Study on the Elemental Fractionation Effect of CGSG Reference Materials and the Related Within-Unit Homogeneity of Major and Trace Elements
-
摘要: 探究CGSG系列标准物质(CGSG-1、CGSG-2、CGSG-4、CGSG-5)的元素分馏效应及均匀性问题有助于开展其质量评估和应用推广。本文采用电子探针(EMPA)和激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)研究了CGSG标准物质中的元素分馏效应、主量和微量元素单元内均匀性,并报道了主量和微量元素分析数据。结果表明,在50 μm激光束斑下,CGSG系列标准物质的元素分馏效应可忽略不计。EMPA均匀性指数结果显示,CGSG标准物质主量元素的单元内均匀性满足要求;以MPI-DING标准物质为参照,LA-ICP-MS测试CGSG标准物质中的大多数微量元素的单元内均匀性良好。与已报道的数据相比,本文报道的EMPA主量元素数据偏差在2%以内;LA-ICP-MS主量元素数据偏差在5%以内,微量元素数据基本匹配,少数元素由于分析不确定度较大等原因,如Cr、Ge、Cd、As、Tl等与已报道数据偏差较大。总体上,本文报道的分析数据可为CGSG定值数据库提供进一步的补充。
-
关键词:
- CGSG标准物质 /
- 元素分馏 /
- 均匀性检验 /
- 电子探针 /
- 激光剥蚀电感耦合等离子体质谱
Abstract: Studies on elemental fractionation and homogeneity of CGSG reference materials (CGSG-1, CGSG-2, CGSG-4 and CGSG-5) promote quality assessment and application. The elemental fractionation and within-unit homogeneity of CGSG reference materials were evaluated using Electron Microprobe and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Meanwhile, the major and trace element contents were also reported. The results showed that the elemental fractionation of CGSG reference materials was negligible for 50 μm spot size. Electron Microprobe homogeneity index illustrated that the homogeneity of major elements in CGSG reference materials is approvingly acceptable, and most trace elements possess same homogeneity grade with MPI-DING reference materials. Analytical results of major elements by Electron Microprobe and LA-ICP-MS are consistent with published data within 2% and 5% errors, respectively. Analytical results of trace elements by LA-ICP-MS are generally in agreement with the published data. Some elements such as Cr, Ge, Cd, As and Tl show a larger deviation due to the large uncertainties of the analytical technique. In general, the analysis data reported here could supplement the CGSG value database.-
Key words:
- CGSG reference materials /
- elemental fractionation /
- homogeneity test /
- EMPA /
- LA-ICP-MS
-
表 1 LA-ICP-MS仪器工作参数
Table 1. Operation parameters of LA-ICP-MS
激光剥蚀系统(LA) 电感耦合等离子体质谱(ICP-MS) 工作参数 设定条件 工作参数 设定条件 激光类型 ArF准分子 ICP-MS Element 2 波长 193 nm RF功率 1500 W 脉冲时间 20 ns 屏蔽圈 悬浮/接地 能量密度 ~3.0 J/cm2 冷却气(Ar)流量 15.00 L/min 激光频率 5 Hz 辅助气(Ar)流量 1.00 L/min 剥蚀池 Laurin Technic S-155 载气(Ar)流量 0.800 L/min 激光剥蚀直径 50 μm 停留时间 10 ms 剥蚀气体(He) 0.600 L/min 检测模式 计数与模拟 剥蚀时间 35 s 分辨率 低(~300) 表 2 StHs6/80-G及CGSG系列标准物质均匀性指数
