中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

水体化学需氧量的检测方法

罗国兵. 水体化学需氧量的检测方法[J]. 岩矿测试, 2013, 32(6): 860-874.
引用本文: 罗国兵. 水体化学需氧量的检测方法[J]. 岩矿测试, 2013, 32(6): 860-874.
Guo-bing LUO. A Review on Detection Methods of Chemical Oxygen Demand in Water Bodies[J]. Rock and Mineral Analysis, 2013, 32(6): 860-874.
Citation: Guo-bing LUO. A Review on Detection Methods of Chemical Oxygen Demand in Water Bodies[J]. Rock and Mineral Analysis, 2013, 32(6): 860-874.

水体化学需氧量的检测方法

详细信息
    作者简介: 罗国兵,高级工程师,主要从事环境检测、实验室质量管理工作。E-mail:gbluo324@163.com
  • 中图分类号: P641; O655.

A Review on Detection Methods of Chemical Oxygen Demand in Water Bodies

  • 化学需氧量(COD)是反映水体受有机物污染的重要指标,其环境污染问题引起了广泛关注。2012年我国长江、黄河等十大流域的972个国控断面中有10.2%的断面为劣Ⅴ类水质,COD是主要污染指标之一,因此对水体中COD进行准确监测具有重要的意义。目前我国采用的COD标准方法具有操作繁琐、效率低、检测成本高、对环境容易造成二次污染等问题。针对传统检测方法存在的缺点,研究者对所用仪器设备(样品消解及测定)、消解试剂、检测方法等进行优化与改进。在此基础上,检测效率及准确性更高、环境友好的检测技术也相继被开发与应用。本文总结了近年来COD标准检测方法的改进与优化、新检测技术研究的主要进展。传统检测方法可检测COD含量为30~700 mg/L的轻度、中度污染水样;基于标准方法改进的检测方法将检出下限降低至8.6 mg/L,检出上限则扩展到1600 mg/L。这些方法可显著缩短检测时间,降低检测成本,但不能避免试剂对环境的污染,且对难降解有机物的氧化能力不足。在药物及免疫分析、矿物岩石分析等其他领域或指标检测中成熟的技术方法,如化学发光法、流动注射法或多种技术结合的新的检测方法,已经被应用于COD检测,检出下限仅为0.16 mg/L,检测时间进一步缩短,试剂污染也大幅降低。随着科技的发展,臭氧氧化法、电化学法等不拘泥于传统检测方法的新方法,特别是基于以羟基自由基(·OH)为主要氧化剂与有机物发生反应的光催化法及光电催化氧化技术,进一步将COD的检测范围拓宽至0~23200 mg/L,为COD的准确、快速、低成本及在线监测提供了参考。
  • 加载中
  • 图 1  化学发光系统测定水体中COD示意图[15]

    Figure 1. 

    图 2  微流体装置示意图[24]

    Figure 2. 

    图 3  传统检测方法的改进

    Figure 3. 

    表 1  高盐废水检测中推荐的HgSO4/Cl-比例[12]

    Table 1.  Recommended HgSO4/Cl- ratios for COD analysis at high salinities [12]

    COD浓度
    ρ/(mg·L-1)
    推荐的HgSO4/Cl-比例
    Cl-浓度上限:2500 mg/LCl-浓度上限:5000 mg/LCl-浓度上限:7500 mg/LCl-浓度上限:10000 mg/L
    0~5010∶1~20∶1~30∶110∶1~20∶1~30∶1--
    50~10010∶1~20∶1~30∶110∶1~20∶1~30∶110∶1~20∶1~30∶130∶1
    100~15010∶1~20∶1~30∶110∶1~20∶1~30∶110∶1~20∶1~30∶120∶1~30∶1
    150~20010∶1~20∶1~30∶110∶1~20∶1~30∶110∶1~20∶1~30∶120∶1~30∶1
    下载: 导出CSV

