第 56 卷 第 2 期 2023 年 (总 228 期) 西北地质

NORTHWESTERN GEOLOGY

Vol. 56 No. 2 2023(Sum228)

DOI: 10.12401/j.nwg.2022030

河南省南召县老庄透辉石-透闪石矿床地质特征 及其成因分析

姬果^{1,2},张筝³,李宁⁴,钟江文³,姬清海³,桂新星^{1,2},武慧智³

(1. 河南省地质科学研究所,河南郑州 450001;2. 河南省金属矿产成矿地质过程与资源利用重点实验室,河南郑州 450001;
 3. 河南省地质调查院,河南郑州 450001;4. 河南省航空物探遥感中心,河南郑州 450001)

摘 要:南召县老庄透辉石-透闪石矿是河南省唯一的透辉石-透闪石矿床。矿区位于区域性栾 川-明港大断裂的北侧,大地构造位置处于华北陆块南缘。矿区有2个透辉石-透闪石矿体,呈似 层状赋存于青白口系栾川群南泥湖组上段中,矿体形态简单。围岩蚀变为透闪石化和透辉石化, 次为钾长石化和金云母化等。矿石自然类型主要为金云母透辉石透闪石砂卡岩型、金云母透闪 石透辉石砂卡岩型和金云母透闪石砂卡岩型。矿物成分主要为透闪石和透辉石,次为钾长石和 金云母,方解石少量。矿石化学成分主要为SiO₂、CaO、MgO和Al₂O₃,其次是FeO、K₂O、Na₂O和 CO₂等。透闪石+透辉石(Tl+Di)品位较高、较稳定,矿床平均品位(Tl+Di)为68.25%。透辉石-透 闪石原矿代替硅灰石用于生产釉面砖。初步试验表明,制品性能稳定,节能效果明显。矿床属 砂卡岩型矿床,成矿时代为早白垩世。矿床形成受早白垩世竹园石英正长斑岩体与南泥湖组上 段中的白云石大理岩及层间破碎带的多重控制。砂卡岩期为主成矿期,干砂卡岩阶段形成透辉 石,湿砂卡岩阶段形成透闪石,氧化阶段形成钾长石、金云母和方解石等。

关键词:透辉石-透闪石;矿床地质;成因;南召

中图分类号: P619.23+9;P611.1 文献标志码: A

文章编号:1009-6248(2023)02-0203-10

Geological Characteristics and Genetic Analysis of Diopside–Tremolite Deposit in Laozhuang, Nanzhao County, Henan Province

JI Guo^{1,2}, ZHANG Zheng³, LI Ning⁴, ZHONG Jiangwen³, JI Qinghai³, GUI Xinxing^{1,2}, WU Huizhi³

Henan Institute of Geological Sciences, Zhengzhou 450001, Henan, China;
 Henan Provincial Key Laboratory of Metallogenic Geological Processes and Resource Utilization of Metal Minerals, Zhengzhou 450001, Henan, China;
 Henan Institute of Geological Survey, Zhengzhou 450001, Henan, China;
 Aero Geophysical Survey and Remote Sensing Center of Henan Province, Zhengzhou 450001, Henan, China;

Abstract: Laozhuang diopside-tremolite deposit in Nanzhao county is the only diopside-tremolite deposit in Henan Province. The mining area is located in the north of Luanchuan-Minggang regional fault, and the tectonic position is in the south margin of North China block. There are two diopside-tremolit eorebodies in the mining area, which occur in the upper part of Nannihu formation of Luanchuan group of Qingbaikou system in stratoid form. The orebody morphology is simple. The wall rock alteration are mainly tremolite and diopside, fol-

基金项目:中国地质调查局项目"河南省矿产资源调查成果综合集成与服务产品开发(中国矿产地质志•河南卷)" (DD20190379),河南省2018年度省财政地质勘查项目"河南省非金属矿勘查成果集成(调查)"联合资助。

收稿日期: 2021-06-26; 修回日期: 2021-12-07; 责任编辑: 姜寒冰

作者简介: 姬果(1988-), 女, 工程师, 从事矿产勘查、水工环勘查、规划及综合研究。E-mail: dikesuojiguo@163.com。

2023 年

lowed by potassic feldspar and phlogopitization. The natural types of ores are mainly phlogopite diopside skarn, phlogopite diopside skarn and phlogopite diopsides karn. The mineral composition is mainly tremolite and diopside, followed by potash feldspar and phlogopite, a small amount of calcite. The chemical composition of the ore are SiO₂, CaO, MgO and Al₂O₃, followed by FeO, K₂O, Na₂O and CO₂. Ore grade: tremolite + diopside (Tl + Di) is relatively high and stable, and the average ore grade (Tl + Di) is 68.25%. The preliminary test of diopside raw ore replacing wollastonite in the production of glazed tile shows that the product has stable performance and obvious energy saving effect. The deposit belongs to skarn type and the metallogenic epoch is early Cretaceous. The formation of the deposit is controlled by early Cretaceous Zhuyuan quartz syenite porphyry, dolomite marble in the upper Nannihu formation and interlayer fracture zone. Skarn stage is the main metallogenic stage. Diopside is formed in dry skarn stage, tremolite is formed in wet skarn stage, and potash feldspar, phlogopite and calcite are formed in oxidation stage.

