中国地质学会岩矿测试技术专业委员会、国家地质实验测试中心主办

CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究

吴石头, 王亚平, 詹秀春, AndreasKronz, KlausSimon, 许春雪, 田欢. CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究[J]. 岩矿测试, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007
引用本文: 吴石头, 王亚平, 詹秀春, AndreasKronz, KlausSimon, 许春雪, 田欢. CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究[J]. 岩矿测试, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007
Shi-tou WU, Ya-ping WANG, Xiu-chun ZHAN, Kronz Andreas, Simon Klaus, Chun-xue XU, Huan TIAN. Study on the Elemental Fractionation Effect of CGSG Reference Materials and the Related Within-Unit Homogeneity of Major and Trace Elements[J]. Rock and Mineral Analysis, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007
Citation: Shi-tou WU, Ya-ping WANG, Xiu-chun ZHAN, Kronz Andreas, Simon Klaus, Chun-xue XU, Huan TIAN. Study on the Elemental Fractionation Effect of CGSG Reference Materials and the Related Within-Unit Homogeneity of Major and Trace Elements[J]. Rock and Mineral Analysis, 2016, 35(6): 612-620. doi: 10.15898/j.cnki.11-2131/td.2016.06.007

CGSG系列标准物质元素分馏效应及主量微量元素单元内均匀性探究

详细信息
    作者简介: 吴石头,在读博士研究生,研究方向为地球化学。E-mail:wushitou111@hotmail.com
    通讯作者: 王亚平,博士,研究员,从事标准物质研制和岩矿测试方面研究工作。E-mail:wangyaping@cags.ac.cn
  • 中图分类号: O657.63;P575.1

Study on the Elemental Fractionation Effect of CGSG Reference Materials and the Related Within-Unit Homogeneity of Major and Trace Elements

More Information
  • 探究CGSG系列标准物质(CGSG-1、CGSG-2、CGSG-4、CGSG-5)的元素分馏效应及均匀性问题有助于开展其质量评估和应用推广。本文采用电子探针(EMPA)和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)研究了CGSG标准物质中的元素分馏效应、主量和微量元素单元内均匀性,并报道了主量和微量元素分析数据。结果表明,在50 μm激光束斑下,CGSG系列标准物质的元素分馏效应可忽略不计。EMPA均匀性指数结果显示,CGSG标准物质主量元素的单元内均匀性满足要求;以MPI-DING标准物质为参照,LA-ICP-MS测试CGSG标准物质中的大多数微量元素的单元内均匀性良好。与已报道的数据相比,本文报道的EMPA主量元素数据偏差在2%以内;LA-ICP-MS主量元素数据偏差在5%以内,微量元素数据基本匹配,少数元素由于分析不确定度较大等原因,如Cr、Ge、Cd、As、Tl等与已报道数据偏差较大。总体上,本文报道的分析数据可为CGSG定值数据库提供进一步的补充。
  • 加载中
  • 图 1  NIST610、GSD-1G和CGSG-1、CGSG-2、CGSG-4、CGSG-5的元素分馏指数(Si为内标元素)

    Figure 1. 

    图 2  MPI-DING(a)和CGSG系列标准物质(b)中亲石元素和亲硫亲铁元素元素含量与相对标准偏差关系图

    Figure 2. 

    图 3  CGSG系列标准物质目前已报道数据和本文数据对比图

    Figure 3. 

    表 1  LA-ICP-MS仪器工作参数

    Table 1.  Operation parameters of LA-ICP-MS

    激光剥蚀系统(LA)电感耦合等离子体质谱(ICP-MS)
    工作参数设定条件工作参数设定条件
    激光类型ArF准分子ICP-MSElement 2
    波长193 nmRF功率1500 W
    脉冲时间20 ns屏蔽圈悬浮/接地
    能量密度~3.0 J/cm2冷却气(Ar)流量15.00 L/min
    激光频率5 Hz辅助气(Ar)流量1.00 L/min
    剥蚀池Laurin Technic S-155载气(Ar)流量0.800 L/min
    激光剥蚀直径50 μm停留时间10 ms
    剥蚀气体(He)0.600 L/min检测模式计数与模拟
    剥蚀时间35 s分辨率低(~300)
    下载: 导出CSV

