Simultaneous Determination of Ag, W and Mo in Geochemical Exploration Samples by ICP-MS Using P507 Loaded Foam for Separation
-
摘要: 电感耦合等离子体质谱法(ICP-MS)测定化探样品中的Ag时,由于受到Zr、Nb氧化物离子91Zr16O和93Nb16O的严重干扰,直接测定时低含量Ag的分析结果误差较大,需要将干扰元素分离才能得到较准确的结果。当前应用P507萃淋树脂分离样品溶液中Zr和Nb等干扰元素已经成功应用于化探样品中Ag的测定。本文将此方法进一步改进,用氢氟酸、硝酸、高氯酸和逆王水敞开溶样,通过P507负载泡塑进行振荡吸附,实现了化探样品中Ag和内标元素Rh与干扰元素Zr的有效分离,应用ICP-MS可同时测定Ag、W和Mo。标准样品的测定结果准确可靠,方法检出限为Ag 0.0045 μg/g,W 0.023 μg/g,Mo 0.060 μg/g,均低于多目标地球化学调查(1:250000)样品分析的检出限。P507负载泡塑分离流程操作简便,无交叉污染,一次振荡可处理100件样品,其分析效率显著优于P507萃淋树脂交换柱,更加适合大批量化探样品Ag与W、Mo及微量元素的同时测定。Abstract: When determining Ag in geochemical exploration samples by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), the molecular ions 91Zr16O and 93Nb16O can seriously interfere with the isotopes 107Ag and 109Ag and need to be separated out to obtain accurate results. The application of P507 levextrel resin to separate the interfering elements of Zr and Nb was recently successfully conducted to in the determination of Ag in exploration samples. In this study, this method was improved by using P507 loaded foam to absorb the interference elements with vibration and in measuring Ag, W and Mo by ICP-MS. The sample was digested by HF, HNO3, HClO4 and reverse aqua regia in an open system. The results of reference materials agree well with the certified values. The detection limits of Ag, W and Mo are 0.0045 μg/g, 0.023 μg/g, 0.060 μg/g, respectively, which are lower than the detection limits of multi-target geochemical exploration (1: 250000). The proposed method is more simple and rapid than the method of P507 levextrel resin and can be used for routine determination of Ag, W, Mo and trace elements in large amounts of geochemical exploration samples.
-
Key words:
- geochemical exploration samples /
- Ag /
- W /
- Mo /
- P507 loaded foam /
- Inductively Coupled Plasma-Mass Spectrometry
-
-
表 1 ICP-MS仪器工作参数
Table 1. Working parameters of the ICP-MS instrument
工作参数 设定条件 功率 1400 W 冷却气(Ar)流量 18 L/min 辅助气(Ar)流量 1.65 L/min 雾化气(Ar)流量 1.0 L/min 采样锥(Ni)孔径 0.8 mm 截取锥(Ni)孔径 0.5 mm 测量方式 Peak Hopping 扫描次数 5 停留时间/通道 20 ms 每个质量通道数 1 总采集时间 20 s 雾化室温度 3℃ 表 2 各元素在P507负载泡塑上的回收率
Table 2. The recovery of elements for P507 loaded foam
元素 回收率(%) 无H2O2 加入H2O2 Ag 98.5 99.1 Rh 97.5 98.6 W 55.5 98.5 Zr 2.9 <0.1 Mo 8.6 99 Nb 49.0 101 Ti 68.0 97 表 3 样品空白值和方法检出限
Table 3. Blank level and detection limits of the method
元素 平均含量 (μg/g) 标准偏差 (μg/g) 检出限 (μg/g) Ag 0.0012 0.00015 0.0045 W 0.010 0.00077 0.023 Mo 0.019 0.0020 0.060 表 4 方法精密度
Table 4. Precision tests of the method
元素 方法精密度( n=12) RSD (%) 平均含量 (μg/g) 标准值 (μg/g) 标准偏差 (μg/g) Ag 0.36 0.35 0.013 3.61 W 3.22 3.1 0.10 3.21 Mo 1.44 1.4 0.089 6.18 表 5 标准样品测定结果
Table 5. Analytical results of Ag, W and Mo in standard reference materials
