Using Laser Raman Microprobe and Fused Silica Capillaries to Determine Salinity of Fluid Inclusions
-
摘要: 盐度是流体包裹体重要的参数之一,利用激光拉曼探针可以快速、准确地测定包裹体盐度,而标准样品的制备是保证该方法准确性的关键。毛细管合成包裹体技术是一种新型的标准样品制备方法,本文利用该方法,制备了不同组成的H2O-NaCl样品,并以此建立了测定包裹体盐度的标准曲线。显微测温结果表明,毛细管合成包裹体标准样品盐度的准确性可以达到±0.5%,利用石英和石盐中的合成包裹体对标准曲线进行了检验,结果表明利用标准曲线测定包裹体盐度,测量值与理论值的误差在1%以内。应用该方法制备的标准样品具有操作简便、快捷、样品尺寸与地质样品相类似等特点,兼具了矿物中合成包裹体以及石英试管或玻璃瓶制备标准样品的优势。Abstract: Salinity is one of the most important parameters of fluid inclusions. The salinity of fluid inclusions can be measured quickly and accurately by using a Laser Raman Microprobe. The accuracy of the standard sample plays an important role in this method. The technique of synthesizing fluid inclusions in fused silica capillaries is a new method to prepare standard samples. In this study, this technique was applied to synthesize the fluid inclusions with different concentrations of salinity, which were used to establish the Raman standard curve. The results of microthermometry showed that the accuracy of salinity in synthesized fused silica capillaries was 0.5%. The concentrations of salinity of synthesized fluid inclusions in quartz and halite were determined to verify the standard curve with 1% error between measured value and theoretical value. Compared with the method of synthesizing fluid inclusions in minerals and the method of prepare samples in glass (quartz) tube, this technique can synthesize fluid inclusions quickly and prepare small size samples which are similar to the fluid inclusions in geology samples.
-
表 1 毛细管合成包裹体分析
Table 1. Analytical results of the fused silica capillaries
w(NaCl)/% X Y I1(3400 cm-1) I2(3200 cm-1) S′ 冰点温度/℃ 冰点盐度/% 0.0 473413 864032 3082.09 2166.41 0.418891 -0.1 0.2 512103 929058 3300.39 2316.72 0.420389 514120 924389 3319.04 2317.87 0.424587 4.0 480179 967802 3468.67 2174.89 0.495887 -2.4 4.0 478794 976378 3499.70 2173.40 0.501682 546806 1117730 4009.23 2491.87 0.500440 8.0 450375 995786 3587.80 2010.50 0.574021 -5.1 8.0 500332 1117040 4030.86 2250.62 0.574573 501609 1117530 4034.24 2254.20 0.574502 12.0 365989 956505 3495.99 1684.28 0.661641 -8.0 11.7 364592 1013180 3683.81 1726.69 0.656645 353185 980582 3550.17 1668.31 0.654135 16.0 299585 918304 3337.93 1383.98 0.740781 -12.0 16.0 341902 1020350 3714.20 1548.32 0.752963 347303 1031290 3736.18 1563.94 0.751188 20.0 269629 929579 3391.69 1227.26 0.828235 -16.9 20.2 245004 876861 3213.32 1142.25 0.819792 250291 887522 3219.31 1163.02 0.805320 24.0 282627 1118550 4123.87 1291.81 0.907105 -14.2 24.2 298951 1089610 3990.82 1312.31 0.912739 278152 1095440 4004.82 1264.72 0.899990 表 2 包裹体标准样品分析
Table 2. Typical parameters of the synthesized fluid inclusions in quartz and halite
盐度理论值
w(NaCl)/%X Y I1(3400 cm-1) I2(3200 cm-1) S′ 盐度测定值
w(NaCl)/%0 94655.6 163982 568.005 388.304 0.437276 0.54 0 99050.5 163843 565.067 395.246 0.415523 -0.51 0 88061.4 145721 533.081 369.941 0.420096 -0.29 26.3 168488 689809 2548.33 741.149 0.983097 26.91 26.3 185305 773473 2849.79 823.087 0.974701 26.51 26.3 92861.3 4013319 1509.81 422.860 0.985705 27.04 -
[1] Mernagh T P, Wilde A R. The use of the laser Raman microprobe for the determination of salinity in fluid inclusions [J]. Geochimica et Cosmochimica Acta, 1989, 53(4): 765-771. doi: 10.1016/0016-7037(89)90022-7
[2] Dubessy J, Lhomme T, Boiron M C, Rull F. Determin-ation of chlorinity in aqueous fluids using Raman spectroscopy of the stretching band of water at room temperature: Application to fluid inclusions[J]. Applied Spectroscopy, 2002, 56(1): 99-106. doi: 10.1366/0003702021954278
[3] 吕新彪, 姚书振,何谋春.成矿流体包裹体盐度的拉曼光谱测定[J].地学前缘, 2001,8(4): 429-433. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200104037.htm
[4] 丁俊英,倪培,饶冰,周进,朱筱婷.显微激光拉曼光谱测定单个包裹体盐度的实验研究[J].地质论评, 2004, 50(2): 203-209. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200402016.htm
[5] 张鼐,张大江,张水昌,张蒂嘉,崔京钢.氯盐溶液的拉曼光谱特征及测试探讨[J].岩矿测试, 2005,24(1):40-42, 46. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200501009.htm
[6] [7] Zhang Y G, Frantz J D. Determination of the homogen-ization temperatures and densities of supercritical fluids in the system NaCl-KCl-CaCl2-H2O using synthetic fluid inclusions [J]. Chemical Geology, 1987,64(3-4): 335-350. doi: 10.1016/0009-2541(87)90012-X
[8] Teinturier S, Elie M, Pironon J. Oil-cracking processes evidence from synthetic petroleum inclusions[J]. Journal of Geochemical Exploration, 2003,78-79: 421-425. doi: 10.1016/S0375-6742(03)00135-3
[9] 倪培,饶冰,丁俊英,张林松.人工合成包裹体的实验研究及其在激光拉曼探针测定方面的应用[J].岩石学报, 2003, 19(2): 319-326. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200302013.htm
[10] Chou I M, Song Y, Burruss R C. A new method for synthesizing fluid inclusions in fused silica capillaries containing organic and inorganic material [J]. Geochimica et Cosmochimica Acta, 2008, 72(21): 5217-5231. doi: 10.1016/j.gca.2008.07.030
[11] Chou I M, Burruss R C, Lu W. Chapter 24—A New Optical Capillary Cell for Spectroscopic Studies of Geologic Fluids at Pressures up to 100 MPa [M]//Chen J H, Wang Y B, Duffy T S, Shen G Y, Dobrzhinetskaya L F. Advances in High-Pressure Technology for Geophysical Applications. Elsevier: Amsterdam, 2005: 475-485.
[12] Bodnar R J. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions[J]. Geochimica et Cosmochimica Acta, 1993, 57(3): 683-684. doi: 10.1016/0016-7037(93)90378-A
[13] [14] Lu W, Chou I M, Burruss R C, Song Y. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts [J]. Geochimica et Cosmochimica Acta, 2007, 71(16): 3969-3978. doi: 10.1016/j.gca.2007.06.004
[15] 吕万军, Chou I M, Burruss R C,金庆焕,傅家谟.拉曼光谱原位观测水合物形成后的饱和甲烷浓度[J].地球化学, 2005, 34(2): 187-192. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200502011.htm