Table 2. Homogeneity index of StHs6/80-G and CGSG reference materials
元素 H临界值 StHs6/80-G CGSG-1 CGSG-2 CGSG-4 CGSG-5 H μ(H) H μ(H) H μ(H) H μ(H) H μ(H) SiO2 1.260 1.260 0.204 1.175 0.031 0.877 0.036 0.942 0.033 1.029 0.191 Al2O3 1.260 1.076 0.175 1.039 0.008 1.079 0.014 1.091 0.020 1.049 0.168 TFeO 1.260 1.056 0.171 1.136 0.018 0.812 0.011 0.744 0.016 0.825 0.184 TiO2 1.260 0.911 0.148 0.823 0.007 1.278 0.003 0.784 0.004 0.985 0.133 CaO 1.260 1.214 0.197 0.782 0.016 0.926 0.013 0.956 0.010 1.108 0.127 MgO 1.260 0.995 0.161 1.095 0.010 1.046 0.022 1.101 0.009 0.951 0.178 K2O 1.260 0.863 0.140 1.059 0.004 1.126 0.001 1.005 0.007 1.045 0.172 Na2O 1.260 1.084 0.176 1.130 0.006 1.106 0.006 1.010 0.009 1.014 0.183 表 3 CGSG系列标准物质主量微量元素EMPA和LA-ICP-MS分析结果
Table 3. Major and trace element concentrations of CGSG reference materials determined with EMPA and LA-ICP-MS
元素 CGSG-1 CGSG-2 CGSG-4 CGSG-5 EMPA (n=20) LA-ICP-MS EMPA (n=20) LA-ICP-MS EMPA (n=20) LA-ICP-MS EMPA (n=20) LA-ICP-MS 实验a (n=12) 实验b (n=12) 实验a (n=12) 实验b (n=12) 实验a (n=12) 实验b (n=12) 实验a (n=12) 实验b (n=12) SiO2 52.7±0.37 - - 54.4±0.29 - - 63.9±0.33 - - 57.3±0.34 - - Al2O3 17.3±0.19 17.5±0.1 17.4±0.2 20.7±0.21 21.3±0.2 21.1±0.4 14.7±0.18 14.9±0.2 14.9±0.1 15.5±0.18 16.5±0.9 16.1±0.1 TFeO 7.59±0.20 7.77±0.15 7.65±0.11 6.67±0.14 6.92±0.1 6.68±0.08 4.48±0.104 4.75±0.1 4.57±0.07 4.3±0.113 4.48±0.17 4.4±0.05 TiO2 2.18±0.055 2.23±0.03 2.18±0.02 0.574±0.053 0.606±0.011 0.592±0.006 0.6±0.033 0.628±0.014 0.612±0.006 0.482±0.039 0.531±0.028 0.51±0.006 CaO 5.71±0.10 5.75±0.22 6.14±0.1 1.63±0.067 1.83±0.19 2.11±0.06 6.87±0.13 6.43±0.23 6.87±0.1 4.59±0.13 4.6±0.46 4.89±0.06 MgO 3.86±0.106 3.99±0.03 3.97±0.06 0.817±0.051 0.855±0.011 0.852±0.009 2.08±0.079 2.17±0.02 2.16±0.02 1.47±0.06 1.59±0.06 1.56±0.02 K2O 3.94±0.107 3.97±0.06 3.92±0.06 7.03±0.15 7.03±0.08 6.87±0.12 2.61±0.084 2.49±0.11 2.57±0.03 1.92±0.076 1.84±0.06 1.9±0.03 Na2O 3.75±0.143 3.6±0.04 3.61±0.07 6.68±0.18 6.46±0.05 6.35±0.08 2.81±0.11 2.69±0.02 2.66±0.04 11.35±0.21 11.2±0.1 11±0.1 MnO 0.123±0.017 0.13±0.002 0.128±0.002 0.133±0.027 0.135±0.002 0.133±0.002 0.105±0.025 0.117±0.002 0.113±0.001 0.091±0.022 0.096±0.002 0.092±0.001 P2O5 1.15±0.109 1.23±0.04 1.2±0.02 0.094±0.045 0.1±0.008 0.101±0.003 0.264±0.049 0.283±0.016 0.267±0.004 0.194±0.053 0.225±0.028 0.222±0.004 Li - 23.1±5.2 23.6±1.7 - 425±15 437±9 - 1144±23 1143±21 - 2048±83 2001±45 Be - - 3.56±0.6 - 20.2±6.5 16.1±1.3 - - 2.82±0.58 - - 2.11±0.63 B - 40.7±8.6 40.8±2.8 - 660±28 685±12 - 1831±73 1958±35 - 4747±641 5221±365 Sc - 11.2±1.5 11.5±0.4 - 5.08±1.08 4.94±0.36 - 10±1.1 9.89±0.21 - 8.66±1.17 8.18±0.43 V - 134±3 140±2 - 193±6 200±3 - 81±2.7 84.5±1.2 - 95.6±3.8 98±1.5 Cr - 45.8±5.7 42.1±0.9 - - 7.7±1.06 - 92.8±5.7 86.4±2.7 - 36.6±5.6 35.4±2.2 Co - 25±1.6 23.6±0.7 - 6.04±0.55 5.72±0.17 - 12.8±0.7 12±0.3 - 12.4±1.6 12±0.5 Ni - 38.1±5.3 35.7±1.7 - - - - 27.8±6.9 27.5±3.1 - 17.2±6.4 15.5±2.7 Cu - 18±1.7 18.2±0.9 - 19.8±1.7 20.7±0.8 - 39.5±2.5 41±1.1 - 50.9±3.4 51.1±1.6 Zn - 170±18 180±5 - 145±20 142±4 - 144±14 141±3 - - 86.5±2.6 Ga - 26.7±3.4 30.9±1.3 - 37.4±3.2 41.3±1 - 17.3±1.7 18.3±0.6 - 19.1±2 19±0.4 Ge - 3.83±4.36 4.49±0.86 - - 2.45±1.18 - - 1.48±1.19 - - - As - 5.02±2.18 4.89±0.31 - 7.08±3.25 8±0.47 - 3.51±1.17 3.5±0.28 - - 3.18±0.44 Rb - 104±3 108±2 - 124±4 129±2 - 86.1±2.1 88.3±0.9 - 38.6±2.2 38.8±1.5 Sr - 1316±21 1287±23 - 1200±13 1172±21 - 384±8 380±4 - 826±66 788±10 Y - 28.1±1.2 26.2±0.5 - 27.8±1.4 26.6±0.9 - 23.9±1.2 23.1±0.3 - 10.3±0.8 9.71±0.3 Zr - 534±16 516±13 - 1373±13 1318±34 - 257±5 250±2 - 188±14 176±4 Nb - 57.6±1.8 56.2±1.1 - 79.6±2 76.6±1 - 16±0.9 15.3±0.3 - 11.2±0.8 10.5±0.2 Mo - 3.14±0.83 3.84±0.23 - - 1.24±0.15 - 2.18±0.62 2.62±0.13 - 1.02±0.31 1.12±0.09 Cd - - 0.444±0.083 - - 0.497±0.096 - - 0.463±0.079 - - - In - 0.219±0.1 0.185±0.038 - 0.39±0.121 0.358±0.035 - 0.229±0.08 0.198±0.065 - - 0.109±0.04 Sn - 7.78±1.23 7.12±0.34 - 12±0.9 10.9±0.6 - 11.8±1.4 10.6±0.7 - 3.32±1.03 2.88±0.31 Sb - - 1.06±0.12 - 1.69±0.75 1.64±0.14 - 1.74±0.66 1.77±0.13 - - 1.02±0.17 Cs - 0.88±0.125 0.915±0.052 - 1.84±0.24 1.92±0.08 - 4.55±0.32 4.68±0.12 - 1.27±0.4 1.32±0.18 Ba - 2158±28 2122±45 - 395±7 384±7 - 732±18 700±9 - 953±79 877±10 La - 165±4 159±3 - 158±3 151±3 - 40.8±1 39.1±0.4 - 31.7±1.6 29.8±0.6 Ce - 343±5 333±6 - 258±3 248±4 - 74.3±2.2 72±0.8 - 56.1±3.4 52.9±0.6 Pr - 34.9±0.8 34.7±0.7 - 22.9±0.8 22.3±0.4 - 8±0.45 7.96±0.12 - 5.93±0.81 5.59±0.12 Nd - 131±5 131±3 - 71.7±3.6 70.1±2.4 - 29.4±2.2 28.9±1 - 21.7±2.3 21.1±0.6 Sm - 18.5±2 17.4±0.4 - 9.99±1.08 9.32±0.32 - 5.3±0.71 5.06±0.26 - 3.96±0.7 3.37±0.41 Eu - 4.11±0.45 3.94±0.16 - 2.49±0.26 2.37±0.19 - 1.24±0.26 1.16±0.08 - 1.12±0.29 1.02±0.08 Gd - 11±1.7 11.1±0.4 - 6.5±1.32 6.33±0.42 - 4.57±0.82 4.3±0.27 - 2.85±0.71 2.58±0.17 Tb - 