Keywords: diopside-tremolite; geological characteristics of the deposit; cause of formation; Nanzhao

透闪石和透辉石同属具链状结构的硅酸盐矿物 (赵珊茸等, 2004)。透闪石属单斜晶系, 化学式 Ca₂Mg₅[Si₄O₁₁]₂(OH)₂, SiO₂含量为 58.8%, MgO含量 为 24.6%, CaO 含量为 13.8%, H₂O 含量为 2.8%, 有 Te、 Mn 及 Al 等类质同象混入物。透闪石呈白色、浅灰 色、浅绿色,单晶为长柱状或针状,集合体呈放射状、 纤维状或隐晶质致密块状,具玻璃-丝绢光泽,密度 为 2.9~3.0 g/cm³, 硬度为 5.5~6。透辉石属单斜晶系, 化学式 CaMg[Si₂O₆], SiO₂ 含量为 55.6%, MgO 含量为 18.5%, CaO 含量为 25.9%, 有 Te、Mn 类质同象混入 物,常含Al₂O₃、Cr₂O₃及V₂O₃等。透辉石呈浅绿-浅 灰色,晶体为柱状,横切面近四边形,集合体呈粒状、 棒状或放射状,玻璃光泽,密度为3.3~3.4 g/cm3,硬 度为 5~6(王珍等, 2006; 邵厥年等, 2012)。透闪石、 透辉石与硅灰石性质相似,作陶瓷原料都具有易干 燥、熔点低、烧成温度低、吸水率低、收缩系数小、 热膨胀率低并呈线性膨胀、一次抹釉速烧成型等优 点,是低成本的陶瓷原料(汪仁勇等,1989;黄慧宁等, 1993;陈国安, 1998;张国强等, 2005;杨素文等, 2015)。 在陶瓷原料中,透闪石、透辉石和硅灰石被称为"新 三石"。

随着陶瓷工业的快速发展,燃料消耗越来越大, 环境污染日益严重。因此,在陶瓷工业,采用"新三 石"低温快烧生产工艺,无疑对实现低碳节能减排增 效具有重要意义。加强"新三石"矿的地质勘查找 矿和开发利用势在必行。南召县老庄透辉石-透闪石 矿是河南省唯一的透辉石-透闪石矿床,透闪石+透辉 石(TI+Di)资源储量为434×10⁴t,属于大型矿床。因此, 笔者对南召县老庄透辉石-透闪石矿床地质特征和成 因等进行研究,以期发现更多的类似矿床。

1 地质背景

1.1 区域地质

矿区位于栾川-明港区域性大断裂的北侧,大地 构造位置属华北陆块南缘(朱嘉伟等,2008;闫全人等, 2009;姜寒冰等,2014;王伟等,2014;黄杰等,2020)。 栾川-明港区域性大断裂为华北陆块与秦岭造山带的 分界断裂,是秦岭造山带与华北板块汇聚过程中发育 在弧后盆地与华北板块南缘的汇聚-拼合带,对区域 构造、岩浆作用及钼、钨、铁、金、银、铅、锌、萤石、 滑石、透辉石等矿产的形成具有重要的控制作用。

区域基岩地层为长城系熊耳群、汝阳群和青白口 系栾川群。熊耳群(ChX)为一套陆相中(偏)基性夹酸 性火山岩组合,角度不整合于新太古界太华岩群 (Ar₃Th.)之上(梁涛等,2014;刘传权等,2015)。岩性 为安山岩、杏仁状安山岩、英安岩等,夹凝灰岩、火山 角砾岩等,在栾川–明港区域性大断裂的北侧构造片 理明显;汝阳群(ChR)为一套海相碎屑岩–碳酸岩组合, 不整合于熊耳群之上。岩性为石英砂岩、长石石英砂 岩和页岩,夹白云岩,底部有砾岩;栾川群(QbL)为一 套浅变质碎屑岩–碳酸岩组合,岩性为变石英砂岩、千 枚岩、片岩、大理岩和白云石大理岩等,以含炭质和 石煤为特征,与熊耳群、汝阳群呈断层接触。

区域上北西西向和北北东向断裂发育,次为北西 向和北东向断裂。北西西向断裂具有先压后张特征, 北北东向断裂具先张后压特征,北西向和北东向断裂 为共轭剪切断裂,是金、铅锌、银、萤石和透辉石等热 液充填交代型矿床的主要容矿断层。

区域上早白垩世花岗岩浆活动强烈,广泛侵入于 熊耳群、汝阳群和栾川群之中,岩性为二长花岗岩、 花岗岩、石英正长斑岩等,是钼、钨、金、铅锌、银、萤 石等岩浆热液型矿床的主要成矿母岩。

区域矿产主要有铁、钼、铅、锌、银、金、滑石、 透辉石,次有锰、钾长石、大理石等,属华北陆块南缘 Au-Mo-W-Pb-Zn-Ag-Fe-萤石-滑石-硫铁矿成矿带 (III级成矿区带)中段(陈毓川等,2015)。其中,矿区 南部外围的南召杨树沟铁矿和东部外围的方城县青 山透辉石矿(姬果等,2018)、银子沟透辉石矿(台官涛, 2019)均属砂卡岩型矿床,其成矿时代为早白垩世。

1.2 矿区地质

矿区除第四系外,基岩地层为长城系熊耳群和青 白口系栾川群(图1)。

熊耳群(ChX):分布于矿区东北部及外围,为一套 中基性火山岩系(河南省地质矿产局,1989),与栾川 群南泥湖组呈断层接触,与矿区北部外围早白垩世钾 长花岗岩呈侵入接触。主要由黑云角闪斜长片岩、黑 云斜长片岩、变斑状黑云绿泥斜长片岩、变安山岩组 成,局部见残留的杏仁体。受区域动力变质作用影响, 以片理化和大量黑云母、绿泥石出现为特征。

栾川群(QbL):分布于矿区中南部。区域上分三 川组、南泥湖组、煤窑沟组、大红口组和鱼库组(席文 祥,1997)。矿区内出露南泥湖组和煤窑沟组,二者之 间为整合接触。

南泥湖组(Qbn):分布于矿区中部,为透辉石-透 闪石矿的主要控矿地层。区域上分3段:下段(Qbn¹) 为石英岩;中段(Qbn²)为二云片岩、炭质绢云片岩及 钙质片岩,夹石英岩和大理岩;上段(Qbn³)为白云石 大理岩及云母白云石大理岩等。矿区内仅有上段,受 岩浆热液作用具砂卡岩化特征,依据岩石类型、矿物 成分等特点,自下而上分9个岩性层:

第1层(Qbn³⁻¹):为条带状透闪石化大理岩,一般 厚度为60~100 m,最厚达300 m。局部层间构造裂隙 中有磁铁矿细脉充填。

图1 南召县老庄矿区地质图

Fig. 1 Geological map of Laozhuang mining area in Nanzhao County, Henan Province

第2层(Qbn³⁻²):为中薄层状白云石大理岩,厚度为30~50m。

第3层(Qbn³⁻³):为中厚层状黑云母白云石大理岩, 呈透镜状产出,厚度为30m。

第4层(Qbn³⁻⁴):为中厚层状白云石大理岩,为I 号矿体底板,厚度为100~200 m。

第5层(Qbn³⁻⁵):为I号矿体。由金云母透辉石透 闪石砂卡岩、金云母透闪石透辉石砂卡岩及少量钾长 石透辉石砂卡岩等组成,厚度为16~33 m。

第6层(Qbn³⁶):为透辉石大理岩,为Ⅰ、Ⅱ号矿 体之间的夹层(石),厚度为10m。

第7层(Qbn³⁻⁷):为II号矿体。由金云母透闪石砂 卡岩、金云母透闪石透辉石砂卡岩及少量钾长石透辉 石砂卡岩组成,厚度为7~23 m。

第8层(Qbn³⁻⁸):由透闪石化金云母片岩、透闪石 化黑云母片岩、二云石英片岩等组成。

第9层(Qbn³⁻⁹):为砂卡岩化黑云石英片岩,局 部夹透闪石化大理岩,沿走向延伸稳定,厚度为 15~60 m。

煤窑沟组(Qbm):分布于矿区南部。区域上分 3段:下段(Qbm¹)为变石英砂岩、片岩、大理岩互层; 中段(Qbm²)为白云石大理岩;上段(Qbm³)为石英岩、 云母片岩、白云石大理岩夹石煤层。矿区内仅有下段 分布,并被早白垩世石英正长石斑岩侵入,仅西南部 出露较为齐全。根据岩性、结构构造、矿物成分和变 质变形特点,自下而上分为6个岩性层:

第1层(Qbm¹⁻¹):为灰白色厚层状石英岩,厚度为 25~60 m,可作为与南泥胡组的分界标志。

第2层(Qbm¹⁻²):为二云石英片岩,厚度为25m;

第3层(Qbm¹⁻³):为薄-中厚层状石英岩,厚度为60~80 m;

第4层(Qbm¹⁻⁴):为砂卡岩化二云石英片岩, 厚度大于 80 m;

第5层(Qbm¹⁻⁵):为薄-厚层状石英岩,厚度为100~130 m;

第6层(Qbm¹⁻⁶):为砂卡岩化二云石英片岩,夹石 英岩透镜体。厚度大于250m。

矿区为一单斜构造层,地层走向北西西,倾向为 210°±,倾角为60°~85°,局部近直立或倾向北北东。

F₁逆断层属区域性花地坪-大块地逆断层的一部 分,从矿区北部通过,为熊耳群与栾川群的分界线。 该断层矿区内长度为2950m,走向为105°~130°,倾 向南西,倾角为75°~81°,局部近于直立。破碎带宽 度为30~100 m,由一系列小断面组成。下盘为熊耳 群,上盘为栾川群南泥湖组。距Ⅰ、Ⅱ号矿体约为 200~500 m,对矿体无破坏作用。

矿区中南部有早白垩世竹园石英正长斑岩体 (ξοπJ₃),侵入于煤窑沟组和南泥湖组。岩体呈不规则 的长椭圆状,北西西向长度为3000m,南南西-北北东 向宽度为 200~650 m, 面积为 1.35 km²。岩性单一, 为 石英正长斑岩。呈褐红色-浅肉红色,具似斑状结构, 基质具半自形晶花岗结构,块状构造。似斑晶为钾长 石, 粒径为1~5mm。基质包括钾长石(70%~80%)、 石英(10%~15%)、黑云母(4%~5%)和白云母(1%)。 副矿物为磁铁矿、磷灰石、榍石、锆石等。化学成分: SiO2 含量为 68.94%, Al2O3 含量为 14.80%, TiO2 含量 为0.82%, CaO 含量为 0.41%, MgO 含量为 0.87%, Fe₂O₃含量为 4.61%, FeO 含量为 0.30%, K₂O 含量为 3.50%, Na₂O 含量为 4.15%, Mn 含量为 0.09%, P₂O₅ 含 量为 0.12%。里特慢指数(δ)为 2.20(<3.3), 铝饱和指 数 A/CNK 为 1.84(>1.1), 表明该岩石属钙碱性强过 铝质岩石,可能在加厚陆壳或伸展环境下形成(桑龙 康等,2014)。

2 矿床特征

2.1 矿体特征

透辉石、透闪石矿产于早白垩世竹园石英正长斑 岩体与栾川群的外接触带(砂卡岩带)中,在南泥湖组 白云石大理岩的层间破碎带中最为发育,顺层矿化特 征明显。

透辉石-透闪石矿带:出露于矿区中部,呈北西 西-南东东向展布,两端延出矿区。由南泥湖组上段 Qbn³⁻⁵、Qbn³⁻⁶、Qbn³⁻⁷3个岩性层组成。下部为金云母 透辉石透闪石砂卡岩、金云母透闪石透辉石砂卡岩, 中部为透辉石大理岩、上部为金云母透闪石砂卡岩和 金云母透辉石透闪石砂卡岩等。矿带全长大于 5 750 m,厚度为 60~90 m,产状与地层一致,圈出了 I、II 号 2 个矿体(图 2)。

I号矿体:呈似层状产于南泥胡组上段第5岩性 层中(Qbn³⁻⁵)。走向为290°~305°,倾向为200°~215°, 倾角为63°~85°,局部近于直立或倾向北北东。出露 长度大于3000m,其中工程控制长度为2000m,厚度 为18.27~29.76m,平均厚度为23.41m,厚度变化系

图 2 南召县老庄矿区第 6 勘探线剖面图

Fig. 2 Profile of the 6th exploration line in Laozhuang mining area, Nanzhao County, Henan Province

数为18.48%。矿体具中间厚,两边薄的特点。矿体结 构简单,局部(TC2-2)见夹石一层,厚度为2.25m。矿 石自然类型为金云母透辉石透闪石砂卡岩型、金云母 透闪石透辉石砂卡岩型,底部有少量钾长石透辉石砂 卡岩型。底板为白云石大理岩,顶板为透辉石大理岩。 矿体平均品位:透闪石+透辉石(Tl+Di)为68.66%。

