Determination Method of Vanadium and Titanium Phases for Chengde Vanadium Titanium Magnetite
-
摘要: 依据承德地区大庙式钒钛磁铁矿床特征,通过人工重砂分离及单矿物化学分析并结合电子探针、岩矿鉴定结果查明了承德钒钛磁铁矿石中的含钒矿物主要是钛磁铁矿和磁铁矿,次要矿物是钛铁矿和硅酸盐;含钛矿物主要是钛铁矿、钛磁铁矿,次要矿物是金红石、榍石。根据承德钒钛磁铁矿石钒和铁呈正比的关系,选取代表性试样进行了钒钛物相分析项目的确定及溶剂选择的实验,最终确定了钒和钛物相分析测定流程。钒物相分析测定项目为磁铁矿和钛磁铁矿中的钒、钛铁矿中的钒、硅酸盐中的钒及总钒四项;钛物相分析测定项目为钛铁矿中的钛、磁铁矿和钛磁铁矿中的钛、金红石中的钛、硅酸盐中的钛及总钛五项。通过本方法测定的各种含钒和钛矿物含量占矿石中总钒和总钛含量的比例与人工重砂分析定量计算的各种含钒和钛矿物含量占矿石中总钒和总钛含量的比例是相互吻合的。对110件钒钛磁铁矿石样品进行了4种含钛矿物及3种含钒矿物物相分析,结果与实际地质成矿组分符合。本方法实现了钒钛磁铁矿中钒矿物和钛矿物的定量分离,确定了钒和钛物相联测分析流程,可以同时测定钒和钛矿物的含量。Abstract: According to characteristics of the Damiao type vanadic-titanomagnetite deposit in the Chengde area, the mineral compositions of the deposit were studied by using artificial heavy sands separation, single mineral chemical analysis, electron probe and mineral and rock identification. The results indicate that major V-bearing minerals of the Chengde vanadium-titanium magnetite ores are Titanium magnetite and magnetite and the minor minerals are ilmenite and silicate. The major Ti-bearing minerals are ilmenite and Titanium magnetite with the minor Ti-bearing minerals being rutile and sphene. According to the positive relationship of V and Ti in the Chengde vanadium-titanium magnetite ore, a representative sample was selected for V and Ti phase project identification analysis and solvent selection experiments to determine the final phase analysis procedure of V and Ti. Four V Phase analysis projects were used to determine V in magnetite, Titanium magnetite, ilmenite and silicates with total V content. Five Ti phase analysis projects were used to determine Ti in ilmenite, magnetitie, titanium magnetite, rutile and silicates with total Ti content. The proportions of the contents of V and Ti bearing minerals over the total V and Ti contents by this method were consistent with those determined by artificial heavy sand separation. 4 kinds of Ti-bearing minerals and 3 kinds of V-bearing minerals were selected for phase analysis of 110 pieces of vanadium-titanium magnetite ore samples. The results were in accord with the mineral compositions of the actual geological samples. The established method was good for V and Ti minerals quantitative separation in vanadium-titanium magnetite ore. The established joint procedure for V and Ti phase analysis was good for the simultaneous determination of contents of the V and Ti bearing minerals.
