第25卷第6期

2016年12月

Vol. 25 No. 6 Dec. 2016

文章编号:1671-1947(2016)06-0520-05

GEOLOGY AND RESOURCES 中图分类号 2588.14 2595

文献标志码 :A

大兴安岭中段突泉盆地玛尼吐组火山岩地球化学特征及成因

陶 楠¹² 宋维民² 杨佳林² 杜继宇² 庞雪娇²

1. 吉林大学 地球科学学院 ,吉林 长春 130061;

2. 中国地质调查局 沈阳地质调查中心(沈阳地质矿产研究所) 辽宁 沈阳 110034

摘 要 突泉盆地玛尼吐组安山岩位于内蒙古东部兴安盟突泉县,大地构造位置属华北板块北缘晚古生代陆缘增生带,大兴安岭构造岩浆岩带中段.安山岩样品的 SiO₂、Al₂O₃、Na₂O、K₂O 含量分别为 60.64%~64.36%、15.84%~17.38%、3.76%~5.30%、2.44%~3.81%, 为过铝质、高钾钙碱性岩石, 轻稀土元素富集,重稀土元素亏损,无 Eu 异常和 Ce 异常,富集大离子亲石元素(Rb、K、Ba、LREE)和 化学性质活泼的不相容元素(U、Th),相对亏损高场强元素(Nb、Ta、P、Ti)和重稀土元素(如Y、Yb、Lu). 原始岩浆来源于地壳岩石 部分熔融源区,是蒙古-鄂霍次克洋闭合后岩石圈伸展环境下的产物.

关键词 岩石地球化学 岩石成因 玛尼吐组安山岩 突泉盆地 大兴安岭 内蒙古

DOI:10.13686/j.cnki.dzyzy.2016.06.002

PETROGEOCHEMISTRY AND GENESIS OF THE VOLCANIC ROCKS OF MANITU FORMATION IN TUQUAN BASIN , MIDDLE DAXINGANLING MOUNTAINS

TAO Nan¹², SONG Wei-min², YANG Jia-lin², DU Ji-yu², PANG Xue-jiao²
1. College of Earth Sciences, Jilin University, Changchun 130061, China;
2. Shenyang Institute of Geology and Mineral Resources, CGS, Shenyang 110034, China

Abstract : The andesite of Manitu Formation in the Tuquan Basin , Eastern Inner Mongolia , is tectonically located in the middle section of Daxinganling tectonomagmatic belt , in the Late Mesozoic continental marginal accretion zone on the northern margin of North China Plate. Study of petrogeochemistry indicates that the andesite is characterized by high silica (with SiO₂ of 60.64%–64.36%) and alumina (Al_2O_3 15.84%–17.38%) , and medium alkali (Na_2O 3.76%–5.30% , K_2O 2.44%–3.81%) , belonging to peraluminous high potassium calc-alkali rock. The chondrite standard curve of rare earth elements reveals an enrichment of LREE and deficit of HREE , without Eu and Ce anomaly. The andesite is enriched in LILE (such as Rb , K , Ba and LREE) , mobile incompatible elements (such as U and Th) , relatively depleted in HFSE (such as Nb , Ta , P and Ti) and HREE. The primitive magma of the andesite is derived from the partial melting of the crust , as the result of the closure of Mongolia-Okhotsk Ocean in the extensional environment of the lithosphere.

Key words : petrogeochemistry ; petrogenesis ; Manitu Formation ; andesite ; Tuquan basin ; Daxinganling Mountains ; Inner Mongolia

大兴安岭中段突泉盆地尼玛吐组火山岩体位于内 蒙古东部,大兴安岭构造岩浆岩带中段.研究区火山 岩发育,出露面积约190 km²,呈带状NNE向分布,属 突泉火山盆地北侧.大兴安岭中段火山岩带是中生代

收稿日期 2016-10-10;修回日期:2016-11-29.编辑:张哲.