    表 2  StHs6/80-G及CGSG系列标准物质均匀性指数

    Table 2.  Homogeneity index of StHs6/80-G and CGSG reference materials

    元素H临界值StHs6/80-GCGSG-1CGSG-2CGSG-4CGSG-5
    Hμ(H)Hμ(H)Hμ(H)Hμ(H)Hμ(H)
    SiO21.2601.2600.2041.1750.0310.8770.0360.9420.0331.0290.191
    Al2O31.2601.0760.1751.0390.0081.0790.0141.0910.0201.0490.168
    TFeO1.2601.0560.1711.1360.0180.8120.0110.7440.0160.8250.184
    TiO21.2600.9110.1480.8230.0071.2780.0030.7840.0040.9850.133
    CaO1.2601.2140.1970.7820.0160.9260.0130.9560.0101.1080.127
    MgO1.2600.9950.1611.0950.0101.0460.0221.1010.0090.9510.178
    K2O1.2600.8630.1401.0590.0041.1260.0011.0050.0071.0450.172
    Na2O1.2601.0840.1761.1300.0061.1060.0061.0100.0091.0140.183
    下载: 导出CSV

    表 3  CGSG系列标准物质主量微量元素EMPA和LA-ICP-MS分析结果

    Table 3.  Major and trace element concentrations of CGSG reference materials determined with EMPA and LA-ICP-MS