1.2±0.17 1.18±0.07 - 0.875±0.142 0.798±0.05 - 0.658±0.105 0.625±0.048 - 0.324±0.112 0.315±0.027 Dy - 6.06±0.54 5.88±0.27 - 4.71±0.6 4.68±0.23 - 3.73±0.82 4.02±0.22 - 1.73±0.37 1.84±0.21 Ho - 1±0.173 0.923±0.042 - 0.918±0.134 0.832±0.07 - 0.853±0.116 0.775±0.054 - 0.335±0.074 0.32±0.028 Er - 2.38±0.44 2.2±0.12 - 2.66±0.47 2.32±0.13 - 2.32±0.29 2.17±0.13 - 1.07±0.4 0.805±0.086 Tm - 0.35±0.062 0.272±0.023 - 0.424±0.104 0.344±0.033 - 0.386±0.088 0.322±0.026 - 0.154±0.056 0.113±0.016 Yb - 2.02±0.86 1.69±0.18 - 2.78±0.55 2.38±0.26 - 2.35±0.73 2.1±0.17 - 0.99±0.385 0.76±0.156 Lu - 0.245±0.085 0.246±0.035 - 0.396±0.09 0.382±0.032 - 0.353±0.087 0.338±0.023 - - 0.116±0.022 Hf - 11.2±1.2 11±0.5 - 34±2 33.4±1.2 - 6.56±0.7 6.5±0.37 - 4.85±1.04 4.44±0.17 Ta - 2.52±0.22 2.57±0.08 - 2.03±0.18 2±0.09 - 1±0.14 0.944±0.06 - 0.46±0.11 0.419±0.033 W - 1.52±0.41 1.74±0.22 - 1.37±0.39 1.55±0.14 - 2.17±0.47 2.34±0.19 - - 0.626±0.091 Pt - - 0.151±0.06 - 0.531±0.26 0.572±0.098 - - 0.465±0.177 - - - Tl - 0.111±0.052 0.108±0.026 - 0.213±0.089 0.177±0.048 - 0.282±0.112 0.246±0.042 - - - Pb - 29.1±1.2 28.9±0.7 - 138±4 133±2 - 47.3±1.5 44.9±1.3 - 21.7±9.3 22±9.5 Bi - 1.21±0.18 1.21±0.06 - 1.25±0.18 1.29±0.11 - 0.317±0.07 0.284±0.037 - - 0.241±0.03 Th - 20.6±0.7 19.7±0.6 - 74.5±1.7 70±1.8 - 12.5±0.4 11.7±0.3 - 7.8±0.56 6.99±0.25 U - 3.29±0.15 3.56±0.17 - 13.8±0.7 14.6±0.4 - 2.53±0.26 2.68±0.12 - 1.71±0.23 1.77±0.09 注:主量元素含量的单位以%给出,微量元素含量的单位以μg/g给出,”±”为2倍重复标准偏差,”-”表示低于方法检出限。实验a、b分别代表在屏蔽圈悬浮和接地两个模式下进行的。 -
[1] Liu Y S,Hu Z C,Li M,et al.Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples[J].Chinese Science Bulletin,2013,58(32):3863-3878. doi: 10.1007/s11434-013-5901-4
[2] Russo R E,Mao X,Gonzalez J J,et al.Laser Ablation in Analytical Chemistry[J].Analytical Chemistry,2013,85(13):6162-6177. doi: 10.1021/ac4005327
[3] Liu Y S,Hu Z C,Gao S,et al.In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard[J].Chemical Geology,2008,257(1-2):34-43. doi: 10.1016/j.chemgeo.2008.08.004
[4] Ubide T,McKenna C A,Chew D M,et al.High-resolution LA-ICP-MS Trace Element Mapping of Igneous Minerals:In Search of Magma Histories[J].Chemical Geology,2015,409:157-168. doi: 10.1016/j.chemgeo.2015.05.020
[5] 袁继海,詹秀春,范晨子,等.玻璃标样结合硫内标归一定量技术在激光剥蚀-等离子体质谱分析硫化物矿物中的应用[J].分析化学,2012,40(2):201-207. doi: 10.1016/S1872-2040(11)60528-8