基金项目:中国地质调查局项目"内蒙古1:5万前他克吐等五幅区域地质调查"(1212011220425);"内蒙古1:5万必鲁台等四幅地质矿产综合调查" (12120115031101);"太平洋构造域北段构造格局、演化历史和1:250万构造图编制"(DD20160343-09).

作者简介 陶楠(1982—) 男 工程硕士研究生 工程师 通信地址 辽宁省沈阳市皇姑区黄河北大街 280 号 E-mail//52538310@qq.com

通信作者 宋维民(1983—) 男 博士研究生 高级工程师 通信地址 辽宁省沈阳市皇姑区黄河北大街 280 号 E-mail//swmws@126.com

火山大喷发形成的构造-火山岩带,整个中生代时 期火山活动连续不断,尤其在晚侏罗世火山活动达 到高峰,形成了几套具有典型特点的火山岩组合. 依据各时代火山活动特点、接触关系及岩石组合等 资料,自晚三叠世—早白垩世共划分4个火山喷发 旋回,它们各自代表不同期次、不同规模火山活动 及其破火山作用的完整过程,是一套典型的中酸性 火山岩组合,是构成东亚大陆边缘巨型火山岩带的 重要组成部分.本文选择出露于突泉火山盆地的玛 尼吐组火山旋回中的火山熔岩为研究对象,对其进 行详细的地球化学特征研究,以期为突泉火山盆地 中火山岩形成的构造背景提供基础资料与依据,期 望对大兴安岭中段地区的地质学研究和成矿预测 起到积极作用.

1 区域地质背景

突泉盆地位于内蒙古东部兴安盟突泉县境内,大 地构造位置属华北板块北缘晚古生代陆缘增生带,松 嫩地块与兴安地块构造结合部的嫩江造山带处^[11],盆 地基底主要为晚古生代古亚洲洋残余海盆不同演化 时段沉积体系中的一套海-陆相地层. 盆地北部、东部 分别与龙江盆地、松辽盆地相邻,是一个近乎南北走 向的中生代断拗盆地. 地理坐标为北纬 45°00'~46°00', 东经 121°15'~122°00'之间,面积约 2300 km². 通过该 盆地南部非震物探资料推测,盆地南部早中生代拗陷 埋深范围为 800~2000 m^[2].

突泉盆地出露地层自下而上主要为红旗组、万宝 组、满克头鄂博组、玛尼吐组、白音高老组、甘河组. 从 中生代的地层出露情况分析,红旗组和万宝组为一套 类磨拉石含煤沉积,代表早中生代东北地区的非典 型、弱造山的山前与山间沉积^[3],而后期充填于盆地内 晚侏罗世到早白垩世(满克头鄂博组、玛尼吐组、白音 高老组、甘河组)陆相火山-沉积岩系,是当时中国东 北地区乃至东北亚断陷盆地系及盆岭体系组成的基 本特征^[4].

2 样品采集与特征

本文玛尼吐组火山岩样品采集于 1/5 万保安屯幅 突泉火山盆地西石砬子火山机构周边,发育于盆地西 北部,样品均为安山岩.岩石镜下特征为斑状结构,斑 晶为角闪石、斜长石和黑云母. 斜长石呈半自形板柱 状、宽板状,部分聚斑状,部分边缘熔蚀呈浑圆形、港 湾状,聚片双晶带较宽,表面模糊泥化、绢云母化,边 缘长英质呈扇形、半球粒环绕,延长方向略定向,粒径 在 0.6~2.2 mm 之间,含量约为 20%;黑云母呈片状、长 条片状,多全部暗化呈假象,少量边缘暗化,沿解理缝 析出铁质成分,略定向,含量约为 5%;角闪石呈长柱 状、较规则菱形粒状,部分发育不完整,但能见较清晰 轮廓,全部暗化呈假象,略显方向性,粒径 0.3~1.0 mm, 含量为 1%~2%. 基质为微晶结构,主要为斜长石微 晶,杂乱分布,呈半自形长柱状、板状,聚片双晶带较 宽,表面模糊弱泥化,粒径多在 0.04~0.1 mm 之间,个 别达 0.2 mm.