    元素CGSG-1CGSG-2CGSG-4CGSG-5
    EMPA (n=20)LA-ICP-MS EMPA (n=20)LA-ICP-MS EMPA (n=20)LA-ICP-MS EMPA (n=20)LA-ICP-MS
    实验a (n=12)实验b (n=12)实验a (n=12)实验b (n=12)实验a (n=12)实验b (n=12)实验a (n=12)实验b (n=12)
    SiO252.7±0.37--54.4±0.29--63.9±0.33--57.3±0.34--
    Al2O317.3±0.1917.5±0.117.4±0.220.7±0.2121.3±0.221.1±0.414.7±0.1814.9±0.214.9±0.115.5±0.1816.5±0.916.1±0.1
    TFeO7.59±0.207.77±0.157.65±0.116.67±0.146.92±0.16.68±0.084.48±0.1044.75±0.14.57±0.074.3±0.1134.48±0.174.4±0.05
    TiO22.18±0.0552.23±0.032.18±0.020.574±0.0530.606±0.0110.592±0.0060.6±0.0330.628±0.0140.612±0.0060.482±0.0390.531±0.0280.51±0.006
    CaO5.71±0.105.75±0.226.14±0.11.63±0.0671.83±0.192.11±0.066.87±0.136.43±0.236.87±0.14.59±0.134.6±0.464.89±0.06
    MgO3.86±0.1063.99±0.033.97±0.060.817±0.0510.855±0.0110.852±0.0092.08±0.0792.17±0.022.16±0.021.47±0.061.59±0.061.56±0.02
    K2O3.94±0.1073.97±0.063.92±0.067.03±0.157.03±0.086.87±0.122.61±0.0842.49±0.112.57±0.031.92±0.0761.84±0.061.9±0.03
    Na2O3.75±0.1433.6±0.043.61±0.076.68±0.186.46±0.056.35±0.082.81±0.112.69±0.022.66±0.0411.35±0.2111.2±0.111±0.1
    MnO0.123±0.0170.13±0.0020.128±0.0020.133±0.0270.135±0.0020.133±0.0020.105±0.0250.117±0.0020.113±0.0010.091±0.0220.096±0.0020.092±0.001
    P2O51.15±0.1091.23±0.041.2±0.020.094±0.0450.1±0.0080.101±0.0030.264±0.0490.283±0.0160.267±0.0040.194±0.0530.225±0.0280.222±0.004
    Li-23.1±5.223.6±1.7-425±15437±9-1144±231143±21-2048±832001±45
    Be--3.56±0.6-20.2±6.516.1±1.3--2.82±0.58--2.11±0.63
    B-40.7±8.640.8±2.8-660±28685±12-1831±731958±35-4747±6415221±365
    Sc-11.2±1.511.5±0.4-5.08±1.084.94±0.36-10±1.19.89±0.21-8.66±1.178.18±0.43
    V-134±3140±2-193±6200±3-81±2.784.5±1.2-95.6±3.898±1.5
    Cr-45.8±5.742.1±0.9--7.7±1.06-92.8±5.786.4±2.7-36.6±5.635.4±2.2
    Co-25±1.623.6±0.7-6.04±0.555.72±0.17-12.8±0.712±0.3-12.4±1.612±0.5
    Ni-38.1±5.335.7±1.7----27.8±6.927.5±3.1-17.2±6.415.5±2.7
    Cu-18±1.718.2±0.9-19.8±1.720.7±0.8-39.5±2.541±1.1-50.9±3.451.1±1.6
    Zn-170±18180±5-145±20142±4-144±14141±3--86.5±2.6
    Ga-26.7±3.430.9±1.3-37.4±3.241.3±1-17.3±1.718.3±0.6-19.1±219±0.4
    Ge-3.83±4.364.49±0.86--2.45±1.18--1.48±1.19---
    As-5.02±2.184.89±0.31-7.08±3.258±0.47-3.51±1.173.5±0.28--3.18±0.44
    Rb-104±3108±2-124±4129±2-86.1±2.188.3±0.9-38.6±2.238.8±1.5
    Sr-1316±211287±23-1200±131172±21-384±8380±4-826±66788±10
    Y-28.1±1.226.2±0.5-27.8±1.426.6±0.9-23.9±1.223.1±0.3-10.3±0.89.71±0.3
    Zr-534±16516±13-1373±131318±34-257±5250±2-188±14176±4
    Nb-57.6±1.856.2±1.1-79.6±276.6±1-16±0.915.3±0.3-11.2±0.810.5±0.2
    Mo-3.14±0.833.84±0.23--1.24±0.15-2.18±0.622.62±0.13-1.02±0.311.12±0.09
    Cd--0.444±0.083--0.497±0.096--0.463±0.079---
    In-0.219±0.10.185±0.038-0.39±0.1210.358±0.035-0.229±0.080.198±0.065--0.109±0.04
    Sn-7.78±1.237.12±0.34-12±0.910.9±0.6-11.8±1.410.6±0.7-3.32±1.032.88±0.31
    Sb--1.06±0.12-1.69±0.751.64±0.14-1.74±0.661.77±0.13--1.02±0.17
    Cs-0.88±0.1250.915±0.052-1.84±0.241.92±0.08-4.55±0.324.68±0.12-1.27±0.41.32±0.18
    Ba-2158±282122±45-395±7384±7-732±18700±9-953±79877±10
    La-165±4159±3-158±3151±3-40.8±139.1±0.4-31.7±1.629.8±0.6
    Ce-343±5333±6-258±3248±4-74.3±2.272±0.8-56.1±3.452.9±0.6
    Pr-34.9±0.834.7±0.7-22.9±0.822.3±0.4-8±0.457.96±0.12-5.93±0.815.59±0.12
    Nd-131±5131±3-71.7±3.670.1±2.4-29.4±2.228.9±1-21.7±2.321.1±0.6
    Sm-18.5±217.4±0.4-9.99±1.089.32±0.32-5.3±0.715.06±0.26-3.96±0.73.37±0.41
    Eu-4.11±0.453.94±0.16-2.49±0.262.37±0.19-1.24±0.261.16±0.08-1.12±0.291.02±0.08
    Gd-11±1.711.1±0.4-6.5±1.326.33±0.42-4.57±0.824.3±0.27-2.85±0.712.58±0.17
    Tb-1.2±0.171.18±0.07-0.875±0.1420.798±0.05-0.658±0.1050.625±0.048-0.324±0.1120.315±0.027
    Dy-6.06±0.545.88±0.27-4.71±0.64.68±0.23-3.73±0.824.02±0.22-1.73±0.371.84±0.21
    Ho-1±0.1730.923±0.042-0.918±0.1340.832±0.07-0.853±0.1160.775±0.054-0.335±0.0740.32±0.028
    Er-2.38±0.442.2±0.12-2.66±0.472.32±0.13-2.32±0.292.17±0.13-1.07±0.40.805±0.086
    Tm-0.35±0.0620.272±0.023-0.424±0.1040.344±0.033-0.386±0.0880.322±0.026-0.154±0.0560.113±0.016
    Yb-2.02±0.861.69±0.18-2.78±0.552.38±0.26-2.35±0.732.1±0.17-0.99±0.3850.76±0.156
    Lu-0.245±0.0850.246±0.035-0.396±0.090.382±0.032-0.353±0.0870.338±0.023--0.116±0.022
    Hf-11.2±1.211±0.5-34±233.4±1.2-6.56±0.76.5±0.37-4.85±1.044.44±0.17
    Ta-2.52±0.222.57±0.08-2.03±0.182±0.09-1±0.140.944±0.06-0.46±0.110.419±0.033
    W-1.52±0.411.74±0.22-1.37±0.391.55±0.14-2.17±0.472.34±0.19--0.626±0.091
    Pt--0.151±0.06-0.531±0.260.572±0.098--0.465±0.177---
    Tl-0.111±0.0520.108±0.026-0.213±0.0890.177±0.048-0.282±0.1120.246±0.042---
    Pb-29.1±1.228.9±0.7-138±4133±2-47.3±1.544.9±1.3-21.7±9.322±9.5
    Bi-1.21±0.181.21±0.06-1.25±0.181.29±0.11-0.317±0.070.284±0.037--0.241±0.03
    Th-20.6±0.719.7±0.6-74.5±1.770±1.8-12.5±0.411.7±0.3-7.8±0.566.99±0.25
    U-3.29±0.153.56±0.17-13.8±0.714.6±0.4-2.53±0.262.68±0.12-1.71±0.231.77±0.09
    注:主量元素含量的单位以%给出,微量元素含量的单位以μg/g给出,”±”为2倍重复标准偏差,”-”表示低于方法检出限。实验a、b分别代表在屏蔽圈悬浮和接地两个模式下进行的。
    下载: 导出CSV
  • [1]