II 号矿体:呈似层状赋存于南泥胡组上段第7岩 性层中(Qbn³⁻⁷),与I号矿体产状一致。出露长度大于 3000 m,控制长度为2000 m,厚度为6.28~22.05 m, 平均厚度为16.21 m,厚度变化系数为33.14%。矿体 具中间薄、两端厚的变化特点。矿体结构简单,无夹 层。矿石自然类型主要为金云母透闪石砂卡岩型、金 云母透辉石透闪石砂卡岩型。矿体底板为透辉石大 理岩,顶板为透闪石化金云母片岩、金云母片岩、二 云母片岩等。矿体平均品位:透闪石+透辉石(Tl+Di) 为 67.66%。

2.2 矿石特征

2.2.1 矿石自然类型

根据矿石结构、构造、矿物成分等特征,矿石自 然类型分为5种(表1):金云母透辉石透闪石砂卡岩 型、金云母透闪石透辉石砂卡岩型和金云母透闪石砂 卡岩型为主要类型,钾长石透辉石砂卡岩型和透闪石

表1 南召县老庄矿区矿石特征表

Tah 1	Ore characteristics of	Laozhuang	mining area	in Nanzhao	County	Henan Province
1 a. 1	Ole characteristics of	Laozhuang	mining area	minanzinao	county,	richan ricvince

矿石类型	分布	颜色	结构构造	矿物成分	备注
金云母透辉石透 闪石砂卡岩型	矿体底部	灰白-灰绿色	鳞片粒柱状变晶结构、 斑状变晶结构, 片状、条带状构造	 変斑晶:透辉石(2%~5%)、钾长石 (≤20%)、透闪石极少。基质:透闪石 (30%~80%)、透辉石(0%~30%)、金 云母(10%~20%)、钾长石(10%~ 30%)、方解石(<3%)、磁铁矿等微量 	主要类型
金云母透闪石透 辉石砂卡岩型	矿体中部	灰白色	鳞片粒柱状变晶结构, 片状、条带状构造	透辉石(30%~70%)、透闪石 (10%~25%)、金云母(10%~25%)、 钾长石(10%~30%)、方解石(<3%)、 磁铁矿等微量	主要类型
金云母透闪石矽 卡岩型	矿体顶部	暗绿色	鳞片柱粒状变晶结构, 片状构造、块状构造	透闪石(40%~80%)、金云母 (15%~55%)、方解石(3%~20%)、 磁铁矿等微量	主要类型
钾长石透辉石砂 卡岩型	矿体顶部、 底部	灰白-浅绿色	粒状变晶结构, 块状构造	透辉石(30%~70%)、钾长石 (6%~40%)、方解石(10%~30%)、 磁铁矿等微量	次要类型
透闪石矽卡岩型	矿体顶部	浅绿色	粒柱状变晶结构, 束状、 纤维状、放射状、片状构造	透闪石(50%~85%)、钾长石 (5%~40%)、透辉石(≤5%)、方解石 (5%~25%)、全元母、磁鉄矿等微量	次要类型

208

透闪石(Tl): 无色-浅绿色, 个别为暗绿色。单晶 呈长柱状、针状, 集合体为放射状、纤维状和束状。 横切面呈菱形, 两组解理夹角分别为 124°与 56°, 斜消 光, 消光角为 16°~19°, 二轴晶负光性近 90°, 粒径为 0.2~1 mm, 个别达 2~10 mm, 形成变斑晶。可见透辉 石包裹体。

透辉石(Di): 无色-灰白色。呈他形粒状, 个别为 半自形晶短柱状, 横切面近四边形, 两组解理夹角近 90°, 斜消光, 消光角为 40°。粒径为 0.1~0.7 mm, 个别 达 5~10 mm, 形成变斑晶。

钾长石(Kp): 灰白色-浅肉红色。他形粒状。为 微斜长石、条纹长石和正长石。微斜长石具格子双晶。 粒径为 0.2~0.5 mm, 个别达 2~5 mm。含有透辉石、 透闪石包裹体。

金云母(Phl):金黄色。呈鳞片状,片径为 0.2~ 0.8 mm,个别达 3~4 mm。部分褪色现象明显,具蛭石 化。具多色性:Ng 金黄色, Np 无色。

方解石(Cal):局部见1~5mm宽的方解石细脉, 穿插于矿石和透闪石、透辉石等矿物的裂隙中。方解 石自形晶程度较高,半自形-自形晶。

石英(Qz):偶尔可见。无色-灰白色。他形粒状, 粒径为 0.1~0.2 mm。

磁铁矿(Mt):偶尔可见。铁黑色。半自形晶粒状,

粒径为 0.05~0.1 mm, 呈星点状分布, 地表氧化为褐铁矿。

2.2.2 化学成分

矿石化学成分主要为 SiO₂、CaO、MgO 和 Al₂O₃, 其次为 TFeO(FeO+Fe,O₃)和 K₂O, Na₂O 和 CO₂等少量 至微量(表 2)。SiO2含量为 46%~53%, 平均为 50.26%; CaO含量为 12%~17%, 平均为 14.23%; MgO含量为 10%~16%, 平均为12.22%; Al₂O₃ 含量为9.5%~11.5%, 平均为 10.53%。SiO2、CaO、MgO 和 Al2O3 总和一般 在 87%±。TFeO 含量为 4%~6%, 平均为 4.71%; K₂O 含量为 2.5%~4%, 平均为 3.01%; Na₂O 含量为 0.3%~ 0.7%, 平均为 0.47%; CO2含量为 0.5%~3%, 平均为 1.23%。SiO2赋存矿物为透闪石和透辉石,其次为钾 长石和金云母; CaO 赋存矿物为透闪石和透辉石, 少 量赋存于方解石中; MgO 赋存矿物为透闪石和透辉石, 少量赋存于金云母中。根据单矿物电子探针测试结 果可知: FeO、MnO、TiO2和少量 Al2O3 以类质同象形 式代替 CaO、MgO 赋存于透闪石、透辉石中,部分 FeO 在金云母中替代 MgO、Na₂O 主要以类质同象形 式代替 K₂O 赋存于钾长石和金云母中(表 3)。

