyba M, Ryl J, Ossowski T, Sobaszek M, Darowicki K.Determination of chemical oxygen demand (COD) at boron-doped diamond (BDD) sensor by means of amperometric technique[J].Procedia Engineering, 2012, 47: 1117-1120. doi: 10.1016/j.proeng.2012.09.347
[77] Bogdanowicz R, Czupryniak J, Gnyba M, Ryl J, Ossowski T, Sobaszek M, Darowicki K.Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond[J].Sensors and Actuators B: Chemical, 2013, Doi: 10.1016/j.snb.2012.12.007.
[78] Zhang S Q, Li L H, Zhao H J.A portable photo-electrochemical probe for rapid determination of chemical oxygen demand in wastewaters[J].Environmental Science & Technology, 2009, 43(20): 7810-7815.
[79] Kim Y C, Lee K H, Sasaki S, Hashimoto K, Ikebukuro K, Karube I.Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode[J].Analytical Chemistry, 2000, 72(14): 3379-3382. doi: 10.1021/ac9911342
[80] 李成芳,余红敏,彭毛,吴辉,宋功武.纳米二氧化钛重铬酸钾协同光催化氧化体系快速测定化学需氧量[J].湖北大学学报(自然科学版),2009,31(1): 55-58. http://www.cnki.com.cn/Article/CJFDTOTAL-HDZK200901013.htm
[81] Li C F, Song G W.Photocatalytic degradation of organic pollutants and detection of chemical oxygen demand by fluorescence methods[J].Sensors and Actuators B: Chemical, 2009, 137(2): 432-436. doi: 10.1016/j.snb.2009.01.055
[82] Zhang A Y, Zhou M H, Zhou Q X.A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent[J].Analytica Chimica Acta, 2011, 686: 133-143. doi: 10.1016/j.aca.2010.11.049
[83] Carrillo-Carrion C, Cardenas S, Simonet B M, Valcarcel M.Quantum dots luminescence enhancement due to illumination with UV/Vis light[J].Chemical Communications, 2009, 35: 5214-5226.
[84] Li F B, Li X Z, Kang Y H, Li X J.An innovative Ti/TiO2 mesh photoelectrode for methyl orange photoelectrocatalytic degradation[J].Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2002, 37(4): 623-640. doi: 10.1081/ESE-120003242
[85] 田玉华,李新军,郑少健,张玉媛,冯满枝.锰离子非均匀掺杂TiO2薄膜电极光电催化测定COD[J].生态环境, 2008,17(2): 489-494.
[86] Yuan S J, Mao R Y, Li Y G, Zhang Q H, Wang H Z.Layer-by-layer assembling TiO2 film from anatase TiO2 sols as the photoelectrochemical sensor for the determin-ation of chemical oxygen demand[J].Electrochimica Acta, 2012, 60: 347-353. doi: 10.1016/j.electacta.2011.11.069
[87] 董超平,张嘉凌,李金花,陈红冲,周保学.二氧化钛纳米管阵列光电催化测定地表水化学需氧量[J].分析化学,2010,38(8): 1227-1230. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201008039.htm
[88] Zhang S Q, Li L H, Zhao H J, Li G Y.A portable miniature UV-LED-based photoelectrochemical system for determination of chemical oxygen demand in wastewater[J].Sensors and Actuators B: Chemical, 2009, 141(2): 634-640. doi: 10.1016/j.snb.2009.07.019
-