-
Key words:
- vanadium titanium magnetite /
- vanadium /
- titanium /
- phase measurement
-
表 1 钒物相分析与重砂分析钒的含量比较
Table 1. Comparison of vanadium with phase analysis and panning analysis
矿区 矿石类型 方法 钒总量w/% 磁铁矿和钛磁铁矿 钛铁矿 其他矿物 钒含量w/% 占总钒比例/% 钒含量w/% 占总钒比例/% 钒含量w/% 占总钒比例/% 东大洼 稀疏铁矿 重砂分析定量计算 0.432 0.307 71.09 0.020 4.66 0.105 24.25 本样品物相分析 0.432 0.331 76.62 0.029 6.71 0.050 11.57 稠密铁矿 重砂分析定量计算 0.550 0.441 80.12 0.022 4.00 0.087 15.88 本样品物相分析 0.550 0.450 81.82 0.020 3.64 0.050 9.09 致密铁矿 重砂分析定量计算 0.530 0.495 93.379 0.035 6.596 0.00013 0.024 本样品物相分析 0.530 0.515 97.170 0.004 0.755 0.011 2.075 大乌苏南沟 含铁苏长岩 重砂分析定量计算 0.063 0.015 23.15 0.013 20.22 0.036 56.64 本样品物相分析 0.063 0.018 28.57 0.013 20.63 0.039 61.90 苏长岩型稠密铁矿 重砂分析定量计算 0.290 0.237 81.70 0.011 3.91 0.042 14.39 本样品物相分析 0.290 0.245 84.48 0.027 9.31 0.024 8.28 表 2 钛物相分析与重砂分析钛的含量比较
Table 2. Comparison of titanium with phase analysis and panning analysis
矿区 矿石类型 方法 钛总量w/% 钛铁矿 磁铁矿和钛磁铁矿 其他矿物 钛含量w/% 占总钛比例/% 钛含量w/% 占总钛比例/% 钛含量w/% 占总钛比例/% 东大洼 稀疏铁矿 重砂分析定量计算 8.71 4.92 56.44 1.82 20.86 1.98 22.70 本样品物相分析 8.71 5.83 66.93 1.83 21.01 1.30 14.93 稠密铁矿 重砂分析定量计算 11.50 6.11 53.15 4.01 34.91 1.37 11.94 本样品物相分析 11.50 5.94 51.65 3.24 28.17 1.96 17.04 致密铁矿 重砂分析定量计算 13.55 6.77 49.96 5.31 39.19 1.47 10.85 本样品物相分析 13.55 6.04 44.58 6.67 49.23 0.84 6.20 大乌苏南沟 含铁苏长岩 重砂分析定量计算 5.02 3.76 74.89 0.44 8.72 0.82 16.39 本样品物相分析 5.02 3.79 75.50 0.11 2.19 1.00 19.92 苏长岩型稠密铁矿 重砂分析定量计算 7.94 4.63 58.33 2.60 32.80 0.70 8.71 本样品物相分析 7.94 4.54 57.18 2.62 33.00 0.96 12.09 表 3 钒实际样品分析结果
Table 3. Analytical results of vanadium in practical samples
矿区 矿石类型 样品编号 钒总量w/% 磁铁矿和钛磁铁矿 钛铁矿 硅酸盐 钒含量w/% 占总钒比例/% 钒含量w/% 占总钒比例/% 钒含量w/% 占总钒比例/% 东大洼 稀疏铁矿 Wx01 0.352 0.263 74.72 0.029 8.24 0.037 10.51 Wx02 0.200 0.188 94.00 0.008 4.00 0.028 14.00 Wx03 0.215 0.162 75.35 0.015 6.98 0.039 18.14 稠密铁矿 Wx04 0.429 0.359 83.68 0.024 5.59 0.041 9.56 Wx05 0.329 0.266 80.85 0.009 2.74 0.053 16.10 Wx06 0.445 0.386 86.74 0.015 3.37 0.037 8.31 致密铁矿 Wx07 0.474 0.419 88.40 0.027 5.70 0.020 4.22 Wx08 0.502 0.473 94.22 0.011 2.19 0.019 3.78 Wx09 0.492 0.447 90.85 0.010 2.03 0.011 2.24 大乌苏南沟 含铁苏长岩 Wx10 0.121 0.082 67.77 0.009 7.44 0.021 17.36 Wx11 0.181 0.117 64.64 0.020 11.05 0.044 24.31 Wx12 0.128 0.091 71.09 0.006 4.69 0.017 13.28 苏长岩型稠密铁矿 Wx13 0.376 0.359 95.48 0.008 2.13 0.013 3.46 Wx14 0.263 0.255 96.96 0.015 5.70 0.029 11.03 Wx15 0.258 0.242 93.80 0.027 10.46 0.027 10.46 表 4 钛实际样品分析结果