Yuan J H,Zhan X C,Fan C Z,et al.Quantitative Analysis of Sulfide Minerals by Laser Ablation-Inductive Coupled Plasma-Mass Spectrometry Using Glass Reference Materials with Matrix Normalization Plus Sulfur Internal Standardization Calibration[J].Chinese Journal of Analytical Chemistry,2012,40(2):201-207. doi: 10.1016/S1872-2040(11)60528-8
[6] Jackson S E,Pearson N J,Griffin W L,et al.The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in situ U-Pb Zircon Geochronology[J].Chemical Geology,2004,211(1):47-69.
[7] Yuan H L,Gao S,Dai M N,et al.Simultaneous Determinations of U-Pb Age,Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-collector ICP-MS[J].Chemical Geology,2008,247(1-2):100-118. doi: 10.1016/j.chemgeo.2007.10.003
[8] Liu Y S,Hu Z C,Zong K Q,et al.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J].Chinese Science Bulletin,2010,55(15):1535-1546. doi: 10.1007/s11434-010-3052-4
[9] Paton C,Woodhead J D,Hellstrom J C,et al.Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction[J].Geochemistry,Geophysics,Geosystems,2010,11(3):1-36.
[10] Günther D,Audétat A,Frischknecht R,et al.Quantitative Analysis of Major,Minor and Trace Elements in Fluid Inclusions Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry[J].Journal of Analytical Atomic Spectrometry,1998,13(4):263-270. doi: 10.1039/A707372K
[11] Wálle M,Heinrich C A.Fluid Inclusions Measurements by Laser Ablation Sector-field ICP-MS[J].Journal of Analytical Atomic Spectrometry,2014,29(6):1052-1057. doi: 10.1039/c4ja00010b
[12] Halter W E,Pettke T,Heinrich C A,et al.Major to Trace Element Analysis of Melt Inclusions by Laser-Ablation ICP-MS:Methods of Quantification[J].Chemical Geology,2002,183(1-4):63-86. doi: 10.1016/S0009-2541(01)00372-2
[13] Garbe-Schonberg D,Müller S.Nano-Particulate Pressed Powder Tablets for LA-ICP-MS[J].Journal of Analytical Atomic Spectrometry,2014,29(6):990-1000. doi: 10.1039/c4ja00007b
[14] 吴石头,王亚平,许春雪.激光剥蚀电感耦合等离子体质谱元素微区分析标准物质研究进展[J].岩矿测试,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1
Wu S T,Wang Y P,Xu C X.Research Progress on Reference Mterials for in situ Elemental Analysis by Laser Ablation-Inductive Coupled Plasma-Mass Spectrometry[J].Rock and Mineral Analysis,2015,34(5):503-511. http://www.ykcs.ac.cn/ykcs/ch/reader/view_abstract.aspx?file_no=20150502&flag=1
[15] Jochum K P,Enzweiler J.Treatise on Geochemistry (Second Edition):Reference Materials in Geochemical and Environmental Research[M].Oxford:Elsevier Press,2014:43-70.
