中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

电子探针测年方法应用于晶质铀矿的成因类型探讨

赵慧博, 刘亚非, 阳珊, 叶美芳, 王志海, 王博, 常娜. 电子探针测年方法应用于晶质铀矿的成因类型探讨[J]. 岩矿测试, 2014, 33(1): 102-109.
引用本文: 赵慧博, 刘亚非, 阳珊, 叶美芳, 王志海, 王博, 常娜. 电子探针测年方法应用于晶质铀矿的成因类型探讨[J]. 岩矿测试, 2014, 33(1): 102-109.
huibo Zhao, yafei Liu, shan Yang, meifang Ye, zhihai Wang, bo Wang, na Chang. The Application of Electron Microprobe Dating Method on a Genetic Type of Uraninite[J]. Rock and Mineral Analysis, 2014, 33(1): 102-109.
Citation: huibo Zhao, yafei Liu, shan Yang, meifang Ye, zhihai Wang, bo Wang, na Chang. The Application of Electron Microprobe Dating Method on a Genetic Type of Uraninite[J]. Rock and Mineral Analysis, 2014, 33(1): 102-109.

电子探针测年方法应用于晶质铀矿的成因类型探讨

  • 基金项目:
    中国地质调查局地质调查工作项目(12120113014500)
详细信息
    作者简介: 赵慧博,硕士,助理工程师,岩石矿物学专业。E-mail: zhaohuibo5566@126.com
    通讯作者: 刘亚非,工程师,主要从事电子探针方面研究。E-mail: dogwuwu@163.com

The Application of Electron Microprobe Dating Method on a Genetic Type of Uraninite

More Information
  • 电子探针Th-U-Pb测年因其高分辨率与高精度的优势,在独居石、锆石等定年矿物中得到了推广,但在Th、U、Pb含量高的晶质铀矿、沥青铀矿等矿物中则应用较少。本文在铁矿床变质岩绿泥石、阳起石黑云母蚀变岩首次发现U含量高的晶质铀矿,基于此,结合该铁矿床地区的地质背景,利用偏光显微镜与电子探针等分析测试手段,将镜下蚀变现象、年龄计算与其他相关元素分析相结合,重点对晶质铀矿的成矿年龄及成矿规律进行探讨。研究发现:通过镜下观察判断,晶质铀矿的成因类型与澳大利亚著名的变质型铀矿相似,均为古老的变质型,且周围的脉石矿物均为绿泥石,绿泥石皆由黑云母退变质而成,铀矿的赋存位置显示其与黑云母、绿泥石之间有紧密联系,其成矿年龄与黑云母、绿泥石形成年龄息息相关。继而根据电子探针数据计算成矿年龄,判断成矿期次,得出主要成矿期在(1654±17) Ma~(1805±17) Ma,为中元古代中期,且主要成矿期与热液蚀变作用黑云母化有关,后期活化富集时期在(657±17) Ma~(807±17) Ma,为新元古代南华纪时期,此阶段是热液侵入、绿泥石化广泛发育的时期;选取较大颗粒对晶质铀矿的环带年龄进行计算,从年龄分布上证实后期有强烈的流体活动的发生,且主要与绿泥石化相关。另外,对比变质型与沉积型铀矿中Y2O3与UO2含量发现,两者之间存在负相关关系,此关系对判断铀矿成因即是否为变质型或沉积型可能有指示意义,但缺乏大量的数据佐证,需进一步研究。
  • 加载中
  • 图 1  绿泥石化阳起石黑云母岩中矿物特征

    Figure 1. 

    图 2  四种方法计算年龄结果对比图

    Figure 2. 

    图 3  晶质铀矿成矿年龄概率统计图

    Figure 3. 

    图 4  晶质铀矿年龄区间分布图

    Figure 4. 

    图 5  U9(左)与U18(右)颗粒取点点位

    Figure 5. 

    图 6  U9和U18颗粒年龄分布图

    Figure 6. 

    图 7  研究区变质型铀矿与其他地区沉积型铀矿的Y2O3与UO2含量对比图

    Figure 7. 

