Progress in the Application of Oxygen Isotopes in the Study of Petrogenesis
-
摘要: 通过氧同位素分析可以对岩石的成因进行认识,使之成为岩石学研究的一个强有力工具。根据花岗岩的氧同位素高低可以判断其来源于变沉积岩还是变火成岩;对于一个复式岩体,如果不同期次岩石的氧同位素组成存在明显变化,可以有效地判断该岩浆在演化过程中存在不同来源物质的混染,因为岩浆从镁铁质成分向长英质成分的化学分异过程,不会引起明显的氧同位素分馏,分馏值一般不超过0.3‰。氧同位素分析手段从常规BrF5法,到激光探针BrF5法,再到离子探针分析法,对岩石矿物样品从全熔分析到微区分析的发展,显示了它们的发展历程和各自的优势及应用范围。本文介绍了氧同位素的不同分析方法,以花岗岩(流纹岩)和变质岩的研究为例阐述了氧同位素分析技术的发展。苏州花岗岩利用全岩和造岩矿物常规氧同位素分析方法得出其为低δ18O和正常δ18O岩浆成因的不同认识,近年通过锆石激光氧同位素分析技术,获得岩浆锆石的δ18O平均为4.92‰,证实其来源于壳源的低δ18O岩浆。类似地,利用全岩和造岩矿物常规氧同位素分析方法得出的观点难以解释美国黄石高原低δ18O流纹岩中矿物颗粒间和颗粒内部的氧同位素变化,该氧同位素变化只能通过离子探针矿物微区原位分析得出。在变质岩研究方面,通过激光探针氧同位素分析,人们普遍认为苏鲁造山带变质岩极负的δ18O值是在新元古代原岩形成时获得的,但是最新的离子探针锆石原位氧同位素分析表明苏鲁造山带变质岩极负的δ18O主要是在三叠纪超高压变质作用过程中获得的。今后单颗粒矿物尺度上的氧同位素组成分布规律将是氧同位素研究的发展方向。Abstract: Since different types of rocks on the earth have different oxygen isotope compositions, they can be used to discuss the origins of various rocks and it has become a powerful tool for studying petrology. For example, determination on whether the granite was derived from metasedimentary or metavolcanic rocks based on its oxygen isotope compositions can be established. For a complex massif, if rocks of different stages have significantly different oxygen isotope compositions, the determination that they have been assimilated by other materials during evolution of magmas, because there should be no evident oxygen isotope fractionation (less than 0.3‰) during chemical differentiation of magmas from mafic to felsic composition can be made. Analytical techniques of oxygen isotope compositions include traditional BrF5, laser BrF5 and ion microprobe and they reflect the development from bulk analysis to microanalysis. Granites (rhyolites) and metamorphic rocks are used as examples to show that understandings of the origins of rocks have improved with the development of oxygen isotope composition analyses. For both granites (rhyolites) and metamorphic rocks, the ion microprobe in-situ analysis of oxygen isotope composition gain new insights into the origins of rocks. Based on traditional BrF5 method, the Suzhou granite was suggested to have two different origins, a low-δ18O origin and a normal δ18O origin. However, δ18O values of magmatic zircons acquired by laser BrF5 analysis are 4.92‰±0.26‰, confirming that the Suzhou granite has a low-δ18O magma origin that was derived from the crust. Similarly, the proposal drawn from traditional BrF5 analysis on whole rock and rock-forming minerals cannot explain the intergranular and intraparticle oxygen isotope variations in the low-δ18O rhyolites from the Yellowstone plateau which can only be gained by the ion microprobe method. Based on laser BrF5 analysis, the metamorphic rocks of the Sulu orogenic belt were considered to have acquired their extremely negative δ18O values during the formation of their protoliths in the Neoproterozoic. However, recent ion microprobe in-situ analysis of oxygen isotope compositions on zircon demonstrates that the Sulu metamorphic rocks acquired their extremely negative δ18O values during the ultrahigh pressure metamorphism in the Triassic. The study of distribution of oxygen isotopic composition in single gain is a new trend in the future.
-
Key words:
- oxygen isotope /
- progress in analytical method /
- granite /
- metamorphic rock /
- understanding on genesis
-
图 4 苏鲁造山带青龙山变质岩锆石原位氧同位素组成[59]
Figure 4.