3 地球化学特征

突泉盆地玛尼吐组安山岩样品的主量、微量、稀 土元素分析结果见表1. 安山岩样品的 SiO₂ 质量分数 为 60.64%~64.36%, 平均值为 62.34%; Al2O3 质量分数 为 15.84%~17.38%, 平均值为 16.57%; Na2O 的质量分 数为 3.76%~5.30%,平均值为 4.48% K2O 的质量分数 为 2.44%~3.81%, 平均值为 2.79% Na₂O+K₂O 质量分 数为 5.56%~8.91%, 平均值为 7.85%. K2O/Na2O 值为 0.81~2.15,平均值为 1.46. 里特曼指数 σ 为 1.45~4.27 (均值为 3.4 σ>3.3). Al₂O₄(Na₂O+K₂O)(分子数)值为 1.37~2.25, 平均值为 1.64; 铝饱和指数 Al2O4/(CaO+ Na₂O+K₂O)(分子数) 值为 1.07~1.77, 平均值为 1.31. 在 ACNK-ANK 图解中 样品主要落入过铝质区域,在 SiO₂-K₂O 图解(图 1b)上,样品主要落入高钾钙碱性 系列区域,在硅-碱图解(图 la)中,样品点绝大多数 都落入了亚碱性安山岩或粗面岩范围内 由此确定玛尼 吐组安山岩属于亚碱性过铝质高钾钙碱性岩石系列.

突泉盆地玛尼吐组安山岩样品的稀土元素配分 模式均为轻稀土元素富集、重稀土元素亏损的右倾型 (图 2a).稀土元素总量(ΣREE)为96.72×10⁻⁶~145.92× 10⁻⁶,平均为115.26×10⁻⁶,轻、重稀土元素分馏程度中 等 LREE/HREE 值为6.61~8.85,平均值为7.89 (La/Yb)_N 值为5.75~8.97,平均值为7.64,无 Eu 异常和 Ce 异常 (δEu=0.88~1.18,均值1.00 βCe=0.92~0.97,均值0.95) (表1).原始地幔标准化微量元素蛛网图(图 2b)中, 相对富集大离子亲石元素(如 Rb、K、Ba)和化学性质 表1玛尼叶组安山岩岩石地球化学分析结果