矿石化学成分具有 4 个特点: ①I、II 号矿体化学成分相同,各组分含量没有明显差别。②除 CO₂ 含量变化较大外,SiO₂、CaO、MgO、Al₂O₃、TFeO、K₂O和Na₂O含量较为稳定(图 3)。CO₂含量具有显著的跳

表 2 南召县老庄区矿石化学成分、矿物成分表(%)

Tab. 2 Chemical composition and mineral composition of ores in Laozhuang District, Nanzhao County

	矿体编号							<u>ज</u> ित्स		
化学成分	I			II			- 41区			
	最小值	最大值	平均值	最小值	最大值	平均值	最小值	最大值	平均值	
SiO ₂	35.46	62.30	52.76	6.28	49.07	46.70	6.28	62.30	50.26	
CaO	5.90	33.81	13.36	7.14	22.38	15.52	7.14	33.81	14.23	
MgO	2.12	14.98	10.84	6.69	19.98	14.26	6.69	19.98	12.22	
TFeO(FeO+Fe ₂ O ₃)	3.05	8.44	4.81	3.15	6.46	4.57	3.15	8.44	4.71	
Al_2O_3	6.29	13.58	10.75	6.46	12.64	10.21	6.46	13.58	10.53	
K ₂ O	0.30	8.10	3.31	0.00	4.85	2.56	0.00	8.10	3.01	
Na ₂ O	0.10	2.45	0.63	0.10	0.45	0.23	0.10	2.45	0.47	
CO_2	0.00	13.17	0.65	0.00	15.32	2.10	0.00	15.32	1.23	
透闪石(Tl)	0.00	85.09	41.05	0.00	84.72	46.74	0.00	85.09	43.34	
透辉石(Di)	0.00	70.96	27.61	0.00	74.13	20.92	0.00	74.13	24.91	
透闪石+透辉石 (Tl+Di)	39.42	85.30	68.66	43.48	84.72	67.66	39.42	85.30	68.25	
钾长石(Kp)	2.67	31.40	12.54	0.00	17.75	5.58	0.00	31.40	9.73	
金云母(Phl)	0.00	27.38	10.88	0.00	43.93	15.92	0.00	43.93	12.91	
方解石(Cal)	0.00	29.90	1.48	0.00	34.78	4.75	0.00	34.78	2.80	

表 3 南召县老庄矿区单矿物电子探针分析结果表

Tab. 3 Single mineral EPMA analysis results of Laozhuang mining area in Nanzhao County

矿物名称	化学成分(%)										
	SiO ₂	TiO ₂	Al_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	Σ
透闪石	55.215	0.055	3.51	5.65	0.195	19.50	13.26	0.345	0.11	0.015	97.855
透辉石	53.19	0.01	0.59	2.99	0.26	15.90	25.63	0.24	0.00	0.005	98.815
钾长石	63.60	0.00	18.88	0.12	0.01	0.02	0.13	0.55	16.39	0.01	99.71
金云母	41.05	0.69	17.09	8.17	0.26	19.24	0.17	0.12	9.39	0.00	96.18

跃性变化,高点分布在矿体的顶部和底部(厚度方向)。 ③II号矿体较 I号矿体各项化学成分变化幅度较大, SiO₂和 CO₂尤为明显。④化学成分变化与矿石自然 类型密切相关,如透闪石砂卡岩型较金云母透辉石透 闪石砂卡岩型和金云母透闪石透辉石砂卡岩型矿石 MgO 含量偏高,钾长石透辉石砂卡岩型较其他矿石 K₂O 含量偏高等。

图 3 南召县老庄矿区 I 号矿体沿走向 化学成分含量变化图

Fig. 3 Chemical composition variation along strike of No.1 orebody in Laozhuang mining area, Nanzhao County

2.2.3 矿物成分

矿石的矿物成分主要为透闪石和透辉石,其次为 钾长石和金云母,方解石少量,石英微量。透闪石(Tl) 含量一般为 25%~55%,平均为 43.34%;透辉石(Di) 含量一般为 15%~35%,平均为 24.91%;钾长石(Kp) 含量一般为 5%~15%,平均为 9.73%;金云母(Phl)含 量一般为 10%~20%,平均为 12.91%;方解石(Cal)含 量一般为 1%~5%,平均为 2.80%。矿床平均品位:透 闪石+透辉石(Tl+Di)为 68.25%。

矿石的矿物成分具有4个特点:①不同矿石自然 类型的矿物种类和含量存在明显差异。金云母透辉 石透闪石砂卡岩型,主要矿物为透闪石,其次为透辉 石,金云母、钾长石和方解石少量。金云母透闪石透 辉石砂卡岩型,主要矿物为透辉石,其次为透闪石,金 云母、钾长石和方解石少量。金云母透闪石砂卡岩型, 主要矿物为透闪石,金云母和方解石少量。钾长石透 辉石砂卡岩型矿石,主要矿物为透辉石,钾长石和方 解石少量。透闪石砂卡岩型矿石,主要矿物为透闪石, 其次为钾长石,透辉石和方解石少量。②不同矿体、 不同矿石自然类型透闪石、透辉石含量变化区间均大, 沿矿体走向具明显的跳跃性。但透闪石+透辉石总含 量较高,且较为稳定。③透闪石与透辉石含量表现为 较明显的负相关(图4),同时沿矿体厚度方向,从矿体 底部到顶部,透闪石含量具有上升趋势,透辉石则具 下降趋势。④钾长石、金云母和方解石含量均低,钾 长石和金云母含量变化不大,方解石含量不稳定变化 相对较大。

Fig. 4 Mineral composition variation along strike of No.1 orebody in Laozhuang mining area, Nanzhao County

