Laser Ablation-Inductively Coupled Plasma-Mass Spectrometric Analysis Methods of Melt Inclusions and Its Geological Applications
-
摘要: 熔体包裹体可以保留岩浆被捕获时的温度、压力及化学组成等信息,为研究岩浆结晶演化过程提供最直接有效的手段;然而由于取样方法、仪器分辨率和灵敏度等技术手段的限制,熔体包裹体研究(尤其是熔体包裹体成分研究方面)发展相对缓慢。本文在简述熔体包裹体特征与分类的基础上,总结了目前熔体包裹体成分研究的主要技术手段,包括技术特点、适用范围及样品制备等;详细介绍单个熔体包裹体激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)原位分析技术(原理、优缺点、定量方法等),并重点阐述分析过程中可能产生的元素分馏、基体效应及激光剥蚀技术要点等。单个熔体包裹体LA-ICP-MS原位分析技术的发展和完善,避免了传统熔体包裹体成分分析技术需加热均一化、样品制备繁琐等缺点,可直接对成分复杂矿物表面100 μm以下以多相形式存在的熔体包裹体进行整体分析,数据精确度可与电子探针分析和二次离子质谱相媲美,增加了样品中可分析熔体包裹体数量,更全面地反映岩浆演化信息,省时、高效、准确,极大地推动了熔体包裹体研究的发展。近年来,国内外单个熔体包裹体LA-ICP-MS原位分析技术应用于地质学和矿床学领域,在地球深部岩浆过程及岩浆热液矿床成矿理论等方面取得了重要成果。随着激光、质谱等设备的发展及定量方法完善,单个熔体包裹体LA-ICP-MS分析的准确性将进一步提高,同时单个熔体包裹体同位素原位分析技术的发展和应用将再次为熔体包裹体研究带来革命性进展。
-
关键词:
- 熔体包裹体 /
- 激光剥蚀电感耦合等离子体质谱 /
- 地质学 /
- 矿床学
Abstract: Melt inclusions in phenocrysts play a very important role in petrological research for reserving the only direct information available on the temperature, pressure and chemical compositions of the magmatic system at the time that the host minerals crystallized. However, due to the limitation of techniques on sampling method, the resolution and sensitivity of the instrument, the study of melt inclusions (especially the chemical composition) is a relatively slow process. The melt inclusions properties and classifications generally are introduced in this paper, along with a summary of the analytical methods, applications and sample preparation, and an extensive description of the technique of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS), especially the elemental fraction, matrix effects and principal points for laser ablation. The development of an in-situ micro-analytical technique by LA-ICP-MS, which can analyse the multi-phase inclusions up to 100 μm beneath the surface of the complex minerals, and avoids the prerequisite conditions of heating homogenization and sample preparation for the routine method is described. With the advantages of rapidity, efficiency and accuracy, the newly developed technique allows more analysis for melt inclusions in the same sample and comprehensively provides evolvement information for magma. Data accuracy can be comparable with Electron Microprobe Analysis and Secondary Ion Mass Spectrometry. Recently, this technique has been applied widely in research fields of geology and ore deposit geology. Furthermore, the significant achievements were obtained in the deep earth magmatic processes and magmatic hydrothermal metallogenic theory. The development of the equipment and quantitative methods will improve the accuracy of this technique. Meanwhile, the development and application of in-situ isotopic analysis of melt inclusions by LA-MC-ICP-MS will revolutionize melt inclusions research. -
-
图 2 LA-ICP-MS单个熔体包裹体分析示意图(修改自Zajacz等[25])
Figure 2.
图 4 不同期次形成锆石球粒陨石标准化REEs分布模式图(修改自Pettke等[41])
Figure 4.