    表 2  各类检测方法比较

    Table 2.  Comparison of different detection methods

    方法
    类型
    检测方法线性范围/
    (mg·L-1)
    检出限/
    (mg·L-1)
    样品类型方法优缺点文献来源
    标准方法改进Mn3+作氧化剂,微波消解与标准方法
    一致
    -废水微波消解时间仅1 min;与标准方法比对误差 < 4%,无需汞盐;不能避免铬盐的污染Domini等[11]
    CuSO4-MnSO4复合催化剂替代45~160045废水消解时间12 min;扩展了检测范围;不需银盐,不能避免汞盐、铬盐的二次污染邱婧伟等[36]
    普通分光光度计代替专用COD测定仪与标准方法
    一致
    与标准方法
    一致
    废水降低检测成本,消解时间为12 min,降低环境污染;所需试剂与快速法一致无改进付丽君等[9]
    双波长光谱法8.6~1008.6低污染
    水体
    提高了低污染水体的灵敏度,不需标准样品校正;消解时间长,消解温度等无改进蒋然等[14]
    高氯废水检测方法优化≤200-高氯低
    有机物废水
    优化了HgSO4的加入比例,适合Cl- < 10000 mg/L的高氯废水,增加了汞盐等的污染Kayaalp等[12]
    新的检测技术化学发光法(KMnO4-戊二醛高通量化学发光系统)0.16~19.240.1清洁水操作简单快速,检测效率高及污染少,检出限低,适合低含量水体中COD的检测;线性范围较窄Yao等[15]
    流动注射技术(微波
    消解,ICP结合)
    2.6~8501.2清洁水
    及废水
    多种技术结合,显著降低了检出限,Cl-含量 < 3000 mg/L不干扰测定;使用大型仪器,成本高Almeida等[17]
    臭氧氧化法
    (O3/UV)
    与标准方法
    一致
    0.03海水盐度无影响,检出限显著降低;适合海水在线监测;臭氧本身的局限导致方法氧化能力不足刘岩等[19]
    电化学法(BDD
    电极-超声消解)
    0~232000.19清洁水
    及废水
    线性范围很宽,检出限低。检测时间仅需5 min,电极制作成本高,不适合推广Wang等[69]
    光催化法(纳米
    TiO2- K2Cr2O7
    体系)
    0~1500.4轻度污染
    水体
    Cl-含量 < 2000.0 mg/L不干扰测定,无需汞盐。线性范围较窄,有待改进,成本较高李成芳等[80]
    光电催化氧化法(TNFs)0~2500.95中轻度
    污染水体
    测定快速(几分钟),试剂污染少,氧化效率高。线性范围有待提升,成本高Mu等[24]
    下载: 导出CSV
  • [1]

    United Nations Educational, Scientific and Cultural Organization, The 4th edition of the UN World Water Development Report[EB/OL].http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/wwdr/wwdr4-2012/[2012-03-12].

    [2]

    Noguerol-Arias J, Rodriguez-Abalde A, Romero-Merino E, Flotats X. Determination of chemical oxygen demand in heterogeneous solid or semisolid samples using a novel method combining solid dilutions as a preparation step followed by optimized closed reflux and colorimetric measurement[J].Analytical Chemistry, 2012, 84(13): 5548-5555. doi: 10.1021/ac3003566

    [3]

    环境保护部.中国环境公报[EB/OL].http://www.mep.gov.cn/gkml/hbb/qt/201306/t20130604_253201.htm[2013-06-04].

    [4]

    Wang H, Zhong S H, He Y, Song G W. Molecular sieve 4A-TiO2-K2Cr2O7 coexisted system as sensor for chemical oxygen demand[J].Sensors and Actuators B: Chemical, 2011, 160(1): 189-195. doi: 10.1016/j.snb.2011.07.032

    [5]

    Tian J J, Hu Y G, Zhang J. Chemiluminescence detection of permanganate index (CODMn) by a luminol-KMnO4 based reaction[J].Journal of Environmental Sciences, 2008, 20(2): 252-256. doi: 10.1016/S1001-0742(08)60039-X

    [6]

    Zhao H J, Jiang D L, Zhang S Q, Catterall K, John R. Development of a direct photoelectrochemical method for determination of chemical oxygen demand[J].Analytical Chemistry, 2004, 76(1): 155-160. doi: 10.1021/ac0302298

    [7]

    罗国兵.自配消解液分光光度法测定污水中COD[J].中国给水排水, 2008, 24(4): 83-85. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200911006.htm

    [8]

    Dharmadhikari D M, Vanerkar A P, Barhate N M. Chemical oxygen demand using closed microwave digestion system[J].Environmental Science & Technology, 2005, 39(16): 6198-6201.