    表 1  研究区晶质铀矿与我国其他地区变质型铀矿成分对比

    Table 1.  Comparison of the uraninite′s component in the study area and other metamorphic regions

    研究地区项目w/%
    UO2PbOThO2
    本研究区变质型晶质铀矿变化范围49.44~83.796.57~29.370.55~14.99
    平均值66.5617.786.90
    我国其他地区
    变质型铀矿[11]
    变化范围UO2 27.16~67.516.60~11.240.014~0.24
    UO36.74~48.98
    平均值UO2 54.49
    8.540.061
    UO320.97
    下载: 导出CSV

    表 2  晶质铀矿电子探针元素U、Pb、Th含量与年龄计算结果

    Table 2.  The contents of U,Pb,Th in the uraninite and their ages

    编号w/%年龄/Ma编号w/%年龄/Ma
    UO2PbOThO2Age1Age2Age3Age4UO2PbOThO2Age1Age2Age3Age4
    U170.54122.3735.1472457227819381894U1473.121.2444.4652261211518311770
    U272.24421.4135.0442299215118251796U1570.77220.0665.3782194207117191730
    U370.0918.5545.3332049195216041635U1667.75519.987.5532254214216401772
    U478.56.5716.008647683506583U1783.7978.780.552831844771733
    U566.98918.4368.6822091201914691669U1867.41617.6159.6591976193113531593
    U668.94918.8646.6172103200915791673U1966.64920.2319.8272292219515581801
    U749.4429.36714.9994259376722842881U2070.14219.9723.5182224207918471745
    U857.64518.90918.1452343234312381853U2174.3119.2397.139955991717838
    U966.67619.6438.3282242214015891766U2267.64220.2886.6782303217317191802
    U1068.50122.4087.8742498233818051925U2366.60118.378.1822100202314951674
    U1172.37120.6024.6372213207817791740U2466.01721.296.9522471231118201907
    U1265.26317.75110.1032049199913741643U2567.88319.2545.1312196207217211730
    U1373.87317.3476.8151807175913671473U2674.29511.4773.461208121010121034
    下载: 导出CSV

    表 3  U9晶质铀矿环带数据

    Table 3.  The band data of uraninite U9

    氧化物w/%
    U9-1U9-2U9-3U9-4U9-5U9-6U9-7U9-8U9-9U9-10U9-11U9-12U9-13U9-14U9-15U9-16U9-17U9-18U9-19U9-20
    UO259.28458.77760.09160.88960.20161.36661.73461.14160.31561.48761.8861.1361.28260.19962.32361.82867.68468.82163.68361.426
    PbO18.35317.31217.45817.59518.06918.68615.94617.70918.07817.52816.87317.75918.01117.83317.33117.61220.29420.41619.12917.744
    ThO218.00620.12116.93915.49216.44715.21315.79415.05214.76615.04214.65115.11115.29716.01516.317.0078.2957.92813.37616.434
    年龄/Ma
    (Ag4)
    17721687168916911738176815401698174716761618170117171722163616641792178017621686
    下载: 导出CSV

    表 4  U18晶质铀矿环带数据

    Table 4.  The band data of uraninite U18

    氧化物w/%
    U18-1U18-2U18-3U18-4U18-5U18-6U18-7U18-8U18-9U18-10U18-11U18-12U18-13U18-14U18-15U18-16U18-17U18-18U18-19U18-20
    UO270.47573.42674.66376.97277.479.22982.95781.78382.81281.88178.79977.18676.76975.2275.49174.08673.24173.83269.94669.565
    PbO19.76318.19218.44316.44316.8199.3155.546.815.4957.35510.92610.26113.43411.27412.87517.16414.10213.919.19721.006
    ThO22.8512.0950.9372.0780.9624.4864.774.3784.8023.1794.5914.7883.0054.8614.0662.9574.715.1373.2994.938
    年龄/Ma
    (Ag4)
    1728156415661380140580447358447062993589911571001112714741250122516951822
    下载: 导出CSV

    表 5  研究区变质型铀矿与其他地区沉积型铀矿的Y2O3与UO2含量

    Table 5.  The content of Y2O3 and UO2 in the study area and other sedimentary uranium deposits

    氧化物研究区变质型铀矿 w/%其他地区沉积型铀矿w/%
    1516171819202122232425262728291234567891011121314
    Y2O32.680.792.392.690.873.112.270.350.963.580.430.341.302.200.264.974.239.517.576.146.387.456.874.488.443.137.826.299.93
    UO270.0978.566.9968.9577.9357.6566.6868.5072.3765.2673.8786.7770.7767.7583.860.4354.9735.6248.9432.3540.8940.4343.6153.4252.1655.2542.4837.6936.84
    下载: 导出CSV
  • [1]

    张照志,赵磊,孟庆祝,陈卉泉.电子探针化学测年技术及其在地学中的应用[J].现代地质,2001,15(1): 69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200101012.htm

    [2]

    周剑雄,陈振宇,芮宗瑶.独居石的电子探针钍-铀-铅化学测年[J].岩矿测试,2002,21(4): 241-246. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20020467&flag=1