2.3 应用试验

采取透辉石-透闪石原矿样品,在洛玻集团晶鑫 陶瓷厂进行了生产釉面砖应用实验。

试验配方为透辉石-透闪石(原矿)替代硅灰石配 方。经多次试验,最佳坯体原料配方为:透辉石-透闪 石(原矿)为26%,焦宝石(硬质高岭土)为26%,高岭 210

实验结论:①透辉石-透闪石(原矿)加入到釉面 砖坯体中,可显著提高坯体强度,降低烧成温度,缩短 烧成周期。②矿石疏松,易于加工,可降低原料加工 成本。③从抗龟裂和耐急冷情况看,坯、釉结合好,热 稳定性好,内在质量有保障。④矿石化学成分接近陶 瓷的天然配方,K₂O、Na₂O含量适中,对降低烧成温度 起到了积极作用,CaO、MgO对降低坯体烧成温度和 膨胀系数、提高坯釉对温度的适应性、提高产品的热 稳定性起到了积极作用。⑤TFeO含量较高,虽然起 到了一定的助熔作用,但加深了坯体的颜色,对坯体 白度有不利影响。⑥透辉石-透闪石(原矿)配方和硅 灰石质配方一样可以实现低温快烧,且烧成温度更低 (低 30 ℃)、烧成时间更短(缩短 5 min),可较大幅度 的节省烧成成本和提高产量(姬清海等,1998)。

3 矿床成因

3.1 控矿因素及成因分析

该矿床大地构造位置处于华北陆块南缘。矿床 的形成受早白垩世石英正长斑岩体、南泥湖组中的白 云石大理岩及层间破碎带等因素的多重控制(郭立宏 等,2013),具明显的层控特征。

华北陆块南缘位于华北陆块和秦岭造山带之间, 经历了多次构造--岩浆事件。其中早白垩世为造山后 的伸展阶段,控制早白垩世的构造、岩浆和热液活动, 构造线方向以北西西向为主,北西西向断裂总体以张 性为主,岩浆活动以酸性为主。矿区受造山后伸展阶 段的影响,早白垩世在栾川群南泥湖组和煤窑沟组中 形成具张性特征的北西西向层间破碎带,并有石英正 长斑岩侵入,为岩浆热液与南泥湖组中的白云石大理 岩进行接触交代作用形成透辉石-透闪石矿创造了有 利条件。层间破碎带是岩浆热液运移的主要通道和 与白云石大理岩进行交代作用的主要场所,也是形成 透辉石-透闪石矿的容矿场所。层间破碎带与地层产 状一致,倾角较陡近于直立,有利于岩浆热液的运移。 层间破碎带中的碎裂白云石大理岩有利于与岩浆热 液交代作用(砂卡岩化作用)的进行。矿体与围岩无 明显界线属渐变过渡,表明成矿作用以接触渗滤交代 作用为主。层间破碎带中碎裂白云石大理岩(含

30.4%的 CaO、21.7%的 MgO、47.9%的 CO₂, CaO/MgO 值为 1.4)与透辉石-透闪石矿体(含 50.26%的 SiO₂、 10.53%的 Al₂O₃、14.23%的 CaO、12.22%的 MgO、4.71% 的 TFeO、3.01%的 K₂O、0.47%的 Na₂O、1.23%的 CO₂, CaO/MgO 值为 1.2)相比, 化学成分发生的变化是 SiO₂、 Al₂O₃、FeO、K₂O 和 Na₂O 的 明显加入,并有大量的 CO₂逸出。

以上分析得出3点结论:①成矿热液的主要化学 成分为 SiO₂、Al₂O₃、FeO、K₂O 和 Na₂O, 与石英正长斑 岩化学成分相似,表明成矿热液来自早白垩世石英正 长斑岩体。②成矿过程中有大量的 CO₂ 逸出, 成矿作 用是在开放系统中进行的,成矿压力不大。③成矿作 用主要是岩浆热液与白云石大理岩的交代作用,交代 作用以外砂卡岩带渗滤交代作用为主,内砂卡岩带交 代作用不明显。换言之,成矿作用主要为来自岩浆热 液 SiO₂与白云石大理岩发生化学反应形成透辉石和 透闪石,岩浆热液中的SiO2、Al2O3和K2O相互反应形 成钾长石和金云母。由于来自岩浆热液中的 SiO₂的 量尚不能满足与白云石大理岩反应的完全需要,有剩 余的 Ca (CO₃)形成方解石, 矿石中少见石英及矿区中 少见石英脉说明热液中 SiO2 量的不足。根据矿石中 各矿物之间的包裹关系:透闪石包裹有透辉石,钾长 石包裹透辉石和透闪石,在矿石和透闪石、透辉石、 钾长石、金云母等矿物的裂隙中穿插有方解石细脉等, 确定矿物形成先后顺序依次为:透辉石、透闪石、钾 长石、金云母、方解石,与矽卡岩型矿床矿物的形成 先后顺序一致。

3.2 成矿过程探讨

一般砂卡岩矿床成矿过程分为砂卡岩成矿期和 多金属硫化物成矿期。本矿床仅发育砂卡岩成矿期, 没有多金属硫化物成矿期。砂卡岩成矿期可分为早 期砂卡岩阶段、晚砂卡岩阶段和氧化阶段,各成矿阶 段的成矿作用与岩浆热液的化学成分密切相关。岩 浆热液化学成分具由简单到复杂的演化特征,早期砂 卡岩阶段热液成分为 SiO₂,晚砂卡岩阶段热液成分为 SiO₂和 H₂O,氧化阶段热液成分为 SiO₂、H₂O、Al₂O₃、 K₃O 和 Na₂O 等。

早期砂卡岩阶段是在超高温条件下进行的。该 阶段形成的岩浆热液成分主要为 SiO₂ 气溶胶。石英 正长斑岩岩浆热液与南泥湖组中的白云石大理岩进 行交代作用,形成透辉石,但交代作用极不彻底,尚剩 余有一定量的白云石大理岩。形成透辉石反应如下: CaMg(CO₃)₂+SiO₂→CaMg[Si₂O₆]+CO₂↑ (白云石) (透辉石)