Table 4. Analytical results of titaniumin in practical samples
矿区 矿石类型 样品编号 钛总量w/% 钛铁矿 磁铁矿和钛磁铁矿 金红石 硅酸盐 钛含量w/% 占总钛比例/% 钛含量w/% 占总钛比例/% 钛含量w/% 占总钛比例/% 钛含量w/% 占总钛比例/% 东大洼 稀疏铁矿 Wx01 10.20 6.05 59.31 3.45 33.82 0.22 2.16 0.28 2.75 Wx02 8.76 4.82 55.02 2.78 31.74 0.50 5.71 0.43 4.91 Wx03 7.02 4.55 64.81 1.72 24.50 0.57 8.12 0.27 3.85 稠密铁矿 Wx04 11.61 5.58 48.06 5.05 43.50 0.65 5.60 0.33 2.84 Wx05 10.82 5.51 50.92 3.29 30.41 1.33 12.29 0.31 2.87 Wx06 12.80 6.31 49.30 3.86 30.16 2.06 16.09 0.38 2.97 致密铁矿 Wx07 14.95 8.18 54.72 6.36 42.54 0.15 1.00 0.35 2.34 Wx08 14.37 8.18 56.92 4.54 31.59 1.09 7.58 0.29 2.02 Wx09 14.76 8.33 56.43 5.24 35.50 0.75 5.08 0.22 1.49 大乌苏南沟 含铁苏长岩 Wx10 4.78 3.41 71.33 0.89 18.62 0.094 1.97 0.43 9.00 Wx11 6.83 5.01 73.35 1.29 18.88 0.013 0.19 0.61 8.93 Wx12 4.50 3.66 80.44 0.37 8.22 0.098 2.18 0.37 8.22 苏长岩型稠密铁矿 Wx13 10.44 5.67 54.31 4.07 38.98 0.076 0.73 0.32 3.07 Wx14 9.53 4.44 46.59 4.25 44.60 0.40 4.20 0.51 5.35 Wx15 10.61 5.43 51.18 4.24 39.96 0.21 1.98 0.53 5.00 -
[1] 龚美菱.相态分析与地质找矿[M].北京: 地质出版社,2007: 80-90.
[2] 黄贵宝.我国化学物相分析的进展[J].分析化学,1999,27(12): 1454-1461. doi: 10.3321/j.issn:0253-3820.1999.12.022
[3] 龚美菱.地质物料的化学物相分析[J].岩矿测试,1992,11(1): 168-172. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS1992Z1025.htm
[4] 岩石矿物分析编委会.岩石矿物分析(第四版 第二分册)[M].北京: 地质出版社,2011: 798-803.
[5] 赵德平,阮鸿兴.以金红石为主的钛矿石中钛的物相分析方法研究[J].冶金分析,2001,21(2): 53-55. http://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ2003S1038.htm
[6] 郑民奇,李邦民,程秀花.钛矿石物相的快速分析[J].岩矿测试,2010,29(1): 61-63. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201001020.htm
[7] 徐本平.樊枝花钒钛炉渣中钒钛现行化学物相分析方法介绍[J].冶金分析,1995,15(3): 39-41.
[8] 靳晓珠.含钒碳质页岩中钒的物相分析[J].分析试验室,2000,19(2): 50-52. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200002014.htm
[9] 陈友善.矿物及炉渣中钒钛物相分析概述[J].分析试验室,1986,5(12): 46-49. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY198612011.htm
[10] 黄宝贵.铁矿石化学物相分析中硅酸铁的分离测定方法述评[J].岩矿测试,2010,29(2): 169-174. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201002020.htm
[11] 郭茂生,唐肖玫.铁矿石物相分析标准物质的研制[J].岩矿测试,1996,15(4): 311-318. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS604.012.htm
[12] 龚美菱.化学物相分析法测定菱铁矿的单矿物化学组成[J].岩矿测试,1989,8(1): 8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198901002.htm