    [9]

    付丽君,李冰璟,蒋文新,林志敬,应维琪.低耗环保COD测定方法的研究[J].环境污染与防治,2008,30(3): 57-61. http://www.cnki.com.cn/Article/CJFDTOTAL-HJWR200803023.htm

    [10]

    Li J, Tao T, Li X B, Zuo J L, Li T, Lu J, Li S H, Chen L Z, Xia C Y, Liu Y, Wang Y L. A spectrophotometric method for determination of chemical oxygen demand using home-made reagents[J].Desalination, 2009, 239(1-3): 139-145. doi: 10.1016/j.desal.2008.03.014

    [11]

    Domini C E, Vidal L, Canals A. Trivalent manganese as an environmentally friendly oxidizing reagent for microwave- and ultrasound-assisted chemical oxygen demand determination[J].Ultrasonics Sonochemistry, 2009, 16(5): 686-691. doi: 10.1016/j.ultsonch.2009.01.008

    [12]

    Kayaalp N, Ersahin M E, Ozgun H, Koyuncu I, Kinaci C. A new approach for chemical oxygen demand (COD) measurement at high salinity and low organic matter samples[J].Environmental Science and Pollution Research, 2010, 17(9): 1547-1552. doi: 10.1007/s11356-010-0341-z

    [13]

    薛文平,刘文伟,黄德智,元世勇.利用微波消解-无银催化法检测水中化学需氧量[J].黄金,2011,32(4): 48-50. http://www.cnki.com.cn/Article/CJFDTOTAL-HJZZ201104015.htm

    [14]

    蒋然, 柴欣生,张翠,唐红亮.一种检测低浓度化学需氧量的双波长光谱方法[J].光谱学与光谱分析,2011,31(7): 2007-2010. http://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201107068.htm

    [15]

    Yao H, Wu B, Qu H B, Cheng Y Y.A high throughput chemiluminescence method for determination of chemical oxygen demand in waters[J].Analytica Chimica Acta, 2009, 633(1): 76-80. doi: 10.1016/j.aca.2008.11.046

    [16]

    乐琳,张晓鸣.超声消解FIA-FAAS快速测定环境水样中COD[J].分析试验室,2008,27(11): 119-122. doi: 10.3969/j.issn.1000-0720.2008.11.032

    [17]

    Almeida C A, González P, Mallea M, Martinez L D, Gil R A.Determination of chemical oxygen demand by a flow injection method based on microwave digestion and chromium speciation coupled to inductively coupled plasma optical emission spectrometry[J].Talanta,2012, 97: 273-278. doi: 10.1016/j.talanta.2012.04.030

    [18]

    Almeida C A, Savio M, González P, Martinez L D, Gil R A.Determination of chemical oxygen demand employed manganese as an environmentally friendly oxidizing reagent by a flow injection method based on microwave digestion and speciation coupled to ICP-OES[J].Microchemical Journal, 2013, 106: 351-356. doi: 10.1016/j.microc.2012.09.007

    [19]

    刘岩,白强,侯广利,杜立彬,陈江麟.臭氧法海水化学需氧量(COD)现场快速分析技术研究[J].海洋环境科学,2008,27(2): 182-185. http://www.cnki.com.cn/Article/CJFDTOTAL-HYHJ200802020.htm

    [20]

    Han Y H, Qiu J X, Miao Y Q, Han J S, Zhang S Q, Zhang H M, Zhao H J.Robust TiO2/BDD heterojunction photoanodes for determination of chemical oxygen demand in wastewaters[J].Analytical Methods, 2011, 3(9): 2003-2009. doi: 10.1039/c1ay05193h

    [21]

    Zhou Y S, Jing T, Hao Q L, Zhou Y K, Mei S R.A sensitive and environmentally friendly method for determination of chemical oxygen demand using NiCu alloy electrode[J].Electrochimica Acta, 2012, 74: 165-170. doi: 10.1016/j.electacta.2012.04.048

    [22]

    吴灿,吴康兵.基于纳米Pt形貌调控的化学需氧量电化学传感研究[J].分析化学,2013,41(5): 704-708. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201305016.htm

    [23]

    Silvestre C I C, Frigerio C, Santos J L M, Lima J L F C.Quantum dots assisted photocatalysis for the chemiluminometric determination of chemical oxygen demand using a single interface flow system[J].Analytica Chimica Acta, 2011, 699(2): 193-197. doi: 10.1016/j.aca.2011.05.018