表 1 熔体包裹体成分分析技术
Table 1. Analytical techniques of chemical composition of melt inclusion
方法 特点 样品制备 可分析数据 参考文献 傅里叶变换红外吸收光谱(FTIR) 非破坏性分析,对于H2O、CO2具有极高的灵敏度和精度,但是样品制备困难,且空间分辨率低(>30 μm) 双面抛光薄片,需知薄片精确厚度、透明度及消光系数 熔体包裹体玻璃中溶解性的H2O、CO2含量及赋存形式 [11-12] 显微激光拉曼光谱(LRS) 非破坏性分析,只适宜检测流体中元素组成的分子基团,检出限1%~2%,测出的各项结果均为相对含量 抛光薄片 熔体包裹体收缩气泡中的挥发份,主要为CO2、N2、CH4、SO2、H2S及有机气体等;鉴定包裹体中结晶矿物 [13] 同步辐射X射线荧光光谱(SR-XRF) 非破坏性分析,检出限10-6,无法确定镁盐成分 抛光薄片或单矿物颗粒,包裹体均一化,暴露于表面 主量及微量元素 [14-15] 质子诱发X射线光谱(PIXE) 非破坏性分析,灵敏度高(μg/g),可穿入主矿物数十微米,但要求主矿物成分简单 双面抛光薄片,包裹体均一化,包裹体靠近样品表面 测定包裹体中Z>13的元素 [16] 电子探针(EPMA) 检出限>1%,用于分析主量元素,且只适用于分析固相样品,无法进行空间分析 抛光薄片或单矿物颗粒,包裹体均一化,暴露于表面 主量、部分微量元素和一些挥发性元素(如F、Cl和S) [17-18] 离子探针(SIMS) 高空间分辨(<20 μm),检出限10-6,空间原位分析时寄主矿物剥蚀过慢,且具有极强的基体效应 抛光薄片或单矿物颗粒,包裹体均一化,暴露于表面 微量元素和挥发性元素含量,稳定同位素特征和Pb同位素 [19-22] 激光剥蚀多接收器电感耦合等离子体质谱(LA-MC-ICPMS) 高空间分辨率,高灵敏度,低检出限(10-9~10-6),可同时测定主量及微量元素 抛光薄片或单矿物颗粒,包裹体均一化,暴露于表面;或者直接对距离样品表面100 μm以下的包裹体进行分析 主量、微量元素,同位素等,不能测定挥发份(F、Cl、H2O等) [23-25] -
[1] 夏林圻.岩浆岩中的熔体包裹体 [J].地学前缘, 2002, 9(2): 403-414. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200202031.htm
[2] Danyushevsky L V, Della-Pasqua F N, Sokolov S. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications[J]. Contributions to Mineralogy and Petrology, 2000, 138(1): 68-83. doi: 10.1007/PL00007664
[3] Danyushevsky L V, McNeill A W, Sobolev A V. Experi-mental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: An overview of techniques, advantages and complications [J]. Chemical Geology, 2002, 183(1-4): 5-24. doi: 10.1016/S0009-2541(01)00369-2
[4] Qin Z, Lu F, Anderson A T. Diffusive reequilibration of melt and fluid inclusions [J]. American Mineralogist, 1992, 77(5-6): 565-576.
[5] Gaetani G A,Watson E B. Open system behavior of olivine-hosted melt inclusions [J]. Earth and Planetary Science Letters, 2000, 183(1-2): 27-41. doi: 10.1016/S0012-821X(00)00260-0
[6] Sobolev A V, Danyushevsky L V. Petrology and Geoch-emistry of Boninites from the North Termination of the Tonga Trench: Constraints on the generation conditions of primary high-Ca boninite magmas [J]. Journal of Petrology, 1994, 35(5): 1183-1211. doi: 10.1093/petrology/35.5.1183
[7] 卢焕章,范洪瑞,倪培,欧光习,沈昆,张文淮.流体包裹体[M].北京:科学出版社,2004.
[8] Schiano P. Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals [J]. Earth-Science Reviews, 2003, 63(1-2): 121-144. doi: 10.1016/S0012-8252(03)00034-5
[9] Frezzotti M-L.Silicate-melt inclusions in magmatic rocks: Applications to petrology [J]. Lithos, 2001, 55(1-4): 273-299. doi: 10.1016/S0024-4937(00)00048-7
[10] Marshall D J. Cathodoluminescence of Geological Materials [M]. Boston: Unwin Hyman,1988: 146.
[11] Lowenstern J B. Chlorine, fluid immiscibility, and de-gassing in peralkaline magmas from Pantelleria, Italy [J].American Mineralogist,1994, 79(3-4): 353-369.