    Liu Y S,Hu Z C,Li M,et al.Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples[J].Chinese Science Bulletin,2013,58(32):3863-3878. doi: 10.1007/s11434-013-5901-4

    [2]

    Russo R E,Mao X,Gonzalez J J,et al.Laser Ablation in Analytical Chemistry[J].Analytical Chemistry,2013,85(13):6162-6177. doi: 10.1021/ac4005327

    [3]

    Liu Y S,Hu Z C,Gao S,et al.In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology,2008,257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004

    [4]

    Ubide T,McKenna C A,Chew D M,et al.High-resolution LA-ICP-MS Trace Element Mapping of Igneous Minerals:In Search of Magma Histories[J].Chemical Geology,2015,409:157-168. doi: 10.1016/j.chemgeo.2015.05.020

    [5]

    袁继海,詹秀春,范晨子,等.玻璃标样结合硫内标归一定量技术在激光剥蚀-等离子体质谱分析硫化物矿物中的应用[J].分析化学,2012,40(2):201-207. doi: 10.1016/S1872-2040(11)60528-8

    Yuan J H,Zhan X C,Fan C Z,et al.Quantitative Analysis of Sulfide Minerals by Laser Ablation-Inductive Coupled Plasma-Mass Spectrometry Using Glass Reference Materials with Matrix Normalization Plus Sulfur Internal Standardization Calibration[J].Chinese Journal of Analytical Chemistry,2012,40(2):201-207. doi: 10.1016/S1872-2040(11)60528-8

    [6]

    Jackson S E,Pearson N J,Griffin W L,et al.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology[J].Chemical Geology,2004,211(1):47-69.

    [7]

    Yuan H L,Gao S,Dai M N,et al.Simultaneous Determinations of U-Pb Age,Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-collector ICP-MS[J].Chemical Geology,2008,247(1-2):100-118. doi: 10.1016/j.chemgeo.2007.10.003

    [8]

    Liu Y S,Hu Z C,Zong K Q,et al.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J].Chinese Science Bulletin,2010,55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    [9]

    Paton C,Woodhead J D,Hellstrom J C,et al.Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction[J].Geochemistry,Geophysics,Geosystems,2010,11(3):1-36.