-
[1] Taylor H P.The oxygen isotope geochemistry of igneous rocks[J].Contributions to Mineralogy and Petrology, 1968, 19: 1-71. doi: 10.1007/BF00371729
[2] Valley J W, Cole D R.Stable isotope geochemistry[J].Reviews in Mineralogy and Geochemistry, 2001, 43: 1-662. doi: 10.2138/gsrmg.43.1.1
[3] Jiang N, Chen J Z, Guo J H, Chang G H.In situ zircon U-Pb, oxygen and hafnium isotopic compositions of Jurassic granites from the North China craton: Evidence for Triassic subduction of continental crust and subsequent metamorphism-related 18O depletion[J]. Lithos, 2012, 142-143: 84-94. doi: 10.1016/j.lithos.2012.02.018
[4] Bindeman I N, Ponomareva V V, Bailey J C, Valley J W.Volcanic arc of Kamchatka: A province with high δ18O magma sources and large-scale 18O/16O depletion of the upper crust[J].Geochimica et Cosmochimica Acta, 2004, 68: 841-865. doi: 10.1016/j.gca.2003.07.009
[5] Bindeman I N.Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis[J].Reviews in Mineralogy and Geochemistry, 2008, 69: 445-478. doi: 10.2138/rmg.2008.69.12
[6] Cherniak D J, Watson E B.Diffusion in Zircon[J].Reviews in Mineralogy and Geochemistry, 2003, 53: 113-143. doi: 10.2113/0530113
[7] Clayton R N, Mayeda T K.The use of bromine penta-fluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J].Geochimica et Cosmochimica Acta, 1963, 27: 43-52. doi: 10.1016/0016-7037(63)90071-1
[8] 郑淑慧,郑斯成,莫志超.稳定同位素地球化学分析[M].北京:北京大学出版社,1986: 202-221.
[9] 李铁军,张福松,霍卫国.BrF5法氧同位素实验系统中CO2转换器的改进及意义[J].第四纪研究,2005,25(1): 115-116.
[10] 万德芳,李延河.硫酸盐的氧同位素测量方法[J].高校地质学报,2006,12(3): 378-383. http://www.cnki.com.cn/Article/CJFDTOTAL-GXDX200603011.htm
[11] 万德芳,丁悌平.磷酸盐中的氧同位素测定[J].矿物岩石地球化学通报,2001,20(4): 448-450. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH200104068.htm
[12] 万德芳,丁悌平,李荣华.磷酸盐中氧同位素测量技术研究[J].地质论评,2002,48(Z1): 271-274. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1048.htm
[13] Swann G E A, Leng M J.A review of diatom δ18O in palaeoceanography[J].Quaternary Science Reviews, 2009, 28(5-6): 384-398. doi: 10.1016/j.quascirev.2008.11.002
[14] 李铁刚,熊志方.海洋硅藻稳定同位素研究进展[J].海洋与湖沼,2010,41(4): 645-656. doi: 10.11693/hyhz201004027027
[15] 李铁军,李洪伟,刘秀金,冯连君.硅藻氧同位素比值测定的分布氟化处理方法[J].分析化学,2012,12: 1897-1901. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX201212023.htm
[16] 肖益林,郑永飞.激光探针:稳定同位素分析的新式"武器"Ⅰ:发展历史、工作原理和装置构成[J].矿物岩石地球化学通报,1997,16(3): 191-196. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH703.012.htm
[17] 肖益林,傅斌,郑永飞.激光探针分析在氧同位素地球化学研究中的应用[J].地学前缘,1998,5(1-2): 283-294. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY802.017.htm
[18] 张泽明,肖益林,Hoefs J,高勇军.超高压变质作用过程中的流体-岩石相互作用-中国大陆科学钻探工程主孔(0-2050 m)岩心的氧同位素证据[J].岩石矿物学杂志,2004,23(4): 289-297. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200404000.htm
[19] Valley J W, Chiarenzelli J R, McLell J M.Oxygen isotope geochemistry of zircon[J].Earth and Planetary Science Letters, 1994, 126: 187-206. doi: 10.1016/0012-821X(94)90106-6
[20] King E M, Barrie C T, Valley J W.Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario: Magmatic values are preserved in zircon[J].Geology, 1997, 25: 1079-1082. doi: 10.1130/0091-7613(1997)025<1079:HAOOIR>2.3.CO;2
[21] King E M, Valley J W, Davis D W, Edwards G R.Oxygen isotope ratios of Archean plutonic zircons from granite greenstone belts of the Superior Province: Indicator of magmatic source[J].Precambrian Research, 1998, 92: 47-67.
[22] 郑永飞,陈福坤,龚冰,赵子福.大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据[J].科学通报,2003,48(2): 110-119. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200302001.htm
[23] 魏春生,郑永飞,赵子福,Valley J W.碾子山A型花岗岩两阶段水-岩作用的氧同位素证据[J].科学通报,2001,46(1): 8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200101001.htm
[24] 龚冰,郑永飞,赵子福,赵彦冰.硅酸盐和金属氧化物矿物氧同位素组成的CO2激光氟化分析[J].矿物岩石地球化学通报,2001,20(4): 428-430.
