A Discussion on Genetic Mechanism of the Kuerqis Iron Deposit in Fuyun County, Xinjiang
-
摘要: 目前针对阿尔泰南缘一带的小型富铁矿床研究明显不足。本文研究了库额尔齐斯富铁矿的成矿时代及成矿机制,为区域铁成矿规律和成矿预测提供基础资料。野外地质调查表明,该矿床地质特征具有火山沉积成因,但主要与花岗斑岩侵入的热液活动有关,二长花岗岩对铁矿有破坏作用。利用激光剥蚀-多接收器电感耦合等离子体质谱法测定了矿区两个花岗岩体的年龄,利用同位素质谱计测定了矿床中黄铁矿的硫同位素组成,分析表明花岗斑岩锆石18个测点在谐和线上成群分布,206Pb/238U年龄值集中在273~282.6 Ma,加权平均年龄为(278.7±0.94) Ma(MSDW=1.6);二长花岗岩12个测点集中成群分布,206Pb/238U年龄值集中在271.8~276.8 Ma,加权平均年龄为(274.1±1.1) Ma(MSDW=0.47)。黄铁矿的δ34S值变化于-7.2‰~0.7‰,多为负值,但大多数集中在0值附近,表明深源岩浆在向上运移过程中可能与围岩或早期沉积铁矿发生了明显的硫同位素交换,暗示铁的富集成矿主要发生在花岗斑岩侵入的热液期。综合区域研究认为,矿区花岗岩均属于阿尔泰南缘广泛发育的早二叠世时期岩浆事件,形成于板内伸展拉张环境。该期岩浆活动也伴随了铁等广泛的金属成矿作用。
-
关键词:
- LA-MC-ICP-MS U-Pb定年 /
- 硫同位素组成 /
- 岩浆热液成因 /
- 库额尔齐斯铁矿
Abstract: The large iron deposits in the southern margin of Altay had been studied systematically, but researches on some small Fe-rich type such as Kuerqis iron deposit are still obviously insufficient. In this paper, a study of the chronology and genetic mechanism to supply basic information for regional metallogeny and mineral assessment is documented. The Kuerqis iron deposit is located in the Erqis tectonic belt in the southern margin of Altay. The field investigation suggests that the deposit is dominantly related to hydrothermal activity of granitic porphyry besides the volcanic sedimentary genesis, meanwhile the iron deposit was destroyed by monzonitic granite. The ages of two granite intrusions in the deposit area and S isotope composition of pyrites in ore were determined by Laser Ablation-Multicollector Inductively Coupled Plasma-Mass Spectrometry (LA-MC-ICP-MS) and MAT 251 EM Mass Spectrograph. The 206Pb/238U ages of 18 data points of zircons in granitic porphyry concentrated on the concordia line range from 273 Ma to 282.6 Ma and the weighted average age is (278.7±0.94) Ma with MSDW=1.6. The 206Pb/238U ages of 12 data points of zircons in monzonitic granite concentrated on the concordia line range from 271.8 Ma to 276.8 Ma and the weighted average age is (274.1±1.1) Ma with MSDW=0.47. δ34S in pyrites varies from -7.2‰ to 0.7‰ and most are negative and near 0. The characteristic of δ34S perhaps reflects the significant exchange of S isotope between magma from deep source and wall-rocks or the earlier sedimentary iron deposit during ascending magma. The mineralization prominently occurred in the hydrothermal period of granitic porphyry. Combined with former studies, it suggested that two granite intrusions in the deposit area intruded in a plate extension environment during the early-Permian when granite intrusions developed widely in the southern margin of Altay. Moreover, the extensive mineralization of iron and other elements perhaps occurred in this granitic event. -
-
图 1 库额尔齐斯铁矿床地质图(矿区地质图据甘肃煤田一四五队修编,构造图据文献[4]编绘)
Figure 1.