    [24]

    Mu Q H, Li Y G, Zhang Q H, Wang H Z.TiO2 nanofibers fixed in a microfluidic device for rapid determination of chemical oxygen demand via photoelectrocatalysis[J].Sensors and Actuators B: Chemical, 2011, 155(2): 804-809. doi: 10.1016/j.snb.2011.01.051

    [25]

    Wang C, Wu J C, Wang P F, Ao Y H, Hou J, Qian J.Investigation on the application of titania nanorod arrays to the determination of chemical oxygen demand[J].Analytica Chimica Acta, 2013, 767: 141-147. doi: 10.1016/j.aca.2013.01.028

    [26]

    Wang C, Wu J C, Wang P F, Ao Y H, Hou J, Qian J.Photoelectrocatalytic determination of chemical oxygen demand under visible light using Cu2O-loaded TiO2 nanotube arrays electrode[J].Sensors and Actuators B: Chemical, 2013, 181: 1-8. doi: 10.1016/j.snb.2013.02.011

    [27]

    沈加正,侯沙沙,刘鹰,罗荣强.海水化学需氧量烘箱加热测定方法的研究[J].海洋科学,2011,35(8): 1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201108002.htm

    [28]

    崔建平,李黎.一种快速测定废水化学需氧量的方法[J].工业水处理,2008,28(8): 66-67. doi: 10.11894/1005-829x.2008.28(8).66

    [29]

    张安龙,曹萌.微波消解法测定造纸废水中COD的研究[J].环境科学与技术,2010,33(6E): 287-288. http://www.cnki.com.cn/Article/CJFDTOTAL-FJKS2010S1077.htm

    [30]

    Miller D G, Brayton S V, Boyles W T.Chemical oxygen demand analysis of wastewater using trivalent manganese oxidant with chloride removal by sodium bismuthate pretreatment[J].Water Environment Research, 2001, 73(1): 63-71. doi: 10.2175/106143001X138705

    [31]

    Kim Y C, Sasaki S, Yano K, Ikebukuro K, Hashimoto K, Karube I.Relationship between theoretical oxygen demand and photocatalytic chemical oxygen demand for specific classes of organic chemicals[J].Analyst, 2000, 125(11): 1915-1918. doi: 10.1039/b007005j

    [32]

    刘咏,赵仕林,李瑞桢,张爱平.难降解垃圾渗滤液COD的硫酸高铈法测定[J].环境工程学报,2010,33(3): 348-351. http://www.cnki.com.cn/Article/CJFDTOTAL-SCSD201003019.htm

    [33]

    王俊荣,韩永红,刘宗斌.银盐沉淀-铬酸盐法测定高氯离子水样中化学需氧量[J].冶金分析,2008,28(3): 43-45. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX200803008.htm

    [34]

    褚有群,冯建松,李丹丹,李照华,马淳安.电位滴定法同时标定硫酸高铈和硫酸亚铁铵溶液[J].理化检验(化学分册),2012,48(7): 841-844. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH201207029.htm

    [35]

    林穗云.无汞、无银国标COD测定法的改进[J].精细化工,2008,25(1): 83-86. http://www.cnki.com.cn/Article/CJFDTOTAL-JXHG200801020.htm

    [36]

    邱婧伟,于国峰,赵静,王潇,程海岩,潘理黎.低污染低成本COD快速测定方法的研究[J].环境科学与技术,2012,35(8): 129-132. http://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201208030.htm

    [37]

    周俊,杨新萍,周立祥.自配消解液分光光度法测定污水中的COD[J].环境工程学报,2009,3(11): 1956-1961. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200911006.htm

    [38]

    孙海波,薛建军,金丹萍,倪守高,雷斌.HE 99721型COD测定仪专用试剂包的配制[J].理化检验(化学分册),2009,45(6): 732-734. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200906042.htm

    [39]

    税永红,李巧巧.快速消解721分光光度法测定废水COD值[J].印染,2011,37(8): 44-46. http://www.cnki.com.cn/Article/CJFDTOTAL-YIRA201108013.htm

    [40]