[12] Zhang Y, Belcher R, Ihinger P D, Wang L, Xu Z, Newman S. New calibration of infrared measurement of dissolved water in rhyolitic glasses [J]. Geochimica et Cosmochimica Acta, 1997, 61(15): 3089-3100. doi: 10.1016/S0016-7037(97)00151-8
[13] Burke E A J. Raman microspectrometry of fluid inclusions [J]. Lithos, 2001, 55(1-4): 139-158. doi: 10.1016/S0024-4937(00)00043-8
[14] 于福生,袁万明,韩松,靳克,黄宇营,何伟,董金泉,贾秀琴,曹杰,王红月.同步辐射X射线荧光微探针技术测定熔融包裹体中的微量元素[J].高能物理与核物理, 2004, 28(6): 675-678. http://www.cnki.com.cn/Article/CJFDTOTAL-KNWL200406021.htm
[15] 周云,汪雄武,唐菊兴,秦志鹏,彭慧娟,李爱国,杨科,王华,李炯,张继超.西藏甲玛铜多金属矿含矿斑岩石英斑晶单个熔融包裹体的成分研究 [J].成都理工大学学报, 2011, 38(1): 92-102. http://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201101015.htm
[16] Harris A C, Kamenetsky V S, White N C, van Achter-bergh E, Ryan C G. Melt inclusions in veins: Linking magmas and porphyry Cu deposits [J]. Science, 2003, 302(5653): 2109-2111. doi: 10.1126/science.1089927
[17] Zajacz Z, Szabó C. Origin of sulfide inclusions in cumulate xenoliths from Nógrád-Gömör volcanic field, Pannonian Basin (North Hungary/South Slovakia) [J]. Chemical Geology, 2003, 194(1-3): 105-117. doi: 10.1016/S0009-2541(02)00273-5
[18] Pettke T, Halter W E, Webster J D, Aigner-Torres M, Heinrich C A. Accurate quantification of melt inclusion chemistry by LA-ICPMS: A comparison with EMP and SIMS and advantages and possible limitations of these methods [J]. Lithos, 2004, 78(4): 333-361. doi: 10.1016/j.lithos.2004.06.011
[19] Sobolev A V, Shimizu N. Ultra-depleted primary melt included in an olivine from the Mid-Atlantic Ridge [J]. Nature, 1993, 363(6425): 151-154. doi: 10.1038/363151a0
[20] Sobolev A V, Chaussidon M. H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: Implications for H2O storage and recycling in the mantle [J]. Earth and Planetary Science Letters, 1996, 137(1-4): 45-55. doi: 10.1016/0012-821X(95)00203-O
[21] Hauri E, Wang J, Dixon J E, King P L, Mandeville C, Newman S. SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR [J]. Chemical Geology, 2002, 183(1-4): 99-114. doi: 10.1016/S0009-2541(01)00375-8
[22] Panina L I, Usoltseva L M. Alkaline-ultrabasic mantle-derived magmas, their sources, and crystallization features: Data of melt inclusion studies [J]. Lithos, 2008, 103(3-4): 431-444. doi: 10.1016/j.lithos.2007.10.009
[23] Taylor R P, Jackson S E, Longerich H P, Webster J D. In situ trace-element analysis of individual silicate melt inclusions by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) [J]. Geochimica et Cosmochimica Acta, 1997, 61(13): 2559-2567. doi: 10.1016/S0016-7037(97)00109-9
[24] Halter W E, Pettke T, Heinrich C A, Rothen-Rutishauser B. Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: Methods of quantification [J]. Chemical Geology, 2002, 183(1-4): 63-86. doi: 10.1016/S0009-2541(01)00372-2
[25] Zajacz Z, Halter W. LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: Quantification, data analysis and mineral/melt partitioning [J]. Geochimica et Cosmochimica Acta, 2007, 71(4): 1021-1040. doi: 10.1016/j.gca.2006.11.001
[26] Halter W E, Pettke T, Heinrich C A. The Origin of Cu/Au ratios in porphyry-type ore deposits [J]. Science, 2002, 296(5574): 1844-1846. doi: 10.1126/science.1070139
[27] Hauri E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions [J]. Chemical Geology, 2002, 183(1-4): 115-141. doi: 10.1016/S0009-2541(01)00374-6
[28] Guillong M, Pettke T. Depth dependent element ratios in fluid inclusion analysis by laser ablation ICP-MS [J]. Journal of Analytical Atomic Spectrometry, 2012, 27(3): 505-508. doi: 10.1039/c2ja10147e