Table 1	Geochemical data for andesite of Manitu Formation					
样品	PM101- 4-1	PM101- 11-1	PM101- 18-1	PM102- 42-1	PM102- 66	PM102- 70
SiO_2	61.64	62.27	60.77	63.00	64.36	62.00
Al ₂ O ₃	16.83	16.41	16.58	17.38	15.84	16.40
Fe ₂ O ₃	3.06	3.32	2.46	1.54	3.49	4.08
FeO	2.03	1.96	2.48	3.47	2.16	1.99
MgO	0.07	0.07	0.08	0.05	0.08	0.09
CaO	1.69	1.86	1.84	0.95	1.06	1.22
Na ₂ O	3.89	3.25	4.80	4.00	1.80	2.47
K_2O	4.56	4.46	3.91	4.91	3.76	5.30
MnO	2.44	2.80	2.37	2.45	3.81	2.87
P_2O_5	0.22	0.21	0.21	0.21	0.26	0.34
TiO_2	0.66	0.64	0.65	0.74	0.79	0.90
LOI	2.47	2.30	3.39	0.72	2.13	1.92
Total	99.56	99.55	99.54	99.42	99.54	99.58
ANK	1.48	1.61	1.37	1.46	2.25	1.67
ACNK	1.17	1.21	1.07	1.27	1.77	1.36
Cr	15.5	30.2	14.5	43.4	5.64	5.36
Ni	2.15	5.39	0.57	10.50	1.82	3.08
Ba	651.00	1100.00	635.00	678.00	1200.00	788.00
Hf	4.38	4.16	4.50	4.16	7.06	5.43
Nb	8.06	8.02	7.49	6.67	10.50	10.30
Rb	58.50	51.20	53.40	57.60	93.70	77.00
\mathbf{Sr}	509.00	575.00	487.00	541.00	376.00	380.00
Та	0.47	0.49	0.67	0.41	0.65	0.52
Th	4.79	4.87	5.50	3.06	5.68	6.37
U	1.46	1.65	1.55	0.77	2.02	1.79
Zr	170.00	169.00	168.00	163.00	310.00	272.00
Υ	15.80	14.80	16.00	14.30	26.70	24.20
La	20.60	19.70	20.50	18.00	25.40	22.50
Ce	43.30	41.30	43.00	37.50	55.00	49.00
Pr	5.52	5.24	5.35	5.20	7.54	6.91
Nd	21.70	20.40	20.90	20.50	30.80	28.40
Sm	4.14	3.97	4.10	4.05	6.34	6.04
Eu	1.31	1.42	1.31	1.26	1.74	1.69
Gd	3.59	3.23	3.55	3.29	5.59	5.14
Tb	0.57	0.52	0.56	0.52	0.92	0.83
Dy	2.92	2.67	2.96	2.66	4.90	4.48
Ho	0.51	0.49	0.54	0.46	0.91	0.85
Er	1.63	1.52	1.71	1.40	2.87	2.51
Tm	0.26	0.25	0.27	0.24	0.50	0.45
Yb	1.66	1.48	1.63	1.44	2.94	2.64
Lu	0.25	0.24	0.25	0.20	0.47	0.43
δEu	1.02	1.18	1.03	1.02	0.88	0.90
δCe	0.96	0.96	0.97	0.92	0.95	0.94
LREE	96.57	92.03	95.16	86.51	126.82	114.54
HREE	11.39	10.40	11.47	10.21	19.10	17.33
Σ REE	107.96	102.43	106.63	96.72	145.92	131.87

测量单位 :国土资源部东北矿产资源监督监测中心. 含量单位 :主量元 素为% ,微量元素为 10⁻⁶.

活泼的不相容元素(U、Th),相对亏损高场强元素(如 Nb、Ta、P、Ti)和重稀土元素(如Y、Yb、Lu).其中,Ti和P 亏损可能受到钛铁矿和磷灰石分离结晶作用的影响.

Fig. 1 TAS and K₂O-SiO₂ diagrams of andesites of Manitu Formation

4 岩石成因及构造环境

玛尼吐组安山岩明显富集大离子亲石元素 (Rb、 K、Ba、LREE) 和化学性质活泼的不相容元素(U、Th), 相对亏损高场强元素(Nb、Ta、P、Ti)和重稀土元素(如 Y、Yb、Lu),具有陆壳物质或俯冲流体交代的岩石圈地 幔物质特征^[5].玛尼吐组安山岩的 Mg# 值为 2.1~5.2, 均值为 3.5 表明安山岩由基性下地壳铁镁质岩石部分 熔融的可能性很小^[6].安山岩岩石样品的 Cr 含量为 5.36×10⁻⁶~43.4×10⁻⁶ (均值 19.1×10⁻⁶),小于原始地幔 Cr(2121×10⁻⁶)^[7]和高镁安山岩 Cr(一般大于 100×10⁻⁶, 高者可达 770×10⁻⁶)^[8].岩石样品的 Nb/Ta 值 (11.18~ 19.81 均值为 16.15)介于地壳平均值(8.3)^[9]和地幔平 均值(17.5)^[10]之间. Rb/Sr 值(0.09~0.25,均值 0.15)介 于地幔值(0.034)和地壳值(0.350)^[11]之间. 结合岩石 钙碱性和低 Mg[#] 值等特征,笔者认为玛尼吐组安山岩 原始岩浆主要来源于地壳岩石部分熔融源区.