表 1 矿区花岗斑岩和二长花岗岩锆石U-Pb定年数据
Table 1. The U-Pb dating data of granitic porphyry and monzonitic granite
花岗斑岩锆石U-Pb同位素分析数据 测点 wB/(μg·g-1) Th/U 206Pb/238U 207Pb/235U 208Pb/232Th 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 谐和度 U Th 比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄/Ma 1σ 年龄/Ma 1σ 年龄/Ma 1σ ker01-1 353.5 286.2 0.81 0.044 0.000364 0.32 0.00264 0.0035 0.00024 0.052 0.00040 279.2 2.2 281.6 2.0 305.6 12.0 99% ker01-2 242.4 128.7 0.53 0.045 0.000394 0.35 0.0031 0.0038 0.00031 0.056 0.00041 283.1 2.4 301.6 2.3 450.0 21.3 93% ker01-3 236.0 141.4 0.60 0.044 0.000360 0.32 0.00305 0.0034 0.00029 0.053 0.00041 280.2 2.2 283.5 2.3 322.3 18.5 98% ker01-4 265.0 138.2 0.52 0.045 0.000357 0.32 0.00243 0.0026 0.00023 0.052 0.00034 282.1 2.2 283.6 1.9 301.9 17.6 99% ker01-5 304.8 145.3 0.48 0.044 0.000311 0.32 0.00244 0.0033 0.00023 0.053 0.00031 279.1 1.9 282.2 1.9 309.3 13.0 98% ker01-6 384.9 298.1 0.77 0.045 0.000306 0.33 0.00249 0.0027 0.00016 0.053 0.00031 282.6 1.9 285.9 1.9 322.3 14.8 98% ker01-7 341.1 166.0 0.49 0.045 0.000338 0.32 0.00263 0.0040 0.00026 0.052 0.00030 282.0 2.1 283.9 2.0 298.2 17.6 99% ker01-8 281.3 133.9 0.48 0.044 0.000321 0.31 0.0026 0.0031 0.00025 0.052 0.00033 277.9 2.0 276.9 2.0 333.4 14.8 99% ker01-9 207.5 132.1 0.64 0.044 0.000281 0.32 0.00319 0.0023 0.00021 0.052 0.00041 278.4 1.7 279.7 2.5 287.1 -13.9 99% ker01-10 228.2 148.9 0.65 0.044 0.000295 0.33 0.00262 0.0023 0.00019 0.054 0.00040 279.8 1.8 289.4 2.0 368.6 16.7 96% ker01-11 186.3 131.1 0.70 0.043 0.000345 0.31 0.00325 0.0026 0.00022 0.052 0.00039 274.3 2.1 275.0 2.5 279.7 18.5 99% ker01-12 186.5 127.4 0.68 0.044 0.000357 0.32 0.00354 0.0027 0.00023 0.052 0.00047 277.6 2.2 279.7 2.7 298.2 20.4 99% ker01-13 198.0 128.0 0.65 0.044 0.000311 0.31 0.00297 0.0029 0.00023 0.051 0.0004 278.2 1.9 273.5 2.3 235.3 16.7 98% ker01-14 197.4 113.2 0.57 0.042 0.000352 0.30 0.00311 0.0026 0.00021 0.052 0.00038 266.0 2.2 269.7 2.4 301.9 16.7 98% ker01-15 310.0 147.0 0.47 0.044 0.000295 0.32 0.00228 0.0024 0.00019 0.052 0.00031 279.0 1.8 279.9 1.8 287.1 13.0 99% ker01-16 187.1 109.2 0.58 0.044 0.000296 0.31 0.00291 0.0026 0.00022 0.052 0.00037 279.1 1.8 277.7 2.3 264.9 13.9 99% ker01-17 423.5 265.6 0.63 0.044 0.000318 0.31 0.00236 0.0023 0.00015 0.051 0.00027 279.4 2.0 277.3 1.8 261.2 8.3 99% ker01-18 300.4 101.3 0.34 0.044 0.000312 0.31 0.00259 0.0037 0.00028 0.051 0.00030 279.2 1.9 275.0 2.0 239.0 8.3 98% ker01-19 190.1 113.8 0.60 0.043 0.000421 0.30 