    Ogura N.Studies of ultaviolet absorbing materials in natural water. Ⅱ.Relation between ultraviolet absorbing materials in natural water[J].Nippon Kagaku Zasshi, 1965, 86(12): 1286-1288. doi: 10.1246/nikkashi1948.86.1286

    [41]

    吴同华,郭虹,郭敬慈.连续紫外扫描光谱法快速测定废水的化学需氧量[J].中国环境监测,2009,25(4): 57-59. http://www.cnki.com.cn/Article/CJFDTOTAL-IAOB200904016.htm

    [42]

    谭淞文,程刚,王志成,公天齐,朱恋.应用改进分光光度法测定多组分水样的COD[J].环境工程学报,2012,6(5): 1755-1760. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201205066.htm

    [43]

    张浩,孙力平.双波长紫外分光光度法测定渗滤液COD的研究[J].环境工程学报,2009,3(10): 1755-1758. http://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ200910006.htm

    [44]

    陈洪雷,陈元彩,詹怀宇,付时雨.导数光谱-化学计量学方法测定制浆废水COD[J].华南理工大学学报(自然科学版),2009,37(10): 150-154. doi: 10.3321/j.issn:1000-565X.2009.10.029

    [45]

    赵亚乾.Cl-,NH3,和H2O2对COD测定的影响[J].上海环境科学,1995,14(8): 32-34.

    [46]

    林诗敏,王茀跃,白书明.差减法测定高氯废水的COD值[J].中国给水排水,2009,25(24): 79-81. doi: 10.3321/j.issn:1000-4602.2009.24.022

    [47]

    Vyrides I, Stuckey D C.A modified method for the determination of chemical oxygen demand (COD) for samples with high salinity and low organics[J].Bioresource Technology, 2009, 100(2): 979-982. doi: 10.1016/j.biortech.2008.06.038

    [48]

    运如艳.叠加法测定污水处理厂高氯出水水样的COD[J].中国给水排水,2009,25(4): 79-81. http://www.cnki.com.cn/Article/CJFDTOTAL-GSPS200904030.htm

    [49]

    刘娟,吴浩宇.高氯废水COD测定方法的探究[J].工业水处理,2011,31(4): 66-69. doi: 10.11894/1005-829x.2011.31.(4).66

    [50]

    呼晋江,兰生富,曹佳红.二苯碳酰二肼光度法测定低含量CODCr[J].四川环境,2008,27(4): 20-23.

    [51]

    王亚林,徐乾前,章琴琴.H2O2对COD测定的干扰及消除研究[J].环境污染与防治,2012,34(12): 52-56. doi: 10.3969/j.issn.1001-3865.2012.12.012

    [52]

    曹国民,盛梅,钟晨,周凤珍.工业废水中溴离子对COD测定的影响[J].中国给水排水,2007,23(20): 85-88. doi: 10.3321/j.issn:1000-4602.2007.20.022

    [53]

    Hu Y G, Yang Z Y.A simple chemiluminescence method for determination of chemical oxygen demand values in water[J].Talanta, 2004, 63(3): 521-526. doi: 10.1016/j.talanta.2003.11.037

    [54]

    杨泽玉,胡涌刚.化学发光-化学需氧量测定新方法[J].分析化学,2003,31(12): 1430-1432. doi: 10.3321/j.issn:0253-3820.2003.12.006

    [55]

    Liu W, Zhang Z J, Zhang Y Y.Chemiluminescence micro-flow system for rapid determination of chemical oxygen demand in water[J].Microchim Acta, 2008, 160(1-2): 141-146. doi: 10.1007/s00604-007-0824-x

    [56]

    乐琳,张晓鸣.流动注射合并带停留光度法快速测定环境水样中化学需氧量[J].岩矿测试,2008,27(2): 87-90. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200802004.htm

    [57]

    刘光虹,庞志涛,胡涌刚.流动注射式化学发光法测定化学需氧量[J].实验技术与管理,2008,25(7): 58-61. http://www.cnki.com.cn/Article/CJFDTOTAL-SYJL200807015.htm

    [58]

    乐琳,张晓鸣.流动注射-火焰原子吸收法快速测定水样化学需氧量[J].环境污染与防治,2008,30(10): 67-70. doi: 10.3969/j.issn.1001-3865.2008.10.019

    [59]

    郑青,韩海波,周保学,李金花,白晶,蔡伟民.化学需氧量(COD)快速测定新方法研究进展[J].科学通报,2009,54(21): 3241-3250. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200921002.htm

    [60]

    靳保辉,何鹰,庄峙厦,王小如,Lee F S C.液相臭氧化流动注射化学发光法测定水体化学耗氧量(COD)的研究: 苯酚溶液COD测定[J].厦门大学学报(自然科学版),2005,44(2): 224-229. http://www.cnki.com.cn/Article/CJFDTOTAL-XDZK20050200I.htm

    [61]

    徐珊珊.臭氧法COD测量仪测量海水COD的研究[D].青岛: 中国海洋大学,2008.

