Determination of Platinum, Palladium and Gold in Geological Samples by Bomb-inductively Coupled Plasma-Mass Spectrometry with Concentrate and Extraction by Mixed Adsorbent
-
摘要: 贵金属分析应用火试金法分离富集时,试金配料复杂、耗时较长,分析成本相对较高,空白较难控制。本文建立了采用过氧化氢-盐酸湿法分解样品,电感耦合等离子体质谱同时测定地质样品中Pt、Pd、Au的分析方法。在10%的盐酸介质中,以LSC-400巯基树脂和活性炭为混合吸附剂,采用动态吸附方式对样品中的Pt、Pd、Au分离富集,用Lu作内标元素,195Pt、197Au、108Pd为待测同位素消除了非谱线干扰和谱线干扰,三元素的回收率均大于96.4%。方法检出限(3σ):Pt为0.06 ng/g,Pd为0.08 ng/g,Au为0.12 ng/g,优于火试金等其他分离富集方法的检出限。应用于测定国家标准物质,Pt、Pd、Au的测定结果与标准值相符,12次测定的相对标准偏差均小于16.1%,满足区域地球化学调查样品的分析要求。该方法操作简便、成本低廉,提高了分析速度,有效地降低了测试过程的空白值。
-
关键词:
- 地质样品 /
- 铂 /
- 钯 /
- 金 /
- LCS-400巯基树脂 /
- 混合吸附剂 /
- 电感耦合等离子体质谱法
Abstract: Fire assay separation enrichment technology has been applied to precious metals analysis, however, its ingredients are complex, time-consuming, analysis costs are relatively high and blank controls are more difficult. A new method was set up such as the samples were dissolved with H2O2-HCl before Pt, Pd and Au were determined by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In 10% hydrochloric acid solution, LSC-400 mercapto resin and activated carbon were mixed as the adsorbent. Pt,Pd and Au in the sample solution were separated and enriched by using dynamic adsorption. Lu was selected as the internal standard element to eliminate non-spectral interference and spectrum interference along with tracers of 195Pt, 197Au and 108Pd. The recovery rates of each element were more than 96.4%. The detection limits were 0.06 ng/g for Pt, 0.08 ng/g for Pd and 0.12 ng/g for Au. Compared with the detection limits, this established method was better than the fire assaying method and other separation and enrichment methods. The method has been applied to the determination of these elements in National Standard Materials for PGEs and results were in agreement with the certified values. The relative standard deviations (RSD, n=12) was less than 16.1%. The method is simple, low cost and greatly improves the speed of analysis,and effectively reduces the blanks of the chemical processing. -
-
表 1 仪器工作条件
Table 1. Working parameters of the instrument
工作参数 条件 入射功率 1300 W 反射功率 1.0 W 辅助气流速 0.8 L/min 冷却气流速 13.5 L/min 载气流速 0.85 L/min 采样深度 150 mm 采样锥直径 1.1 mm 截取锥直径 0.7 mm 扫描方式 跳峰 扫描次数 50 积分时间 20 s 表 2 不同吸附材料对铂钯金的吸附效果
Table 2. adsorption effect of the different adsorption materials on Pt,Pd,Au
样品 元素 wB/(ng·g-1) 标准值 活性炭
吸附树脂
吸附活性炭-树脂
混合材料吸附GBW 07288 Pt 0.26 0.20 0.21 0.26 Pd 0.26 0.25 0.27 0.27 Au 0.90 0.90 1.00 0.90 GBW 07289 Pt 1.60 1.10 1.35 1.62 Pd 2.30 2.22 2.28 2.35 Au 10.0 10.6 9.80 9.7 GBW 07290 Pt 6.40 5.20 5.89 6.32 Pd 4.60 4.57 4.61 4.64 Au 1.10 0.99 1.20 1.21 标准溶液
ρB/(ng·mL-1)Pt 5.00 3.62 4.38 4.82 Pd 5.00 4.63 4.89 4.93 Au 5.00 5.02 4.97 5.01 表 3 介质及酸度对铂钯金吸附率的影响
Table 3. Effect of medium and acidity on adsorption of Pt,Pd,Au
介质 盐酸的
浓度/%mB/ng 1 3 5 10 20 30 50 盐酸 Pt 98 100 99 101 98 96 95 Pd 95 97 96 97 96 87 76 Au 96 98 101 100 101 100 97 王水 Pt 100 97 98 89 82 70 45 Pd 89 82 79 68 62 53 23 Au 98 97 100 99 101 101 99 表 4 吸附方式对树脂吸附铂钯金的影响
Table 4. Effect of adsorption way of the resin on adsorption of Pt,Pd,Au
吸附
方式振荡时间
t/h加入量
m/ng吸附率/% Pt Pd Au 静态 0.5 100 82 65 89 1 100 90 85 98 2 100 100 96 101 4 100 101 97 100 动态 - 100 100 96 101 表 5 铂族元素和金在ICP-MS测试中单原子和多原子离子的同位素干扰