[29] Halter W E, Heinrich C A, Pettke T. Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex Ⅱ: Evidence for magma mixing and magma chamber evolution [J]. Contributions to Mineralogy and Petrology, 2004, 147(4): 397-412. doi: 10.1007/s00410-004-0563-5
[30] Zajacz Z, Halter W E, Pettke T, Guillong M. Deter-mination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing fluid and silicate melt inclusions: Controls on element partitioning [J]. Geochimica et Cosmochimica Acta, 2008, 72(8): 2169-2197. doi: 10.1016/j.gca.2008.01.034
[31] Heinrich C A, Pettke T, Halter W E, Aigner-Torres M, Audétat A, G nther D, Hattendorf B, Bleiner D, Guillong M, Horn I. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry [J]. Geochimica et Cosmochimica Acta, 2003, 67(18): 3473-3497. doi: 10.1016/S0016-7037(03)00084-X
[32] Liu Y, Hu Z, Yuan H, Hu S, Cheng H. Volume-optional and low-memory (VOLM) chamber for laser ablation-ICP-MS: Application to fiber analyses [J]. Journal of Analytical Atomic Spectrometry, 2007, 22(5): 582-585. doi: 10.1039/b701718a
[33] Eggins S M, Kinsley L P J, Shelley J M G. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS [J]. Applied Surface Science, 1998, 127-129: 278-286. doi: 10.1016/S0169-4332(97)00643-0
[34] Russo R E, Mao X, Liu H, Gonzalez J, Mao S S. Laser ablation in analytical chemistry-A review [J]. Talanta, 2002, 57(3): 425-451. doi: 10.1016/S0039-9140(02)00053-X
[35] Jeffries T E, Pearce N J G, Perkins W T, Raith A. Chemical fractionation during infrared and ultraviolet laser ablation inductively coupled plasma mass spectrometry-implications for mineral microanalysis [J]. Analytical Communications, 1996, 33(1): 35-39. doi: 10.1039/AC9963300035
[36] 张春来,刘勇胜,高山,Zoltan Z,胡兆初,高长贵.四合屯玄武岩斑晶中单个熔体包裹体元素组成及其对岩浆演化的指示 [J].地球化学, 2011, 40(2): 109-125. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201102001.htm
[37] Hu Z, Liu Y, Chen L, Zhou L, Li M, Zong K, Zhu L, Gao S. Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution [J]. Journal of Analytical Atomic Spectrometry, 2011,26(2): 425-430. doi: 10.1039/C0JA00145G
[38] Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard [J]. Chemical Geology, 2008, 257(1-2): 34-43. doi: 10.1016/j.chemgeo.2008.08.004
[39] 胡明月,何红蓼,詹秀春,樊兴涛,王广,贾泽荣.基体归一定量技术在激光烧蚀-等离子体质谱法锆石原位多元素分析中的应用 [J].分析化学, 2008,36(7): 947-953. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX200807021.htm
[40] de Hoog J C M, Mason P R D, van Bergen M J. Sulfur and chalcophile elements in subduction zones: constraints from a laser ablation ICP-MS study of melt inclusions from Galunggung Volcano, Indonesia [J].Geochimica et Cosmochimica Acta, 2001, 65(18): 3147-3164. doi: 10.1016/S0016-7037(01)00634-2
[41] Pettke T, Audétat A, Schaltegger U, Heinrich C A. Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Australia): Part Ⅱ: Evolving zircon and thorite trace element chemistry [J]. Chemical Geology, 2005, 220(3-4): 191-213. doi: 10.1016/j.chemgeo.2005.02.017
[42] Elburg M A, Kamenetsky V S, Foden J D, Sobolev A. The origin of medium-K ankaramitic arc magmas from Lombok (Sunda Arc, Indonesia): Mineral and melt inclusion evidence [J]. Chemical Geology, 2007, 240(3-4): 260-279. doi: 10.1016/j.chemgeo.2007.02.015
[43] Guzmics T, Zajacz Z, Kodolányi J, Halter W, Szabó C. LA-ICP-MS study of apatite- and K feldspar-hosted primary carbonatite melt inclusions in clinopyroxenite xenoliths from lamprophyres, Hungary: Implications for significance of carbonatite melts in the Earth′s mantle [J]. Geochimica et Cosmochimica Acta, 2008, 72(7): 1864-1886. doi: 10.1016/j.gca.2008.01.024
[44] Araújo D P, Griffin W L, O′Reilly S Y. Mantle melts, metasomatism and diamond formation: Insights from melt inclusions in xenoliths from Diavik, Slave Craton [J]. Lithos, 2009, 112(Supplement 2): 675-682.