    [62]

    Wang J Q, Wu C, Wu K B, Cheng Q, Zhou Y K.Electrochemical sensing chemical oxygen demand based on the catalytic activity of cobalt oxide film[J].Analytica Chimica Acta, 2012, 736: 55-61. doi: 10.1016/j.aca.2012.05.046

    [63]

    Silva C, Conceicao C D C, Bonifácio V, Fatibello O, Teixeira M.Determination of the chemical oxygen demand (COD) using a copper electrode: A clean alternative method[J].Journal of Solid State Electrochemistry, 2009, 13(5): 665-669. doi: 10.1007/s10008-008-0580-9

    [64]

    Jing T, Zhou Y S, Hao Q L, Zhou Y K, Mei S R.A nano-nickel electrochemical sensor for sensitive determination of chemical oxygen demand[J].Analytical Methods, 2012, 4(4): 1155-1159. doi: 10.1039/c2ay05631c

    [65]

    Li J Q, Li L P, Zheng L, Xian Y Z, Jin L T.Rh2O3/Ti electrode preparation using laser anneal and its application to the determination of chemical oxygen demand[J].Measurement Science & Technology, 2006, 17(7): 1995-2000.

    [66]

    倪翠芳,高晨,王芬.电化学催化氧化法快速测定化学需氧量[J].科技通报,2013,29(4): 180-182. http://www.cnki.com.cn/Article/CJFDTOTAL-KJTB201304063.htm

    [67]

    Yu H B, Ma C J, Quan X, Chen S, Zhao H M.Flow injection analysis of chemical oxygen demand (COD) by using a boron-doped diamond (BDD) electrode[J].Environmental Science & Technology, 2009, 43(6): 1935-1939.

    [68]

    Wang J, Li K, Zhang H B, Wang Q, Wang Y L, Yang C, Guo Q B, Jia J P.Condition optimization of amperometric determination of chemical oxygen demand using boron-doped diamond sensor[J].Research on Chemical Intermediates, 2012, 38(9): 2285-2294. doi: 10.1007/s11164-012-0545-6

    [69]

    Wang J, Li K, Yang C, Wang Y L, Jia J P.Ultrasound electrochemical determination of chemical oxygen demand using boron-doped diamond electrode[J].Electrochemistry Communications, 2012, 18: 51-54. doi: 10.1016/j.elecom.2012.02.002

    [70]

    Jeong B G, Yoon S M, Choi C H, Kwon K K, Hyun M S, Yi D H, Park H S, Kim M, Kim H J.Performance of an electrochemical COD (chemical oxygen demand) sensor with an electrode-surface grinding unit[J].Journal of Environmental Monitoring, 2007, 9(12): 1352-1357. doi: 10.1039/b713393f

    [71]

    杜宝中,路蕾蕾,唐建红,孙莎,屈敏佳.安培法直接测定水体中COD的方法研究[J].西安理工大学学报,2011,27(1): 69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-XALD201101014.htm

    [72]

    Ma C J, Tan F, Zhao H M, Chen S, Quan X.Sensitive amperometric determination of chemical oxygen demand using Ti/Sb-SnO2/PbO2 composite electrode[J].Sensors and Actuators B: Chemical, 2011, 155(1): 114-119. doi: 10.1016/j.snb.2010.11.033

    [73]

    Zheng Q, Zhou B X, Bai J, Li L H, Jin Z J, Zhang J L, Li J H, Liu Y B, Cai W M, Zhu X Y.Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand[J].Advanced Materials, 2008, 20(5): 1044-1049. doi: 10.1002/(ISSN)1521-4095

    [74]

    丁颜丽.流动注射技术结合掺硼金刚石薄膜电极用于COD的快速测定[D].大连: 大连理工大学,2012.