[25] 储雪蕾,日下部实,霍卫国.LA-BrF5-IRMS直连系统的δ17O和δ18O值测定[J].质谱学报,2000,21(3-4): 151-152.
[26] 龚冰,郑永飞.硅酸盐矿物氧同位素组成的激光分析[J].地学前缘,2003,10(2): 279-286. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302002.htm
[27] 丁悌平.激光探针稳定同位素分析技术的现状及发展前景[J].地学前缘,2003,10(2): 263-268. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302000.htm
[28] 陈道公,Deloule E,程昊,夏群科,吴元保.大别-苏鲁变质岩锆石微区氧同位素特征初探:离子探针原位分析[J].科学通报,2003,48(16): 1732-1739. doi: 10.3321/j.issn:0023-074X.2003.16.004
[29] 李献华,李武显,王选策,李秋立,刘宇,唐国强.幔源岩浆在南岭燕山早期花岗岩形成中的作用: 锆石原位Hf-O同位素制约[J].中国科学:地球科学,2009,39(7): 872-887. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200907003.htm
[30] Valley J W.Oxygen Isotopes in Zircon[J].Reviews in Mineralogy and Geochemistry, 2003, 53: 343-385. doi: 10.2113/0530343
[31] Friedman I, Lipman P W, Obradovich J D, Gleason J D, Christiansen R L.Meteoric water in magmas[J].Science, 1974, 184: 1069-1072. doi: 10.1126/science.184.4141.1069
[32] Hildreth W, Christiansen R L, O'Neil J R.Catastrophic isotopic modification of rhyolitic magma at times of caldera subsidence, Yellowstone Plateau Volcanic Field[J].Journal of Geophysical Research, 1984, 89: 8339-8369. doi: 10.1029/JB089iB10p08339
[33] Hildreth W, Halliday A N, Christiansen R L.Isotopic and chemical evidence concerning the genesis and contamination of basaltic and rhyolitic magmas beneath the Yellowstone Plateau Volcanic Field[J].Journal of Petrology, 1991, 32: 63-138. doi: 10.1093/petrology/32.1.63
[34] Bindeman I N, Valley J W.The formation of low-δ18O rhyolites after caldera collapse at Yellowstone, Wyoming, USA[J].Geology, 2000, 28: 719-722. doi: 10.1130/0091-7613(2000)28<719:FOLRAC>2.0.CO;2
[35] Bindeman I N, Valley J W.Low-δ18O rhyolites from Yellowstone: Magmatic evolution based on analyses of zircons and individual phenocrysts[J].Journal of Petrology, 2001, 42: 1491-1517. doi: 10.1093/petrology/42.8.1491
[36] Bindeman I N, Fu B, Kita N, Valley J W.Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons[J].Journal of Petrology, 2008, 49: 163-193. doi: 10.1093/petrology/egm075
[37] Zheng Y F, Wu Y B, Gong B, Chen R X, Tang J, Zhao Z F.Tectonic driving of Neoproterozoic glaciations: Evidence from extreme oxygen isotope signature of meteoric water in granite[J].Earth and Planetary Science Letters,2007,256: 196-210. doi: 10.1016/j.epsl.2007.01.026
[38] Wang X C, Li Z X, Li X H, Li Q L, Tang G Q, Zhang Q R, Liu Y.Non-glacial origin for low 18O Neoproterozoic magmas in the South China block: Evidence from new in-situ oxygen isotope analyses using SIMS[J].Geology, 2011, 39: 735-738. doi: 10.1130/G31991.1
[39] 刘景波,张灵敏,叶凯,苏文,程南飞.大别山北部卢镇关群变质火山岩和共生变质的花岗岩全岩和锆石氧同位素、锆石U-Pb年代学研究[J].岩石学报,2013,29(5): 1511-1524. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201305007.htm
[40] 傅斌,魏春生,郑永飞.低δ18O岩浆成因的苏州花岗岩[J].矿物岩石地球化学通报,1996,15(4): 211-215.