[45] Daví M, De Rosa R, Barca D. A LA-ICP-MS study of minerals in the Rocche Rosse magmatic enclaves: Evidence of a mafic input triggering the latest silicic eruption of Lipari Island (Aeolian Arc, Italy) [J]. Journal of Volcanology and Geothermal Research, 2009, 182(1-2): 45-56. doi: 10.1016/j.jvolgeores.2009.02.001
[46] Zajacz Z, Hanley J J, Heinrich C A, Halter W E, Guillong M. Diffusive reequilibration of quartz-hosted silicate melt and fluid inclusions: Are all metal concentrations unmodified?[J]. Geochimica et Cosmochimica Acta, 2009, 73(10): 3013-3027. doi: 10.1016/j.gca.2009.02.023
[47] Marques A F A, Scott S D, Guillong M. Magmatic degassing of ore-metals at the Menez Gwen: Input from the Azores plume into an active Mid-Atlantic Ridge seafloor hydrothermal system [J]. Earth and Planetary Science Letters, 2011, 310(1-2): 145-160. doi: 10.1016/j.epsl.2011.07.021
[48] Audétat A, Pettke T. The magmatic-hydrothermal evol-ution of two barren granites: A melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA) [J]. Geochimica et Cosmochimica Acta, 2003, 67(1): 97-121. doi: 10.1016/S0016-7037(02)01049-9
[49] Beaudoin Y, Scott S D, Gorton M P, Zajacz Z, Halter W. Pb and other ore metals in modern seafloor tectonic environments: Evidence from melt inclusions [J]. Marine Geology, 2007, 242(4): 271-289. doi: 10.1016/j.margeo.2007.04.004
[50] Marchev P, Georgiev S, Zajacz Z, Manetti P, Raicheva R, von Quadt A, Tommasini S. High-K ankaramitic melt inclusions and lavas in the Upper Cretaceous Eastern Srednogorie continental arc, Bulgaria: Implications for the genesis of arc shoshonites [J]. Lithos, 2009, 113(1-2): 228-245. doi: 10.1016/j.lithos.2009.03.014
[51] Roeder P L, Emslie R F. Olivine-liquid equilibrium [J]. Contributions to Mineralogy and Petrology, 1970, 29(4): 275-289. doi: 10.1007/BF00371276
[52] Grove T L, Baker M B. Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends [J]. Journal of Geophysical Research, 1984, 89(B5): 3253-3274. doi: 10.1029/JB089iB05p03253
[53] Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts [J]. Earth and Planetary Science Letters, 2003, 216(4): 603-617. doi: 10.1016/S0012-821X(03)00538-7
[54] Kogiso T, Hirschmann M M. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions [J]. Contributions to Mineralogy and Petrology, 2001, 142(3): 347-360. doi: 10.1007/s004100100295
[55] Zajacz Z, Halter W. Copper transport by high temper-ature, sulfur-rich magmatic vapor: Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile) [J]. Earth and Planetary Science Letters, 2009, 282(1-4): 115-121. doi: 10.1016/j.epsl.2009.03.006
[56] Dsnyushevsky L V, Sokolov S, Falloon T J. Melt inclusions in olivine phenocrysts: Using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks [J]. Journal of Petrology,2002,43(9): 1651-1671. doi: 10.1093/petrology/43.9.1651
[57] Lassiter J C, Hauri E H, Nikogosian I K, Barsczus H G. Chlorine-potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: Constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust [J]. Earth and Planetary Science Letters, 2002, 202(3-4): 525-540. doi: 10.1016/S0012-821X(02)00826-9
[58] Seo J H, Guillong M, Aerts M, Zajacz Z, Heinrich C A. Microanalysis of S, Cl, and Br in fluid inclusions by LA-ICP-MS [J].Chemical Geology,2011,284(1-2): 35-44.