0.00375 0.0021 0.00021 0.051 0.00048 273.0 2.6 270.1 2.9 255.6 50.0 98% ker01-20 257.3 154.9 0.60 0.043 0.000321 0.30 0.00264 0.0022 0.0002 0.051 0.00036 273.3 2.0 268.1 2.1 233.4 16.7 98% 二长花岗岩锆石U-Pb同位素分析数据 测点 wB/(μg·g-1) Th/U 206Pb/238U 207Pb/235U 208Pb/232Th 207Pb/206Pb 206Pb/238U 207Pb/235U 207Pb/206Pb 谐和度 U Th 比值 1σ 比值 1σ 比值 1σ 比值 1σ 年龄/Ma 1σ 年龄/Ma 1σ 年龄/Ma 1σ ker02-1 681.1 82.6 0.12 0.043 0.00032 0.31 0.00239 0.0030 0.00031 0.052 0.00025 273.4 2.0 275.1 1.8 300.1 9.3 99% ker02-2 241.9 113.1 0.47 0.044 0.00035 0.31 0.00334 0.0031 0.00029 0.052 0.00040 275.0 2.1 277.3 2.6 294.5 21.3 99% ker02-3 196.3 24.8 0.13 0.067 0.00109 0.51 0.00962 0.0166 0.00168 0.055 0.00036 420.4 6.6 420.8 6.5 416.7 -17.6 99% ker02-4 122.8 32.0 0.26 0.055 0.00060 0.40 0.00459 0.0097 0.00097 0.053 0.00039 347.4 3.7 342.5 3.3 322.3 16.7 98% ker02-5 960.7 239.4 0.25 0.044 0.00028 0.31 0.00238 0.0026 0.00020 0.052 0.00027 275.0 1.7 274.1 1.8 264.9 13.0 99% ker02-6 613.7 114.6 0.19 0.043 0.00030 0.31 0.00244 0.0035 0.00032 0.051 0.00022 273.1 1.9 271.8 1.9 261.2 41.7 99% ker02-7 581.1 53.3 0.09 0.044 0.00045 0.32 0.00354 0.0050 0.00054 0.052 0.00029 276.8 2.8 278.3 2.7 300.1 11.1 99% ker02-8 7.3 3.9 0.53 0.068 0.00167 0.54 0.03039 0.1032 0.02170 0.059 0.00331 421.2 10.1 438.2 20.0 553.7 119.4 96% ker02-9 460.0 23.0 0.05 0.044 0.00029 0.31 0.00230 0.0119 0.00148 0.052 0.00027 275.7 1.8 275.2 1.8 272.3 11.1 99% ker02-10 143.5 68.1 0.47 0.043 0.00031 0.30 0.00360 0.0042 0.00052 0.051 0.00053 273.7 1.9 270.1 2.8 239.0 24.1 98% ker02-11 160.2 79.0 0.49 0.043 0.00032 0.31 0.00372 0.0042 0.00045 0.052 0.00050 272.8 2.0 272.2 2.9 333.4 22.2 99% ker02-12 654.5 20.0 0.03 0.044 0.00026 0.31 0.00241 0.0099 0.00124 0.052 0.00026 274.7 1.6 275.3 1.9 279.7 -16.7 99% ker02-13 415.7 90.2 0.22 0.043 0.00026 0.31 0.00247 0.0041 0.00039 0.052 0.00031 271.8 1.6 273.6 1.9 300.1 13.0 99% ker02-14 159.8 190.8 1.19 0.056 0.00042 0.42 0.00401 0.0033 0.00024 0.055 0.00047 350.1 2.5 359.6 2.9 433.4 18.5 97% ker02-15 291.4 175.2 0.60 0.043 0.00044 0.31 0.00400 0.0029 0.00026 0.051 0.00037 274.4 2.7 272.8 3.1 257.5 14.8 99% ker02-16 117.6 55.1 0.47 0.055 0.00051 0.41 0.00564 0.0040 0.00043 0.054 0.00053 346.7 3.1 351.5 4.0 383.4 22.2 98% ker02-17 398.6 32.4 0.08 0.043 0.00033 0.31 0.00299 0.0074 0.00105 0.051 0.00027 274.2 2.0 272.7 2.3 257.5 38.9 99% ker02-18 211.8 80.6 0.38 0.055 0.00043 0.40 0.00403 0.0044 0.00045 0.054 0.00037 343.9 2.6 344.9 2.9 350.1 10.2 99% ker02-19 179.1 85.7 0.48 0.055 0.00045 0.41 0.00357 0.0047 0.00045 0.054 0.00037 346.8 2.8 351.1 2.6 383.4 14.8 98% ker02-20 345.3 137.4 0.40 0.056 0.00044 0.42 0.00319 0.0034 0.00033 0.055 0.00032 348.2 2.7 357.0 2.3 416.7 -17.6 97% 表 2 矿床硫同位素组成结果