标准物质编号 Ag W Mo 标准值 (μg/g) 测量值 (μg/g) 相对误差 (%) 标准值 (μg/g) 测量值 (μg/g) 相对误差 (%) 标准值 (μg/g) 测量值 (μg/g) 相对误差 (%) GBW 07401 0.35 0.34 -2.86 3.1 3.30 6.45 1.4 1.50 7.14 GBW 07402 0.054 0.052 -3.70 1.08 1.15 6.48 0.98 1.04 6.12 GBW 07403 0.066 0.065 -1.52 24 24.2 0.83 2.0 2.14 7.00 GBW 07404 0.070 0.071 1.43 6.2 6.62 6.77 2.6 2.70 3.85 GBW 07405 4.4 4.33 -1.59 34 35.8 5.29 4.6 4.60 0.00 GBW 07303a 0.20 0.19 -5.00 3.9 3.85 -1.28 48 45.4 -5.42 GBW 07304a 0.22 0.22 0.00 2.6 2.40 -7.69 1.6 1.70 6.25 GBW 07305a 0.63 0.66 4.76 5.5 5.65 2.73 1.64 1.63 -0.61 GBW 07307a 1.20 1.11 -7.50 1.11 1.05 -5.41 0.82 0.87 6.10 GBW 07308a 0.12 0.12 0.00 3.3 3.53 6.97 1.3 1.24 -4.62 GBW 07310 0.27 0.29 7.41 1.6 1.54 -3.75 1.2 1.11 -7.50 GBW 07311 3.2 3.24 1.25 126 132 4.76 5.9 6.17 4.58 GBW 07312 1.15 1.16 0.87 37 37.5 1.35 8.4 7.80 -7.14 GBW 07366 2.1 2.12 0.95 15.5 14.3 -7.74 1.56 1.53 -1.92 GBW 07103 0.033 0.035 6.06 8.4 9.0 7.14 3.5 3.36 -4.00 -
[1] Qi L, Hu J, Gregoire D C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry [J].Talanta, 2000,51:507-513. doi: 10.1016/S0039-9140(99)00318-5
[2] 何红蓼,李冰,韩丽荣,孙德忠,王淑贤,李松.封闭压力酸溶-ICP-MS 法分析地质样品中47个元素的评价[J].分析试验室,2002,21(5):8-12. http://www.cnki.com.cn/Article/CJFDTOTAL-FXSY200205003.htm
[3] 章新泉,易永,姜玉梅,苏亚勤,童迎东,刘永林,李翔.电感耦合等离子体质谱测定地质样品中多种元素[J].分析试验室,2005,24(8):58-61. http://www.cnki.com.cn/Article/CJFDTOTAL-XJYS201603041.htm
[4] 姜玉梅,刘燕,谌彤.电感耦合等离子体质谱法同时测定土壤中46 个元素的研究[J].现代测量与实验室管理,2009(5):10-12. http://www.cnki.com.cn/Article/CJFDTOTAL-XDJL200905005.htm
[5] 李国榕,王亚平,孙元方,董天姿,王海鹰.电感耦合等离子体质谱法测定地质样品中稀散元素铬镓铟碲铊[J].岩矿测试,2010,29(3):255-258. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201003011.htm
[6] 王君玉,吴葆存,李志伟,韩敏,钟莅湘.敞口酸溶-电感耦合等离子体质谱法同时测定地质样品45个元素[J].岩矿测试,2011,30(4):440-445. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201104013.htm
[7] 曹秋生.光谱法测定化探样品中银锡钨等元素[J].地质实验室,1995,11(6):33-46.
[8] 叶晨亮.发射光谱法快速测定银锡铜铅锌钼铍[J].岩矿测试,2004,23(3):238-279. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200403019.htm
[9] 张雪梅,张勤.发射光谱法测定勘查地球化学样品中银硼钼铅[J].岩矿测试,2006,25(4):323-326.
[10] 张丽微,张微,刘学诗,李金秀.化探样品微量银的光谱测定[J].云南地质,2009,28(4):462-467. http://www.cnki.com.cn/Article/CJFDTOTAL-YNZD200904018.htm
[11] 盛献臻,何惠清.发射光谱法测定银和锡的探讨[J].广东化工,2011,38(7):280-281. http://www.cnki.com.cn/Article/CJFDTOTAL-GDHG201107151.htm
[12] 邢智,漆亮.P507萃淋树脂分离-电感耦合等离子体质谱法快速测定化探样品中的银[J].岩矿测试,2013,32(3):398-401.
[13] 李民权,关玉蓉.TBP-泡沫塑料的制备和金分析中的应用[J].理化检验(化学分册),1997,33(10):456-455. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH199710006.htm
[14] 卢兵,李勇,王丽娟,孟令晶.泡沫塑料吸附发射光谱测定痕量金方法的改进[J].黄金,2004,25(10):52-53. doi: 10.3969/j.issn.1001-1277.2004.10.017
[15] 艾军,胡圣虹,帅琴,余琼卫.预富集电感耦合等离子体质谱法测定地下水中超痕量稀土元素及钪、钇[J].分析化学,2002,30(10): 1226-1230. doi: 10.3321/j.issn:0253-3820.2002.10.018
[16] 彭春霖,李武,帅袁甫,蔡文娣,冯文达,王旭生.萃取色谱分离原子发射光谱测定超高纯氧化铥、氧化钇和氧化镥中痕量稀土杂质[J].分析化学,1997,25(4):377-381. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX199704001.htm
[17] Chu Z Y, Chen F K, Yang Y H, Guo J H.Precise determination of Sm, Nd concentrations and Nd isotopic compositions at the nanogram level in geological samples by thermal ionization mass spectrometry[J].Journal of Analytical Atomic Spectrometry, 2009, 24:1534-1544. doi: 10.1039/b904047a
-