晚砂卡岩阶段是在气化高温条件下进行的。热 液温度低于早期砂卡岩阶段,岩浆热液成分仍然主要 为SiO₂气溶胶,并含有一定量的气化H₂O。岩浆气化 -高温热液与早期砂卡岩阶段形成的透辉石和剩余的 白云石大理岩,进一步发生交代作用形成透闪石,但 交代作用仍不彻底,仍剩余有白云石大理岩。形成透 闪石反应如下:

CaMg[Si₂O₆]+Mg²⁺+H²⁺→Ca₂Mg₅[Si₄O₁₁]₂(OH)₂+Ca²⁺ (透辉石) (透闪石)

CaMg(CO₃)₂+SiO₂+H₂O→Ca₂Mg₅[Si₄O₁₁]₂(OH)₂+CO₂↑ (白云石) (透闪石)

氧化阶段是在高温热液条件下进行的。岩浆热 液成分较早期和晚期砂卡岩阶段复杂,热液成分主要 为SiO₂、Al₂O₃、K₂O 和 Na₂O 等。SiO₂、Al₂O₃和 K₂O 相互作用,并交代剩余的白云石,形成钾长石、金云母 和方解石,其反应如下:

> SiO₂ + Al₂O₃ + K₂O → K[AlSi₃O₈] (钾长石) SiO₂ + Al₂O₃ + K₂O + CaMg(CO₃)₂ → (白云石)

KMg₃[AlSi₃O₁₀]+Ca(CO₃) (金云母) (方解石)

综上所述,该矿床属砂卡岩型透辉石-透闪石矿 床,成矿时代为早白垩世。成矿热液为早白垩世岩浆 热液,控矿地层为南泥湖组中的白云石大理岩。成矿 方式为岩浆热液与白云石大理岩接触渗滤交代作用, 成矿环境为开放的高温低压氧化环境。矿床形成于 矽卡岩期,早期砂卡岩阶段形成透辉石,晚期砂卡岩 阶段形成透闪石,氧化阶段形成钾长石、金云母和方 解石(袁见齐等,1985;姚凤良等,2006)。

4 结论与建议

(1)该矿床具规模大、埋藏浅、矿体形态和结构 简单、矿石品位高和化学成分稳定等特点,透辉石--透 闪石原矿代替硅灰石用于生产釉面砖,制品性能稳定, 节能效果明显,具重要工业意义。

(2)该矿床属砂卡岩型矿床,成矿时代为早白垩世。矿床形成受早白垩世石英正长斑岩体、南泥湖组中的白云石大理岩及层间破碎带等因素的多重控制。 成矿环境为开放高温低压氧化环境,成矿方式为接触 渗滤交代作用。主成矿期为矽卡岩期,早期阶段形成 透辉石,晚期阶段形成透闪石,氧化阶段形成钾长石、 金云母和方解石。

(3)矿体的深部和北西西、南东东两段边界尚未 控制,仍具有较大的找矿潜力。建议继续开展勘查工 作,以期扩大矿床规模和早日开发。

(4)该矿床的矿石中 TFeO 含量较高,影响陶瓷制品的白度,建议用于生产一般日用陶瓷、卫生陶瓷、建筑陶瓷、饰面砖等,不建议用于生产精细陶瓷和电瓷。矿石在用作铸石、冶金保护渣和有色金属的铸型用砂等方面进行应用实验,以期扩大应用范围。

参考文献(References):

- 陈国安.透闪石作陶瓷原料的试验研究[J]. 矿产保护与利用, 1998, (1): 23-25.
- CHEN Guo 'an. Tremolite: Be Used As Raw Materials for Ceramics[J]. Conservation and Utilization of Mineral Resources, 1998, (1): 23–25.
- 陈毓川,王登红,徐志刚,等.中国重要矿产和区域成矿规 律[M].北京:地质出版社,2015,138-155.
- CHEN Yuchuan, WANG Denghong, XU Zhigang, et al. Major Mineral Resources and Regional Metallogenic Regularity in China [M]. Beijing: Geological Publishing Housing, 2015, 702–723.
- 郭立宏,李静,陈艳.陕西木龙沟砂卡岩型铁多金属矿床地质特征[J].西北地质,2013,46(4):152–155.
- GUO Lihong, LI Jing, CHEN Yan. Geological Characteristics of M ulonggouSkarn Iron Polymetallic Deposits, Shanxi Province [J]. Northwestern Geology, 2013, 46(4): 152–155.
- 河南省地质矿产局.河南省区域地质志[M].北京:地质出版社, 1989: 68-74.
- Henan Provincial Bureau of Geology and Mineral. Regional Geology Mark of Henan Province [M]. Beijing: Geological Publishing Housing, 1989, 68–74.
- 黄慧宁,蒋伯昌.透闪石在低温快烧釉面砖中的应用研究[J]. 陶瓷研究, 1993, 8(2): 67-75.
- HUANG Huining, JIANG Bochang. The ApplicationalSdudy of Tremolite in the Quick Firing at Low Temperatures[J]. Ceramic Studies Journal, 1993, 8(2): 67–75.
- 黄杰,张辰子,王真,等.河南方城双山玉的发现及初步研究[J]. 西北地质,2020,53(3):244-251.
- HUANG Jie, ZHANG Chenzi, WANG Zhen, et al. Discovery and Preliminary Study of Shuang Shan Jade in Fangcheng, Henan[J]. Northwestern Geology, 2020, 53(3): 244–251.
- 姬果,王永辉,姬清海,等.河南省方城县青山透辉石矿床地质 特征及开发利用前景[J].现代矿业,2018,(8):35-38.
- JI Guo, WANG Yonghui, JI Qinghai, et al. Geological Characterist-

ics and Development and Utilization Prospects of Qingshandioptide deposit in Fangcheng County, Henan Province[J]. Modern Mining, 2018, (8): 35–38.