Table 2. The isotopic component for sulfur in deposit
样品编号 矿物名称 δ34SV-CDT/‰ Ker 14 黄铁矿 -7.2 Ker 15 黄铁矿 -3.9 Ker 20 黄铁矿 -2.9 Ker 21 黄铁矿 -0.6 Ker 22 黄铁矿 0.1 Ker 23 黄铁矿 -0.5 Ker 24 黄铁矿 -1.8 Ker 25 黄铁矿 0.3 Ker 26 黄铁矿 -2.4 Ker 27 黄铁矿 -2.5 Ker 34 黄铁矿 -1.4 Ker 35 黄铁矿 0.3 Ker 36 黄铁矿 0.7 Ker 40 黄铁矿 0.1 Ker 41 黄铁矿 -1.7 -
[1] 赵一鸣.中国铁矿资源现状、保证程度和对策[J].地质论评, 2004, 50(4): 396-417. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200404010.htm
[2] 张泾生.我国铁矿资源开发利用现状及发展趋势[J].钢铁, 2007, 42(2): 1-6. doi: 10.7513/j.issn.1004-7638.2007.02.001
[3] 焦玉书,周伟.世界铁矿资源开发利用和我国进口铁矿石的发展态势(续) [J].中国冶金, 2004, 85(12): 15-18. doi: 10.3969/j.issn.1006-9356.2004.12.004
[4] 何国琦, 成守德, 徐新, 李锦轶, 郝杰.中国新疆及邻区大地构造图(1∶2500000)说明书[M].北京:地质出版社, 2004: 1-65.
[5] 侯可军,李延河,田有荣.LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质, 2009, 28(4): 481-492. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200904009.htm
[6] Nasdala L, Hofmeister W, Norberg N, Mattinson J M, Corfu F, Dor W, Kamo S L, Kennedy A K, Kronz A, Reiners P W, Frei D, Kosler J, Wan Y, Götze J, Hager T, Kröner A, Valley J. Zircon M257—A homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon [J].Geostandards and Geoanalytical Research, 2008, 32: 247-265. doi: 10.1111/ggr.2008.32.issue-3
[7] Ludwig K R.User′s Manual for Isoplot 3.0: A Geochro-nological Toolkit for Microsoft Excel[M].Berkeley: Berkeley Geochronology Center Special Publication, 2003: 1-71.
[8] Slama J, Kosler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J.Plesovice zircon—A new natural reference material for U-Pb and Hf isotopic microanalysis[J].Chemical Geology, 2008, 249: 1-35. doi: 10.1016/j.chemgeo.2007.11.005
[9] Claesson S, Vetrin V, Bayanova T, Downes H.U-Pb zircon age from a Devonian carbonatite dyke, Kola peninsula, Russia: A record of geological evolution from the Archaean to the Palaeozoic[J].Lithos, 2000, 51(1-2): 95-108. doi: 10.1016/S0024-4937(99)00076-6
[10] Belousova E A, Griffin W L, O′Reilly S Y, Fisher N I.Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type[J].Journal of Geochemical Exploration, 2002, 76: 45-69. doi: 10.1016/S0375-6742(02)00204-2
[11] 李锦轶.试论中国新疆准噶尔山系古生代板块构造演化[M].北京: 北京科学技术出版社, 1991: 92-108.
[12] 何国琦, 李茂松, 刘德权.中国新疆古生代地壳演化及成矿[M].乌鲁木齐: 新疆人民出版社, 香港: 香港文化教育出版社, 1994: 1-437.