Table 5. Isotopic interferences by monatomic and polyatomic ions in the determination of PGE and Au by ICP-MS
质量数 元素(同位素浓度/%) 干扰离子 102 Ru (31.6),Pd (0.96) 86SrO 104 Ru (18.6),Pd (11.0) 40Ar64Zn,87SrO 105 Pd (22.2) 88SrOH,89Yo,65Cu 40Ar 106 Pd (27.3),Cd (1.2) 90ZrO,89YOH 108 Pd (26.7),Cd (0.88) 90ZrO,92MoO 110 Pd (11.8),Cd (12.4) 94ZrO,94MoO 190 Os (26.4),Pt (0.01) 173YbO,174HfO 192 Os (41),Pt (0.8) 176YbO,176HfO,176LuO 194 Pt (32.9) 178HfO 195 Pt (33.8) 179HfO,178HfOH 196 Pt (25.3),Hg (0.2) 180HfO,180WO,180TaO 197 Au (100) 181TaO,180HfOH 198 Pt (7.2),Hg (10.0) 表 6 方法回收率试验
Table 6. Recovey test of the method
元素 wB/(ng·g-1) 回收率/% 标准值 加入量 测定值 回收量 Pt 6.4 5.0 11.50 5.10 102.0 10 16.26 9.86 98.6 Pd 4.6 5.0 9.51 4.91 98.2 10 14.24 9.64 96.4 Au 1.1 1.0 2.15 1.05 105.0 2.0 3.14 2.04 102.0 表 7 不同分离富集方式的检出限
Table 7. Detection limit of different separation and enrichment methods
表 8 方法准确度和精密度
Table 8. Accuracy and precision tests of the method
标准物质
编号元素 wB/(ng·g-1) RE/% RSD/% 标准值 平均值 GBW 07288
(土壤)Pt 0.26 0.23 -11.5 13.2 Pd 0.26 0.28 7.69 10.4 Au 0.9 1.1 22.2 16.1 GBW 07294
(土壤)Pt 14.7 15.4 4.76 4.26 Pd 15.2 14.7 -3.29 3.88 Au 1.8 1.6 -11.1 12.3 GBW 07340
(土壤)Pt 0.66 0.62 -6.06 10.1 Pd 0.66 0.64 -3.03 7.32 Au 2.3 2.5 8.70 9.57 GBW 07289
(水系沉积物)Pt 1.6 1.8 12.5 8.92 Pd 2.3 2.1 -8.70 6.43 Au 10 9.8 -2.00 6.24 -
[1] 王学贞,张喜周,李红超.河南省铂族元素矿床类型及成矿机理探讨[J].矿产与地质,2003,17(Z1): 403-407. doi: 10.3969/j.issn.1001-5663.2003.z1.040
[2] 梁有彬,李艺.中国铂族元素矿床类型和地质特征[J].矿产与地质,1997,11(3): 145-151. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD703.000.htm
[3] 林玉南,沈振兴,胡金星.小试金光谱法同时测定地质样品中超痕量铂钯金[J].岩矿测试,1991,10(4): 247-253. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS199104000.htm
[4] Hall G E M, Pelchat J C. Analysis of geological materials for gold, platinum and palladium at low ppb levels by fire assay-ICP mass spectrometry [J].Chemical Geology,1994,115(1-2): 61-72. doi: 10.1016/0009-2541(94)90145-7
[5] 孙中华,张志仁,毛英,王卫国,彭杰.铅试金-光谱法同时测定地质样品中痕量铂族元素的探索[J].贵金属,2004,25(3): 45-48. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ200403011.htm
[6] GBT 17418.6—2010,地球化学样品中贵金属分析方法;第6部分 铂量、钯量和金量的测定;火试金富集-发射光谱法[S].
[7] McDonald I, Hart R J, Tredoux M. Determination of the platinum-group elements in South African kimberlites by nickel sulphide fire-assay and neutron activation analysis [J].Analytica Chimica Acta,1994,289(2): 237-247. doi: 10.1016/0003-2670(94)80108-8
[8] 郭炳北,张存正.小锍试金-无火焰原子吸收法测定地质样品中超痕量金铂铑钯[J].岩矿测试,1994,13(2): 92-96. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS402.001.htm
[9] 高洪涛,屈文俊,杜安道,管希云,孙亚莉,赵砚卿,张永保.低空白镍锍试金预富集中子活化分析测定地球化学标准物质中的铂族元素[J].分析化学,1999,27(5): 566-568. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX199905018.htm
[10] 何红蓼,吕彩芬,周肇茹,史世云,李冰.锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金 分析流程的简化[J].岩矿测试,2001,20(3): 191-194. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200103006.htm
[11] 吕彩芬,何红蓼,周肇茹,支辛辛,李冰,张勤.锍镍试金-等离子体质谱法测定地球化学勘探样品中的铂族元素和金 Ⅱ.分析流程空白的降低[J].岩矿测试,2002,21(1): 7-11. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200201001.htm
[12] 孙亚莉,管希云,杜安道.锍试金富集贵金属元素 Ⅰ.等离子体质谱法测定地质样品中痕量铂族元素[J].岩矿测试,1997,16(1): 12-17. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS701.002.htm
[13] GBT 17418.7—2010,地球化学样品中贵金属分析方法 第7部分;铂族元素量的测定;镍锍试金-电感耦合等离子体质谱法[S].