[16] Jochum K P,Weis U,Stoll B,et al.Determination of Reference Values for NIST SRM 610-617 Glasses Following ISO Guidelines[J].Geostandards and Geoanalytical Research,2011,35(4):397-429. doi: 10.1111/ggr.2011.35.issue-4
[17] Jochum K P,Stoll B,Herwig K,et al.MPI-DING Reference Glasses for in Situ Microanalysis:New Reference Values for Element Concentrations and Isotope Ratios[J].Geochemistry,Geophysics,Geosystems,2006,7(2):1-44.
[18] Jochum K P,Willbold M,Raczek I,et al.Chemical Characterisation of the USGS Reference Glasses GSA-1G,GSC-1G,GSD-1G,GSE-1G,BCR-2G,BHVO-2G and BIR-1G Using EPMA,ID-TIMS,ID-ICP-MS and LA-ICP-MS[J].Geostandards and Geoanalytical Research,2005,29(3):285-302. doi: 10.1111/ggr.2005.29.issue-3
[19] Hu M Y,Fan X T,Stoll B,et al.Preliminary Charact-erisation of New Reference Materials for Microanalysis:Chinese Geological Standard Glasses CGSG-1,CGSG-2,CGSG-4 and CGSG-5[J].Geostandards and Geoanalytical Research,2011,35(2):235-251. doi: 10.1111/ggr.2011.35.issue-2
[20] Jochum K P,Stoll B,Weis U,et al.Non-Matrix-Matched Calibration for the Multi-element Analysis of Geological and Environmental Samples Using 200 nm Femtosecond LA-ICP-MS:A Comparison with Nanosecond Lasers[J].Geostandards and Geoanalytical Research,2014,38(3):265-292. doi: 10.1111/ggr.2014.38.issue-3
[21] Denton J,Murrell M,Goldstein S,et al.Evaluation of New Geological Reference Materials for Uranium-Series Measurements:Chinese Geological Standard Glasses (CGSG) and Macusanite Obsidian[J].Analytical Chemistry,2013,85(20):9975-9981. doi: 10.1021/ac4017117
[22] Jochum K P,Dingwell D B,Rocholl A,et al.The Preparation and Preliminary Characterisation of Eight Geological MPI-DING Reference Glasses for in-situ Microanalysis[J].Geostandards Newsletter,2000,24(1):87-133. doi: 10.1111/ggr.2000.24.issue-1
[23] Klemme S,Prowatke S,Münker C,et al.Synthesis and Preliminary Characterisation of New Silicate,Phosphate and Titanite Reference Glasses[J].Geostandards and Geoanalytical Research,2008,32(1):39-54. doi: 10.1111/j.1751-908X.2008.00873.x
[24] Yang Q C,Jochum K P,Stoll B,et al.BAM-S005 Type A and B:New Silicate Reference Glasses for Microanalysis[J].Geostandards and Geoanalytical Research,2012,36(3):301-313. doi: 10.1111/ggr.2012.36.issue-3
[25] Wilson S A,Ridley W I,Koenig A E.Development of Sulfide Calibration Standards for the Laser Ablation Inductively-Coupled Plasma Mass Spectrometry Technique[J].Journal of Analytical Atomic Spectrometry,2002,17(4):406-409. doi: 10.1039/B108787H
[26] Harries D.Homogeneity Testing of Microanalytical Reference Materials by Electron Probe Microanalysis (EPMA)[J].Chemie der Erde-Geochemistry,2014,74(3):375-384. doi: 10.1016/j.chemer.2014.01.001
[27] Armstrong J T.Citzaf-A Package of Correction Programs for the Quantitative Electron Microbeam X-Ray-Analysis of Thick Polished Materials,Thin-films,and Particles[J].Microbeam Analysis,1995,4(3):177-200.