关于大兴安岭中生代火山岩构造背景,存在多种 不同观点,主要有:大兴安岭晚中生代的花岗岩火山岩 活动只是伸展背景下的岩浆演化的一个阶段^[12];与蒙 古-鄂霍次克洋的闭合有关^[13-18];与古太平洋板块的俯 冲作用有关^[19-20];与地幔柱构造有关^[21-22].到目前为 止,在吉黑东部尚未发现138~145 Ma的火山岩^[23-24], 表明大兴安岭中生代岩浆事件与古太平洋板块的俯冲 作用没有关系^[25].大兴安岭中生代火山岩分布面积广, 形成时代变化范围大,与地幔柱构造有关的岩浆事件 不一致,排除地幔柱构造背景.Metelkin^[26]研究认为, 中一晚侏罗世蒙古-鄂霍次克洋自西向东逐渐闭合, 西部最终的闭合时间为晚侏罗世,东部最终闭合的时 间为早白垩世,其演化过程与突泉盆地玛尼吐组火山 岩的形成时间(139~148 Ma)基本吻合. 玛尼吐组火山 岩从北向南,存在由老到新的穿时性,进一步证明玛 尼吐组火山岩的形成与蒙古-鄂霍次克缝合带演化有 关^[27].

玛尼吐组安山岩样品在 Hf/3-Th-Ta 图解(图 3a) 中落入了火山弧花岗岩区域,在 Sr/Y-Y 图解(图 3b) 中落入了经典岛弧岩石区域,在 Th/Yb-Ta/Yb 图解 (图 4)中落入了活动大陆边缘(陆缘弧)区域.岛弧和 活动大陆边缘均属于消减带范围,表明玛尼吐组安山 岩形成于大陆弧环境.结合大兴安岭中生代火山岩构 造演化背景,笔者认为内蒙古突泉盆地玛尼吐组安山 岩是蒙古-鄂霍次克洋闭合后岩石圈伸展环境下的产物.

图 4 玛尼吐组安山岩 Th/Yb-Ta/Yb 图解

5 结论

1) 突泉盆地玛尼吐组安山岩为亚碱性、过铝质、高 钾钙碱性岩石, 轻稀土元素富集, 重稀土元素亏损, 无 Eu 异常和 Ce 异常, 明显富集大离子亲石元素 (Rb、 K、Ba、LREE) 和化学性质活泼的不相容元素(U、Th), 相对亏损高场强元素(Nb、Ta、P、Ti)和重稀土元素(如 Y、Yb、Lu).

2)突泉盆地玛尼吐组安山岩原始岩浆来源于地壳 岩石部分熔融源区,是蒙古-鄂霍次克洋闭合后岩石 圈伸展环境下的产物.

致谢:野外工作中得到张立东研究员倾心指导,李 之形研究员对本文进行了细心审阅并提出了宝贵意 见,在此致以衷心感谢!

参考文献:

- [1]唐克东,邵济安,李永飞. 松嫩地块及其研究意义[J]. 地学前缘, 2011,18(3) 57-65.
- [2]方慧,钟清,陈树旺.内蒙古突泉盆地双低阻层的发现及其地质意义 [J].地质通报,2013(8):1253-1259.
- [3]王五力 陈树旺 刘世伟 等. 中国东北造山带与高原形成的关系[J]. 地质与资源 2010, 19(S1) 39-45.
- [4]李思田. 断陷盆地分析与煤聚积规律[M]. 北京 地质出版社,1988.
- [5]孙德有,苟军,任云生,等.满洲里南部玛尼吐组火山岩锆石 U-Pb 年 龄与地球化学研究[J]. 岩石学报 2011 27(10) 3083-3094.
- [6]Atheroton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust[J]. Nature ,1983 ,362 :144–146.
- [7]Hirose K, Kushior I. Partial melting of dry peridotites at melts segregated from peridotite using aggregates of diamonds [J]. Earth Planet Sci Lett ,1993 ,144 :477–489.