[59] Ren Z Y, Ingle S, Takahashi E, Hirano N, Hirata T. The chemical structure of the Hawaiian mantle plume [J]. Nature, 2005, 436(7052): 837-840. doi: 10.1038/nature03907
[60] Gunn B M, Coy-Yll R, Watkins N D, Abranson C E, Nougier J. Geochemistry of an oceanite-ankaramite-basalt suite from East Island, Crozet Archipelago [J]. Contributions to Mineralogy and Petrology,1970,28(4): 319-339. doi: 10.1007/BF00388954
[61] Schiano P, Eiler J, Hutcheon I, Stolper E. Primitive CaO-rich, silica-undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas [J]. Geochemistry, Geophysics, Geosystems, 2000, 1(5): 1999GC000032.
[62] Danyushevsky L V, Leslie R A J, Crawford A J, Durance P. Melt inclusions in primitive olivine phenocrysts: The role of localized reaction processes in the origin of anomalous compositions [J]. Journal of Petrology, 2004, 45(12): 2531-2553. doi: 10.1093/petrology/egh080
[63] Reed M J, Candela P A, Piccoli P M. The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800℃ and 200 MPa [J]. Contributions to Mineralogy and Petrology, 2000, 140(2): 251-262. doi: 10.1007/s004100000182
[64] Gao S, Rudnick R L, Xu W-L, Yuan H-L, Liu Y-S, Walker R J, Puchtel I S, Liu X, Huang H, Wang X-R, Yang J. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton [J]. Earth and Planetary Science Letters, 2008, 270(1-2): 41-53. doi: 10.1016/j.epsl.2008.03.008
[65] Burnham C W, Ohmoto H. Late-stage processes of felsic magma [J]. Mining Geology, 1980, 8(Special Issue): 1-11.
[66] Hattori K. High-sulfur magma, a product of fluid dis-charge from underlying mafic magma: Evidence from Mount Pinatubo, Philippines [J].Geology,1993,21(12): 1083-1086. doi: 10.1130/0091-7613(1993)021<1083:HSMAPO>2.3.CO;2
[67] Hattori K, Sato H. Magma evolution recorded in plagio-clase zoning in 1991 Pinatubo eruption products [J]. American Mineralogist, 1996, 81(7): 982-994.
[68] Hattori K H, Keith J D. Contribution of mafic melt to porphyry copper mineralization: Evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA [J]. Mineralium Deposita, 2001, 36(8): 799-806. doi: 10.1007/s001260100209
[69] 孙艺,赖勇,陈静,舒启海.岩浆残余富集和流体叠加对稀土配分的影响: 熔融包裹体原位LA-ICP-MS研究 [J].矿物学报, 2011(Z1): 291-292. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2011S1149.htm
[70] Glaus R, Kaegi R, Krumeich F, Günther D. Pheno-menological studies on structure and elemental composition of nanosecond and femtosecond laser-generated aerosols with implications on laser ablation inductively coupled plasma mass spectrometry [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2010, 65(9-10): 812-822. doi: 10.1016/j.sab.2010.07.005
[71] Paul B, Woodhead J D, Hergt J, Danyushevsky L, Kunihiro T, Nakamura E. Melt inclusion Pb-isotope analysis by LA-MC-ICPMS: Assessment of analytical performance and application to OIB genesis [J]. Chemical Geology, 2011, 289(3-4): 210-223. doi: 10.1016/j.chemgeo.2011.08.005
[72] Martin A J, Gehrels G E, DeCelles P G. The tectonic significance of (U,Th)/Pb ages of monazite inclusions in garnet from the Himalaya of central Nepal [J]. Chemical Geology, 2007, 244(1-2): 1-24. doi: 10.1016/j.chemgeo.2007.05.003
-