    [3]

    李学军,郭涛,王庆飞.电子探针化学测年方法[J].地学前缘,2003,10(2): 411-413. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200302026.htm

    [4]

    张文兰,王汝成,华仁民.副矿物的电子探针化学定年方法原理及应用[J].地质论评,2003,49(5): 253-260. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200303005.htm

    [5]

    彭松柏,朱家平,李志昌.电子探针铀-钍-铅定年方法及其在构造分析中的应用前景[J].岩矿测试,2004,23(1): 44-45. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20040113&flag=1

    [6]

    张昭明.电子探针在测定晶质铀矿年龄中的应用[J].放射性地质,1982(5): 408-411. http://www.cnki.com.cn/Article/CJFDTOTAL-GWYD198205004.htm

    [7]

    Bowles J F W.Age dating of individual grains of uraninite in rocks from electron microprobe analyses [J]. Chemical Geology,1990,83(1-2): 47-53. http://www.sciencedirect.com/science/article/pii/000925419090139X

    [8]

    Kempe U. Precise electron microprobe age determination in altered uraninite: Consequences on the intrusion age and the metallogenic significance of the Kirchberg granite Erzgebirge, Germany [J].Contributions to Mineralogy and Petrology ,2003,145(1): 107-118. http://link.springer.com/article/10.1007/s00410-002-0439-5

    [9]

    Votyakov S L, Ivanov K S, Khiller V, Bochkarev V,Erokhin Y.Chemical microprobe Th-U-Pb age dating of monazite and uraninite grans from granites of the Yamal crystalline basement [J].Doklady Earth Sciences, 2011, 439(1): 994-997. http://www.springerlink.com/index/F678271577677854.pdf

    [10]

    葛祥坤.电子探针Th-U-Pb微区测年方法及其在铀矿地质研究中的应用前景[J].铀矿地质,2008,4(3): 175-179. http://epub.cnki.net/kns/detail/detail.aspx?QueryID=0&CurRec=1&recid=&FileName=YKDZ200803008&DbName=CJFD2008&DbCode=CJFQ&pr=

    [11]

    徐国庆,王爱珍,顾绮芳,张静宜,张昭明,黄裕柱.我国晶质铀矿和沥青铀矿的某些矿物学特征[J].矿物学报,1982(3): 193-199. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198203004.htm

    [12]

    [13]

    孙玉宝.安徽霍邱李老庄铁矿-菱镁矿矿床地质特征及矿床成因类型[J].矿产与地质,2007,21(5): 535-536. http://epub.cnki.net/kns/detail/detail.aspx?QueryID=4&CurRec=1&recid=&FileName=KCYD200705009&DbName=CJFD2007&DbCode=CJFQ&pr=

    [14]

    Muto T, Hirono S, Kurata H.Some aspects of fixation of uranium from natural waters [J].Mining Geology, 1965,15(74): 287- 298. http://www.osti.gov/scitech/biblio/4543656

    [15]

    Nutt C J.Description of drill-hole ⅧV core from the Jabiluka unconformity-type deposit, Northern Territory, Australia [R].U.S. Geological Survey Open-File Report,1984, 2(1): 84-299.

    [16]

    Ludwig K R, Grauch R I, Nutt C J, Nash J T, Frishman D, Simmons K R. Age of uranium mineralization at the Jabiluka and Ranger deposits, Northern Territory, Australia: New U-Pb isotope evidence [J].Economic Geology, 1987, 82(4): 857-874. http://economicgeology.org/content/82/4/857.short

    [17]

    Gustafson L B, Curtis L W. Post-Kombolgie metasomatism at Jabiluka, Northern Territory, Australia, and its significance in the formation of high-grade uranium mineralization in lower proterozoic rocks [J].Economic Geology, 1983, 78(1): 26-56. http://economicgeology.org/content/78/1/26.short

    [18]

    Ewers G R, Ferguson J.The Nabarlek uranium deposits, Northern Territory, Australia; Some petrologic and geochemical constraints on genesis [J].Economic Geology,1983,78(5): 823-837. http://economicgeology.org/content/78/5/823.short

    [19]

    Hegge M R, Rowntree J C.Geologic setting and concepts on the origin of uranium deposits in the East Allgator River region, N.T., Australia [J].Economic Geology, 1978, 73(8): 1420-1429. http://economicgeology.org/content/73/8/1420.short

  • 加载中

(7)

(5)

计量
  • 文章访问数:  637
  • PDF下载数:  1
  • 施引文献:  0
出版历程
收稿日期:  2013-07-11
录用日期:  2013-08-11

目录