- [8]Kamei A , Owada M , Nagao T , et al. High-Mg diorites derived from sanukitic HMA magmas ,Kyushu Island ,Southwest Japan Arc :Evidence from clinopyroxene and whole rock compositions[J]. Lithos 2004 ,75 : 359–371.
- [9]Rudnick R L, Gao S. Composition of the continental crust [C]// Rudnick R L, ed. The Crust. Oxford : Elsevier Pergamon, 2003 :1–64.
- [10]Boynton W V. Geochemistry of the rare-earth elements : Meteorite studies [C]//Henderson, ed. Rare Earth Element Geochemistry. Amsterdam : Elservier, 1984, 63–114.
- [11]Taylor S R, McLenman S M. The Geochemical evolution of the continental crust[J]. Reviews of Geophysics ,1995 ,33(2) 241–265.
- [12]邵济安 涨履桥 牟保磊. 大兴安岭中生代伸展造山过程中的岩浆 作用[J]. 地学前缘, 1999(4) 339-346.
- [13]Fan W M, Guo F, Wang Y J et al. Late Mesozoic calc-alkaline volcanism of post-orogenic extension in the northern Da Hinggan Mountains, northeastern China [J]. Journal of Volcanology and Geothermal Research, 2003,121:115–135.
- [14]Wang F, Zhou X H, Zhang L C et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China) : Timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters , 2006 , 251 :179–198.
- [15]陈志广 涨连昌 周新华,等.满洲里新右旗火山岩剖面年代学和地球化学特征[J].岩石学报,2006,22(12),2971-2986.
- [16]张连昌 陈志广,周新华,等.大兴安岭根河地区早白垩世火山岩深 部源区与构造-岩浆演化:Sr-Nd-Pb-Hf 同位素地球化学制约[J]. 岩石学报 2007 23(11) 2823-2835.
- [17]张玉涛 涨连昌 英基丰 ,等. 大兴安岭北段塔河地区早白垩世火山 岩地球化学及源区特征[J]. 岩石学报, 2007, 23(11) 2811-2822.
- [18]Ying J F , Zhou X H , Zhang L C ,et al. Geochronological framework of Mesozoic volcanic rocks in the Great Xingan Range , NE China , and their geodynamic implications[J]. Journal of Asian Earth Sciences , 2010 ,39(6) .786–793.
- [19]孙德有,许文良,周燕.大兴安岭中生代火山岩的形成机制[J]. 矿 物岩石地球化学通讯,1994(3):162-164.
- [20] 葛文春 林强 孙德有 等.大兴安岭中生代两类流纹岩成因的地球 化学研究[J]. 地球科学 2000 25(2):172-178.
- [21]林强 葛文春 唐林 等.大兴安岭中生代双峰式火山岩的地球化学 特征[J].地球化学,2003,32(3)208-222.
- [22]许文良, 葛文春, 裴福萍, 等. 东北地区中生代火山作用的年代学格 架及其构造意义[J]. 矿物岩石地球化学通报, 2008, 27(增刊1): 286-287.
- [23]XU Wen-liang, JI Wei-qiang, PEI Fu-ping et al. Triassic volcanism in Eastern Heilongjiang and Jilin provinces, NE China: Chronology, and tectonic implications [J]. Journal of Asian Earth Sciences, 2009 34(3) 392–402.
- [24]许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背 景:来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2) 339-353.
- [25]Metelkin D V, Vernkovsky V A, Kazansky A Y, et al. Late Mesozoic tectonics of Central Asia based on paleomagnetic evidence[J]. Gondwana Research, 2010,18(3):400–419.
- [26]司秋亮, 崔天日, 唐振, 等. 大兴安岭中段柴河地区玛尼吐组火山岩 年代学、地球化学及岩石成因[J]. 吉林大学学报:地球科学版, 2015, 45(2)389-403.