    [75]

    Yu H B, Wang H, Quan X, Chen S, Zhang Y B.Amperometric determination of chemical oxygen demand using boron-doped diamond (BDD) sensor[J].Electrochemistry Communications, 2007, 9(9): 2280-2285. doi: 10.1016/j.elecom.2007.06.037

    [76]

    Bogdanowicz R, Czupryniak J, Gnyba M, Ryl J, Ossowski T, Sobaszek M, Darowicki K.Determination of chemical oxygen demand (COD) at boron-doped diamond (BDD) sensor by means of amperometric technique[J].Procedia Engineering, 2012, 47: 1117-1120. doi: 10.1016/j.proeng.2012.09.347

    [77]

    Bogdanowicz R, Czupryniak J, Gnyba M, Ryl J, Ossowski T, Sobaszek M, Darowicki K.Amperometric sensing of chemical oxygen demand at glassy carbon and silicon electrodes modified with boron-doped diamond[J].Sensors and Actuators B: Chemical, 2013, Doi: 10.1016/j.snb.2012.12.007.

    [78]

    Zhang S Q, Li L H, Zhao H J.A portable photo-electrochemical probe for rapid determination of chemical oxygen demand in wastewaters[J].Environmental Science & Technology, 2009, 43(20): 7810-7815.

    [79]

    Kim Y C, Lee K H, Sasaki S, Hashimoto K, Ikebukuro K, Karube I.Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode[J].Analytical Chemistry, 2000, 72(14): 3379-3382. doi: 10.1021/ac9911342

    [80]

    李成芳,余红敏,彭毛,吴辉,宋功武.纳米二氧化钛重铬酸钾协同光催化氧化体系快速测定化学需氧量[J].湖北大学学报(自然科学版),2009,31(1): 55-58. http://www.cnki.com.cn/Article/CJFDTOTAL-HDZK200901013.htm

    [81]

    Li C F, Song G W.Photocatalytic degradation of organic pollutants and detection of chemical oxygen demand by fluorescence methods[J].Sensors and Actuators B: Chemical, 2009, 137(2): 432-436. doi: 10.1016/j.snb.2009.01.055

    [82]

    Zhang A Y, Zhou M H, Zhou Q X.A combined photocatalytic determination system for chemical oxygen demand with a highly oxidative reagent[J].Analytica Chimica Acta, 2011, 686: 133-143. doi: 10.1016/j.aca.2010.11.049

    [83]

    Carrillo-Carrion C, Cardenas S, Simonet B M, Valcarcel M.Quantum dots luminescence enhancement due to illumination with UV/Vis light[J].Chemical Communications, 2009, 35: 5214-5226.

    [84]

    Li F B, Li X Z, Kang Y H, Li X J.An innovative Ti/TiO2 mesh photoelectrode for methyl orange photoelectrocatalytic degradation[J].Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2002, 37(4): 623-640. doi: 10.1081/ESE-120003242

    [85]

    田玉华,李新军,郑少健,张玉媛,冯满枝.锰离子非均匀掺杂TiO2薄膜电极光电催化测定COD[J].生态环境, 2008,17(2): 489-494.

    [86]

    Yuan S J, Mao R Y, Li Y G, Zhang Q H, Wang H Z.Layer-by-layer assembling TiO2 film from anatase TiO2 sols as the photoelectrochemical sensor for the determin-ation of chemical oxygen demand[J].Electrochimica Acta, 2012, 60: 347-353. doi: 10.1016/j.electacta.2011.11.069

    [87]

    董超平,张嘉凌,李金花,陈红冲,周保学.二氧化钛纳米管阵列光电催化测定地表水化学需氧量[J].分析化学,2010,38(8): 1227-1230. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201008039.htm

    [88]

    Zhang S Q, Li L H, Zhao H J, Li G Y.A portable miniature UV-LED-based photoelectrochemical system for determination of chemical oxygen demand in wastewater[J].Sensors and Actuators B: Chemical, 2009, 141(2): 634-640. doi: 10.1016/j.snb.2009.07.019

  • 加载中

(3)

(2)

计量
  • 文章访问数:  3153
  • PDF下载数:  42
  • 施引文献:  0
出版历程
收稿日期:  2013-06-13
录用日期:  2013-06-29

目录