    [10]

    Günther D,Audétat A,Frischknecht R,et al.Quantitative Analysis of Major,Minor and Trace Elements in Fluid Inclusions Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,1998,13(4):263-270. doi: 10.1039/A707372K

    [11]

    Wálle M,Heinrich C A.Fluid Inclusions Measurements by Laser Ablation Sector-field ICP-MS[J].Journal of Analytical Atomic Spectrometry,2014,29(6):1052-1057. doi: 10.1039/c4ja00010b

    [12]

    Halter W E,Pettke T,Heinrich C A,et al.Major to Trace Element Analysis of Melt Inclusions by Laser-Ablation ICP-MS:Methods of Quantification[J].Chemical Geology,2002,183(1-4):63-86. doi: 10.1016/S0009-2541(01)00372-2

    [13]

    Garbe-Schonberg D,Müller S.Nano-Particulate Pressed Powder Tablets for LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry,2014,29(6):990-1000. doi: 10.1039/c4ja00007b

    [14]

    吴石头,王亚平,许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1

    Wu S T,Wang Y P,Xu C X.Research Progress on Reference Mterials for in situ Elemental Analysis by Laser Ablation-Inductive Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1

    [15]

    Jochum K P,Enzweiler J.Treatise on Geochemistry (Second Edition):Reference Materials in Geochemical and Environmental Research[M].Oxford:Elsevier Press,2014:43-70.

    [16]

    Jochum K P,Weis U,Stoll B,et al.Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines[J].Geostandards and Geoanalytical Research,2011,35(4):397-429. doi: 10.1111/ggr.2011.35.issue-4

    [17]

    Jochum K P,Stoll B,Herwig K,et al.MPI-DING Reference Glasses for in Situ Microanalysis:New Reference Values for Element Concentrations and Isotope Ratios[J].Geochemistry,Geophysics,Geosystems,2006,7(2):1-44.

    [18]

    Jochum K P,Willbold M,Raczek I,et al.Chemical Characterisation of the USGS Reference Glasses GSA-1G,GSC-1G,GSD-1G,GSE-1G,BCR-2G,BHVO-2G and BIR-1G Using EPMA,ID-TIMS,ID-ICP-MS and LA-ICP-MS[J].Geostandards and Geoanalytical Research,2005,29(3):285-302. doi: 10.1111/ggr.2005.29.issue-3

    [19]

    Hu M Y,Fan X T,Stoll B,et al.Preliminary Charact-erisation of New Reference Materials for Microanalysis:Chinese Geological Standard Glasses CGSG-1,CGSG-2,CGSG-4 and CGSG-5[J].Geostandards and Geoanalytical Research,2011,35(2):235-251. doi: 10.1111/ggr.2011.35.issue-2

    [20]

    Jochum K P,Stoll B,Weis U,et al.Non-Matrix-Matched Calibration for the Multi-element Analysis of Geological and Environmental Samples Using 200 nm Femtosecond LA-ICP-MS:A Comparison with Nanosecond Lasers[J].Geostandards and Geoanalytical Research,2014,38(3):265-292. doi: 10.1111/ggr.2014.38.issue-3

    [21]

    Denton J,Murrell M,Goldstein S,et al.Evaluation of New Geological Reference Materials for Uranium-Series Measurements:Chinese Geological Standard Glasses (CGSG) and Macusanite Obsidian[J].Analytical Chemistry,2013,85(20):9975-9981. doi: 10.1021/ac4017117

    [22]

    Jochum K P,Dingwell D B,Rocholl A,et al.The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for in-situ Microanalysis[J].Geostandards Newsletter,2000,24(1):87-133. doi: 10.1111/ggr.2000.24.issue-1

    [23]

    Klemme S,Prowatke S,Münker C,et al.Synthesis and Preliminary Characterisation of New Silicate,Phosphate and Titanite Reference Glasses[J].Geostandards and Geoanalytical Research,2008,32(1):39-54. doi: 10.1111/j.1751-908X.2008.00873.x

    [24]

    Yang Q C,Jochum K P,Stoll B,et al.BAM-S005 Type A and B:New Silicate Reference Glasses for Microanalysis[J].Geostandards and Geoanalytical Research,2012,36(3):301-313. doi: 10.1111/ggr.2012.36.issue-3

    [25]

    Wilson S A,Ridley W I,Koenig A E.Development of Sulfide Calibration Standards for the Laser Ablation Inductively-Coupled Plasma Mass Spectrometry Technique[J].Journal of Analytical Atomic Spectrometry,2002,17(4):406-409. doi: 10.1039/B108787H

    [26]

    Harries D.Homogeneity Testing of Microanalytical Reference Materials by Electron Probe Microanalysis (EPMA)[J].Chemie der Erde-Geochemistry,2014,74(3):375-384. doi: 10.1016/j.chemer.2014.01.001

    [27]

    Armstrong J T.Citzaf-A Package of Correction Programs for the Quantitative Electron Microbeam X-Ray-Analysis of Thick Polished Materials,Thin-films,and Particles[J].Microbeam Analysis,1995,4(3):177-200.