[28] Hu Z C,Liu Y S,Chen L,et al.Contrasting Matrix Induced Elemental Fractionation in NIST SRM and Rock Glasses during Laser Ablation ICP-MS Analysis at High Spatial Resolution[J].Journal of Analytical Atomic Spectrometry,2011,26(2):425-430. doi: 10.1039/C0JA00145G
[29] Li Z,Hu Z,Liu Y,et al.Accurate Determination of Elements in Silicate Glass by Nanosecond and Femtosecond Laser Ablation ICP-MS at High Spatial Resolution[J].Chemical Geology,2015,400:11-23. doi: 10.1016/j.chemgeo.2015.02.004
[30] Fryer B J,Jackson S E,Longerich H P.The Design,Operation and Role of the Laser-Ablation Microprobe Coupled with an Inductively Coupled Plasma-Mass Spectrometer (LAM-ICP-MS) in the Earth Sciences[J].Canadian Mineralogist,1995,33:303-312.
[31] Manka A J G,Masonb P R D.A Critical Assessment of Laser Ablation ICP-MS as an Analytical Tool for Depth Analysis in Silica-based Glass Samples[J].Journal of Analytical Atomic Spectrometry,1999,14(8):1143-1153. doi: 10.1039/a903304a
[32] 吴石头,王亚平,许春雪,等.193 nm ArF准分子激光剥蚀系统高空间分辨率下元素分馏研究[J].分析化学,2016,44(7):1035-1041. doi: 10.1016/S1872-2040(16)60943-X
Wu S T,Wang Y P,Xu C X,et al.Elemental Fractionation Studies of 193 nm ArF Excimer Laser Ablation System at High Spatial Resolution Mode[J].Chinese Journal of Analytical Chemistry,2016,44(7):1035-1041. doi: 10.1016/S1872-2040(16)60943-X
[33] van der Veen A M,Linsinger T P,Pauwels J.Uncertainty Calculations in the Certification of Reference Materials.2.Homogeneity Study[J].Accreditation and Quality Assurance,2001,6(1):26-30. doi: 10.1007/s007690000238
[34] Jochum K P,Scholz D,Stoll B,et al.Accurate Trace Element Analysis of Speleothems and Biogenic Calcium Carbonates by LA-ICP-MS[J].Chemical Geology,2012,318:31-44.
[35] Gao S,Liu X M,Yuan H L,et al.Determination of Forty-two Major and Trace Elements in USGS and NIST SRM Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J].Geostandards Newsletter,2002,26(2):181-196. doi: 10.1111/ggr.2002.26.issue-2
[36] 袁继海,詹秀春,孙冬阳,等.激光剥蚀电感耦合等离子体质谱分析硅酸盐矿物基体效应的研究[J].分析化学,2011,39(10):1582-1588. doi: 10.1016/S1872-2040(10)60477-X
Yuan J H,Zhan X C,Sun D Y,et al.Investigation on Matrix Effects in Silicate Minerals by Laser Ablation-Inductive Coupled Plasma-Mass Spectrometry[J].Chinese Journal of Analytical Chemistry,2011,39(10):1582-1588. doi: 10.1016/S1872-2040(10)60477-X
[37] Tong X,Liu Y,Hu Z,et al.Accurate Determination of Sr Isotopic Compositions in Clinopyroxene and Silicate Glasses by LA-MC-ICP-MS[J].Geostandards and Geoanalytical Research,2015,40(1):85-99.
[38] 刘勇胜,胡圣虹,柳小明,等.高级变质岩中Zr,Hf,Nb,Ta的ICP-MS准确分析[J].地球科学——中国地质大学学报,2003,28(2):151-156. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302006.htm
Liu Y S,Hu S H,Liu X M, et al.Accurate Analysis of Zr,Hf,Nb and Ta in High-grand Metamorphic Rocks with ICP-MS[J].Earth Science-Journal of China University of Geosciences,2003,28(2):151-156. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200302006.htm