[41] 王汝成,沈渭洲,徐士进,徐克勤,赖鸣远.苏州花岗岩的氧同位素研究[J].矿物学报,1998(3): 303-308. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB199803006.htm
[42] 魏春生,郑永飞,赵子福.苏州A型花岗岩氢氧同位素地球化学研究[J].岩石学报,1999,15(2): 224-236. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.008.htm
[43] 魏春生,郑永飞,赵子福.中国东部A型花岗岩形成时代及物质来源的Nd-Sr-O同位素地球化学制约[J].岩石学报,2001,17(1): 95-111. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101009.htm
[44] Wei C S, Zhao Z F, Spicuzza M J.Zircon oxygen isotopic constraint on the sources of late Mesozoic A-type granites in eastern China[J].Chemical Geology, 2008, 250: 1-15. doi: 10.1016/j.chemgeo.2008.01.004
[45] Yui T F, Rumble Ⅲ D, Lo C H.Unusually low δ18O ultra-high-pressure metamorphic rocks from the Sulu Terrain, eastern China[J].Geochimica et Cosmochimica Acta, 1995, 59: 2859-2864. doi: 10.1016/0016-7037(95)00161-R
[46] Zheng Y F, Fu B, Gong B, Li S G.Extreme δ18O depletion in eclogite from the Su-Lu terrane in East China[J].European Journal of Mineralogy, 1996, 8: 317-323. doi: 10.1127/ejm/8/2/0317
[47] Rumble Ⅲ D, Yui T F.The Qinglongshan oxygen and hydrogen isotope anomaly near Donghai in Jiangsu Province, China[J].Geochimica et Cosmochimica Acta, 1998, 62: 3307-3321. doi: 10.1016/S0016-7037(98)00239-7
[48] Zheng Y F, Fu B, Li Y L, Xiao Y L, Li S G.Oxygen and hydrogen isotope geochemistry of ultrahigh pressure eclogites from the Dabie Mountains and the Sulu terrane[J].Earth and Planetary Science Letter, 1998, 155: 113-129. doi: 10.1016/S0012-821X(97)00203-3
[49] Zheng Y F, Wu Y B, Chen F K, Gong B, Zhao Z F.Zircon U-Pb and oxygen isotope evidence for a large scale 18O depletion event in igneous rocks during the Neoproterozoic[J].Geochimica et Cosmochimica Acta, 2004, 68: 4145-4165. doi: 10.1016/j.gca.2004.01.007
[50] Tang J, Zheng Y F, Wu Y B, Gong B, Zha X P, Liu X M.Zircon U-Pb age and geochemical constraints on the tectonic affinity of the Jiaodong terrane in the Sulu orogen, China[J].Precambrian Research, 2008, 161: 389-418. doi: 10.1016/j.precamres.2007.09.008
[51] Yui T F, Rumble Ⅲ D, Chen C H, Lo C H. Stable isotope characteristics of eclogites from the ultra-high-pressure metamorphic terrain, east-central China[J].Chemical Geology, 1997, 137: 135-147. doi: 10.1016/S0009-2541(96)00153-2
[52] Zheng Y F, Fu B, Xiao Y L, Li Y L.Hydrogen and oxygen isotope evidence for fluid-rock interactions in the stages of pre- and post-UHP metamorphism in the Dabie Mountains[J].Lithos, 1999, 46: 677-693. doi: 10.1016/S0024-4937(98)00090-5
[53] Zheng Y F, Wang Z R, Li S G, Zhao Z F.Oxygen isotope equilibrium between eclogite minerals and its constraints on mineral Sm-Nd chronometer[J].Geochimica et Cosmochimica Acta, 2002, 66: 625-634. doi: 10.1016/S0016-7037(01)00801-8
[54] Zheng Y F, Fu B, Gong B, Li L.Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime[J].Earth Science Reviews, 2003, 62: 105-161. doi: 10.1016/S0012-8252(02)00133-2
[55] Xiao Y L, Hoefs J, van den Kerkhof A M, Fiebig J, Zheng Y F.Fluid history of UHP metamorphism in Dabie Shan, China: A fluid inclusion and oxygen isotope study on the coesite-bearing eclogite from Bixiling[J].Contributions to Mineralogy and Petrology, 2000, 139: 1-16. doi: 10.1007/s004100050570
[56] Tang J, Zheng Y F, Wu Y B, Gong B, Liu X M.Geochronology and geochemistry of metamorphic rocks in the Jiaobei terrane: Constraints on its tectonic affinity in the Sulu orogen[J].Precambrian Research, 2007, 152: 48-82. doi: 10.1016/j.precamres.2006.09.001
[57] Zheng Y F, Zhang S B, Zhao Z F, Wu Y B, Li X, Li Z, Wu F Y.Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: Implications for growth and reworking of continental crust[J].Lithos, 2007, 96: 127-150. doi: 10.1016/j.lithos.2006.10.003
[58] Zheng Y F, Gong B, Zhao Z F, Wu Y B, Chen F K.Zircon U-Pb age and O isotope evidence for Neoproterozoic low-18O magmatism during super-continental rifting in South China: Implications for the snowball earth event[J].American Journal of Science, 2008, 308: 484-516. doi: 10.2475/04.2008.04
[59] Chen Y X, Zheng Y F, Chen R X, Zhang S B, Li Q L, Dai M N, Chen L.Metamorphic growth and recrystallization of zircons in extremely 18O depleted rocks during eclogite-facies metamorphism: Evidence from U-Pb ages, trace elements, and O-Hf isotopes[J].Geochimica et Cosmochimica Acta, 2011, 75: 4877-4898. doi: 10.1016/j.gca.2011.06.003