    [28]

    Hu Z C,Liu Y S,Chen L,et al.Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution[J].Journal of Analytical Atomic Spectrometry,2011,26(2):425-430. doi: 10.1039/C0JA00145G

    [29]

    Li Z,Hu Z,Liu Y,et al.Accurate Determination of Elements in Silicate Glass by Nanosecond and Femtosecond Laser Ablation ICP-MS at High Spatial Resolution[J].Chemical Geology,2015,400:11-23. doi: 10.1016/j.chemgeo.2015.02.004

    [30]

    Fryer B J,Jackson S E,Longerich H P.The Design,Operation and Role of the Laser-Ablation Microprobe Coupled with an Inductively Coupled Plasma-Mass Spectrometer (LAM-ICP-MS) in the Earth Sciences[J].Canadian Mineralogist,1995,33:303-312.

    [31]

    Manka A J G,Masonb P R D.A Critical Assessment of Laser Ablation ICP-MS as an Analytical Tool for Depth Analysis in Silica-based Glass Samples[J].Journal of Analytical Atomic Spectrometry,1999,14(8):1143-1153. doi: 10.1039/a903304a

    [32]

    吴石头,王亚平,许春雪,等.193 nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J].分析化学,2016,44(7):1035-1041. doi: 10.1016/S1872-2040(16)60943-X

    Wu S T,Wang Y P,Xu C X,et al.Elemental Fractionation Studies of 193 nm ArF Excimer Laser Ablation System at High Spatial Resolution Mode[J].Chinese Journal of Analytical Chemistry,2016,44(7):1035-1041. doi: 10.1016/S1872-2040(16)60943-X

    [33]

    van der Veen A M,Linsinger T P,Pauwels J.Uncertainty Calculations in the Certification of Reference Materials.2.Homogeneity Study[J].Accreditation and Quality Assurance,2001,6(1):26-30. doi: 10.1007/s007690000238

    [34]

    Jochum K P,Scholz D,Stoll B,et al.Accurate Trace Element Analysis of Speleothems and Biogenic Calcium Carbonates by LA-ICP-MS[J].Chemical Geology,2012,318:31-44.

    [35]

    Gao S,Liu X M,Yuan H L,et al.Determination of Forty-two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards Newsletter,2002,26(2):181-196. doi: 10.1111/ggr.2002.26.issue-2

    [36]

    袁继海,詹秀春,孙冬阳,等.激光剥蚀电感耦合等离子体质谱分析硅酸盐矿物基体效应的研究[J].分析化学,2011,39(10):1582-1588. doi: 10.1016/S1872-2040(10)60477-X

    Yuan J H,Zhan X C,Sun D Y,et al.Investigation on Matrix Effects in Silicate Minerals by Laser Ablation-Inductive Coupled Plasma-Mass Spectrometry[J].Chinese Journal of Analytical Chemistry,2011,39(10):1582-1588. doi: 10.1016/S1872-2040(10)60477-X

    [37]

    Tong X,Liu Y,Hu Z,et al.Accurate Determination of Sr Isotopic Compositions in Clinopyroxene and Silicate Glasses by LA-MC-ICP-MS[J].Geostandards and Geoanalytical Research,2015,40(1):85-99.

    [38]

    刘勇胜,胡圣虹,柳小明,等.高级变质岩中Zr,Hf,Nb,Ta的ICP-MS准确分析[J].地球科学——中国地质大学学报,2003,28(2):151-156. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302006.htm

    Liu Y S,Hu S H,Liu X M, et al.Accurate Analysis of Zr,Hf,Nb and Ta in High-grand Metamorphic Rocks with ICP-MS[J].Earth Science-Journal of China University of Geosciences,2003,28(2):151-156. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302006.htm

  • 加载中

(3)

(3)

计量
  • 文章访问数:  1689
  • PDF下载数:  31
  • 施引文献:  0
出版历程
收稿日期:  2016-09-02
修回日期:  2016-11-07
录用日期:  2016-11-16

目录