- 姬清海,张良,石文春,等.南召透闪石-透辉石在陶瓷中的应用 研究[J].矿产保护与利用,1998,(5):14-16.
- JI Qinghai, ZHANG Liang, SHI Wenchun, et al. Study on Application of Laozhuang Tremolitf-Diopside ore to Ceramics [J]. Conservation and Utilization of Mineral Resources, 1998, (5): 14–16.
- 姜寒冰,李宗会,杨合群,等.秦岭地区成矿单元划分[J].西北 地质,2014,47(2):146-154.
- JIANG Hanbing, LI Zonghui, YANG Hequn, et al. Division of Metallogenic Unit in the Qinling Area[J]. Northwestern Geology, 2014, 47(2): 146–154.
- 梁涛, 白凤军, 罗照华, 等. 豫西熊耳山斑竹寺花岗斑岩岩体锆 石 U-Pb 定 年 及 地 质 意 义 [J]. 西 北 地 质, 2014, 47(2): 41-50.
- LIANG Tao, BAI Fengjun, LUO Zhaohua, et al. LA-ICP-MS Zircon U-Pb Dating and Its Geological Implications of Banzhusi Granitic Porphyry in Xiongershan of Western Henan Province[J]. Northwestern Geology, 2014, 47(2): 41–50.
- 刘传权,蔡志超,姬清海,等.卢氏张家山铁矿床地球化学特征 及成矿物质来源[J].西北地质,2015,48(4):88–99.
- LIU Chuanquan, CAI Zhichao, JI Qinghai, et al. Geochemical Characteristics and Materials Sources of the Zhangjiashan Iron Deposit in Lushi County[J]. Northwestern Geology, 2015, 48(4): 88–99.
- 桑龙康,马昌前.岩石学[M].北京:地质出版社,2014,72-207.
- SANG Longkang, MA Changqian. Petrology [M]. Beijing: Geological Publishing Housing, 2014, 72–207.
- 邵厥年,陶维屏.矿产资源工业要求手册[S].北京:地质出版社, 2012:464-466.
- SHAO Juenian, TAO Weiping. Manual of Industrial Requirements for Mineral Resources[S]. Geological Publishing Housing, Beijing, 2012: 464–466.
- 台官涛.河南省方城县里银子沟透辉石矿成矿远景分析[J].产业科技创新,2019,1(2):15-17.
- TAI Guantao. Analysis on the Mineralization Prospect of the LiyinzigouDiopside Deposit in Fangcheng County, Henan Province[J]. Industrial Technology Innovation, 2019, 1(2): 15–17.
- 汪仁勇,吴桂捷.宜昌透辉石矿床地质特征及其釉面砖工艺研究[J].矿床地质,1989,8(2):72-79.
- WANG Renyong, WU Guijie. Geological Characteristics of the Yichang Deposide Deposit and Technological Studies of its Glazed Brick[J]. Mineral Deposits, 1989, 8(2): 72–79.
- 王伟,刘继顺,何美香,等.豫西金矿地质特征与构造控矿探 讨[J].西北地质,2014,47(3):62-69.
- WANG Wei, LIU Jishun, HE Meixiang, et al. Discussion on Geologic Characteristics and Structural Ore-Control of the Gold De-

posits in Western Henan[J]. Northwestern Geology, 2014, 47(3): 62–69.

- 王珍, 刘纯. 透辉石在宝鸡建筑陶瓷业中的应用[J]. 非金属矿, 2006, 29(5): 28-30.
- WANG Zhen, LIU Chun. Application of Baoji Diopside in Building Ceramics Industry[J]. Non-Metallic Mines, 2006, 29(5): 28–30.
- 席文祥.河南省岩石地层[M].武汉:中国地质大学出版社, 1997,59-68.
- XI Wenxiang. Lithostratigraphy of Henan Province [M]. Wuhan: Chinese University of Geosciences Press, 1997, 59-68.
- 闫全人,王宗起,闫臻,等.从华北陆块南缘大洋扩张到北秦岭 造山带板块俯冲的转换时限[J].地质学报,2009,83(11): 1565-1583.
- YAN Quanren, WANG Zongqi, YAN Zhen, et al. Timing of the Transformation from Seafloor Spreading on the South Margin of the North China Block to Subduction within the North Qinling Orogenic Belt[J]. Acta Geologica Sinica, 2009, 83(11): 1565–1583.
- 杨素文,许小峰,王胜利,等.宝鸡西山透辉石在陶瓷领域的应 用效果[J].甘肃冶金,2015,37(5):62-65.
- YANG Suwen, XU Xiao feng, WANG Shengli, et al. Application of Xishan Diopside in the Field of Ceramics [J]. Gansun Metallurgy, 2015, 37(5): 62–65.
- 姚凤良,孙丰月.矿床学教程[M].北京:地质出版社,2006, 78-90.
- YAO Fengliang, SUN Fengyue. Course in Mineral Deposits[M]. Beijing: Geological Publishing Housing, 2006, 78–90.
- 袁见齐,朱上庆,翟裕生.矿床学[M].北京:地质出版社,1985: 104-129.
- YUAN Jianqi, ZHU Shanqqing, ZHAI Yusheng. Mineral Deposit Geology[M]. Beijing: Geological Publishing Housing, 1985, 104–129.
- 张国强,于政涛,刘东伟,等.磐石圈岭透闪石矿床特征及开发 前景[J].吉林地质,2005,24(2):35-40.
- ZHANG Guoqiang, YU Zhengtao, LIU Dongwei, et al. The deposit characteristics of the Quanlingtremolite, Panshi area, and its developing prospect[J]. Jilin Geology, 2005, 24(2): 35–40.
- 赵珊茸, 边秋绢, 凌其聪. 结晶学及矿物学 [M]. 北京: 高等教育 出版社, 2004, 346-364.
- ZHAO Shanrong, BIAN Qiujuan, LING Qicong. Crystallography and Mineralogy [M]. Beijing: Higher Education Press, 2004, 346–364.
- 朱嘉伟,赵盼舒,李锋.华北陆块南缘金矿成矿动力学探讨[J]. 地球学报,2008,29(4):525-532.
- ZHU Jiawei, ZHAO Panshu, LI Feng. A Discussion on Mineralization Dynamics Mechanism of Gold Deposits on the Southern Edge of the North China Plate[J]. Acta Geoscientica Sinica, 2008, 29(4); 525–532.