[13] 童英, 王涛, Kovach V P, 洪大卫, 韩宝福.阿尔泰中蒙边界塔克什肯口岸后造山富碱侵入岩体的形成时代、成因及其地壳生长意义[J].岩石学报, 2006, 22(5): 1267-1278. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605018.htm
[14] 刘崴国,韩静波,薛晓峰,郭伟伟.阿尔泰山南缘二叠纪地壳伸展减薄——来自侵入岩的证据[J].新疆地质, 2011, 29(3): 270-274. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201103006.htm
[15] 韩宝福,季建清,宋彪,陈立辉,李宗怀.新疆喀拉通克和黄山东含铜镍矿镁铁-超镁铁杂岩体的SHRIMP锆石U-Pb年龄及其地质意义[J].科学通报, 2004, 49(22): 2324-2328. doi: 10.3321/j.issn:0023-074X.2004.22.012
[16] 周刚, 张招崇, 王新昆, 王祥, 罗世宾, 何斌, 张小林.新疆玛因鄂博断裂带中花岗质糜棱岩锆石U-Pb SHRIMP和黑云母40Ar-39Ar年龄及意义[J].地质学报, 2007, 81(3): 359-369.
[17] 周刚, 张招崇, 罗世宾, 何斌, 王祥, 应立娟, 赵华, 李爱红, 贺永康.新疆阿尔泰山南缘玛因鄂博高温型强过铝花岗岩年龄、地球化学特征及其地质意义[J].岩石学报, 2007, 23(8): 1909-1920. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200708011.htm
[18] 童英, 洪大卫, 王涛, 王式洸, 韩宝福.阿尔泰造山带南缘富蕴后造山线形花岗岩体锆石U-Pb年龄及其地质意义[J].岩石矿物学杂志, 2006, 25(2): 85-89. http://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200602001.htm
[19] 刘锋, 张超, 杨富全.新疆阿尔泰南缘加尔巴斯套铁矿床成矿时代及成矿作用研究[J].矿床地质, 2012,31(6): 1277-1288. http://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201206013.htm
[20] 王涛, 洪大卫, 童英, 韩宝福, 石玉若.中国阿尔泰造山带后造山喇嘛昭花岗岩体锆石SHRIMP年龄、成因及陆壳垂向生长意义[J].岩石学报, 2005, 21(3): 640-650. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200503007.htm
[21] 李香仁, 刘锋, 杨富全.新疆阿尔泰克因布拉克铜锌矿区二云母正长花岗岩成岩时代及其地质意义探讨[J].新疆地质, 2012, 30(1):5-11. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201201003.htm
[22] 肖序常,汤耀庆,李锦轶,赵民,冯益民,朱宝清.古中亚复合巨型缝合带南缘构造演化[M]//肖序常,汤耀庆,主编.古中亚复合巨型缝合带南缘构造演化.北京:北京科学技术出版社, 1991: l-24.
[23] 于学元, 梅厚均, 杨学昌, 王俊达.额尔齐斯火山岩及其构造演化[M]//涂光炽,主编.新疆北部固体地球科学新进展.北京:科学出版社, 1993: 185-198.
[24] 成守德, 王元龙.新疆大地构造演化基本特征[J].新疆地质, 1998, 16(2): 98-107. http://www.cnki.com.cn/Article/CJFDTOTAL-XJDI199802000.htm
[25] 李华芹,谢才富,常海亮,蔡红,朱家平,周肃.新疆北部主要有色金属矿床成矿期同位素年代学研究[M].北京:地质出版社, 1998: 202-206.
[26] Han B F, Ji J Q, Song B, Chen L H, Li Z H.SHRIMP zircon U-Pb ages of Kalatongke No.1 and Huangshandong Cu-Ni-bearing mafic-ultramafic complexes, North Xinjiang, and geological implications [J].Chinese Science Bulletin, 2004, 49(22): 2424-2429.
[27] Chen B, Jahn B.Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd-Sr isotope and trace element evidence [J].Journal of Asian Earth Sciences, 2004, 23: 691-703. doi: 10.1016/S1367-9120(03)00118-4
[28] Chen B, Arakawa Y. Elemental and Nd-Sr isotopic geo-chemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth[J]. Geochimica et Cosmochimica Acta, 2005, 69(5): 1307-1320. doi: 10.1016/j.gca.2004.09.019
-