[14] 林玉南,胡金星,沈振兴,伍铁安.锑试金富集痕量金的研究——地质样品中ng/g级金的测定[J].分析化学,1988,16(1): 1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX198801000.htm
[15] 陈丁文,李斌,董守安,普朝光.铜试金预富集-辉光放电质谱法测定贵金属矿样中痕量铂钯铱金[J].岩矿测试,2008,27(5): 329-332. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS200805002.htm
[16] Diamantatos A,曾扬.用铜捕集金和银的火试金法[J].地质地球化学,1988(12): 57-59.
[17] 张石林,屠惠民.铋试金富集矿石中贵金属的研究[J].冶金工业部地质研究所所报,1981(2): 90-102. http://www.cnki.com.cn/Article/CJFDTOTAL-KCYD198102011.htm
[18] Niskavara H, Kontas E. Reductive coprecipitation as a separation method for the determination of gold, palladium, platinum, rhodium, silver, selenium and tellurium in geological samples by graphite furnace atomic absorption spectrometry [J].Analytica Chimica Acta,1990,231: 273-282. doi: 10.1016/S0003-2670(00)86426-0
[19] 肖宏展,梁树权.微晶萘共沉淀富集-石墨炉原子吸收法测定痕量银金钯[J].岩矿测试,1995,14(1): 41-44. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS501.007.htm
[20] 曾惠芳,戢朝玉.硼氢化钠还原共沉淀-感耦等离子体质谱法测定岩石样品中痕量钌铑钯铱金和铂[J].岩矿测试,1996,15(2): 92-96. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS602.001.htm
[21] 张凯,陈博,赵淑洁,刘淑霞,薛军.铋试剂Ⅱ沉淀分离富集、Ar-O2气氛控制发射光谱测定地质样品中六种贵金属[J].长春科技大学学报,1998,28(1): 105-110.
[22] 漆亮,胡静.等离子体质谱快速测定地质样品中痕量铂族元素和金[J].岩矿测试,1999,18(4): 267-270. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS199904005.htm
[23] 李丹,王锝,李彪.717阴离子交换树脂富集-电感耦合等离子体质谱法测定地质样品中痕量金铂钯[J].冶金分析,2011,31(4): 14-19. http://www.cnki.com.cn/Article/CJFDTOTAL-YJFX201104004.htm
[24] 李蓉,李承元.复硫脲的活性炭富集-发射光谱测定化探样品中金铂钯[J].云南冶金,2006,35(4): 58-61. http://www.cnki.com.cn/Article/CJFDTOTAL-YNYJ200604014.htm
[25] 孙爱琴,唐志中,姚文生,闫红岭,吴建政,刘逸超.树脂分离富集-石墨炉原子吸收测定痕量钯[J].贵金属,2003,24(3): 36-40. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ200303007.htm
[26] 段玉然,李维华,徐羽悟.螯合树脂富集-激光气化等离子体发射光谱测定地质样品中铂族元素和金[J].分析化学,1994,22(4): 366-368. http://www.cnki.com.cn/Article/CJFDTOTAL-FXHX199404010.htm
[27] 刘先国,方金东.活性炭吸附-电感耦合等离子体发射光谱法测定化探样品中痕量金铂钯[J].贵金属,2002,23(1): 33-35. http://www.cnki.com.cn/Article/CJFDTOTAL-GJSZ200201007.htm
[28] 刘玉茹,安莲英,陈明德,戴辰元.巯基棉分离富集光度法测定矿石中微量钯[J].岩矿测试,1988,7(4): 284-287. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198804007.htm
[29] 王继森,刘磊.脂胺泡沫塑料在分析中的应用——AAS测定矿石中微量金、铂、钯的研究[J].岩矿测试,1986,5(4): 285-289. http://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198604008.htm
[30] 董守安.现代贵金属分析[M].北京: 化学工业出版社,2007: 56-66.
[31] 余建民.贵金属萃取化学(第二版)[M].北京: 化学工业出版社,2010: 42-299.
[32] 赵正,漆亮,黄智龙,许成.地质样品中铂族元素的分析测定方法[J].地学前缘,2009,16(1): 181-193. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200901027.htm
-