高炉冶金矿渣特性及其在 ZTA 陶瓷烧结中的作用

卢红霞1,高凯1,李明亮1,梁新星2

1.郑州大学 材料科学与工程学院(河南省资源与材料工业技术研究院),河南 郑州 450001;
 2.郑州方铭高温陶瓷新材料有限公司,河南 郑州 452384

中图分类号:X757 文献标识码:A 文章编号:1001-0076(2020)03-0026-08 DOI:10.13779/j. cnki. issn1001-0076.2020.03.005

摘要 高炉渣是由炼铁高炉产生的一种工业废渣,其中含有 CaO、Al₂O₃、SiO₂ 等硅酸盐成分和少量 Fe₂O₃、TiO₂、ZrO₂ 等析晶 形核剂。高炉渣在 855 ℃热处理 1 h,可形核析出 1 µm 左右的 Ca₂Al₂SiO₇ 微晶,这表明高炉渣具有较高的析晶活性。向 ZTA 中添加质量分数为4% 的高炉渣,1 550 ℃烧结 30 min,低温下 ZTA 陶瓷的力学性能明显提升,抗弯强度和断裂韧性分别为 650 MPa 和 6.03 MPa · m^{1/2},比相同温度下未添加高炉渣时分别提高了 15% 和 14.2%,烧结温度降低了 50 ℃以上。颗粒细化的 高炉渣掺入 ZTA 陶瓷基体,烧结过程中高炉渣产生的液相促进了 Al₂O₃ 棒晶的生长,受力过程中棒晶的拔出和裂纹的偏转有 利于 ZTA 陶瓷力学性能的提升;高炉渣在高温下的析晶增强了 ZTA 陶瓷的晶界强度,进一步提高了材料的力学性能。 关键词 高炉渣;ZTA 陶瓷,陶瓷烧结;析晶

引言

高炉渣(Blast Furnace Slag,简称 BFS)是高炉在冶 炼生铁过程中排出的一种副产品,又称高炉冶金矿渣, 是我国现阶段排放量最大的冶金废渣,占钢铁固体废 弃物的50%左右。依矿石品位不同,每炼1t铁排出 0.3~0.5 t 渣, 矿石品位越低, 排渣量越大^[1]。目前, 我国高炉渣的综合利用率达到85%以上[2],同美、英、 法、德等^[3-4]发达国家相比仍有差距,部分被用于生产 如水泥、免烧砖、矿渣石棉、石膏、硅肥等产品,仍存在 利用量小、附加值低和技术开发投入不足等问题じ。 因此,有研究将高炉渣制备成微晶玻璃,进一步提高了 高炉渣产品的附加值。许莹等^[6]以高炉渣为主要原 料,通过熔融法制备出力学性能优于天然大理石的高 炉渣微晶玻璃。Francis 等^[7]利用高炉渣和碎玻璃为主 要原料制备出热导率低、强度高及化学稳定性好的新 型多孔微晶玻璃。樊涌等^[8]以高炉渣及污泥为主要原 料,采用熔融法制备出强度和耐酸碱性良好的冶金渣 微晶玻璃。

高炉渣含有多种陶瓷原料成分,如果作为陶瓷的 烧结助剂,在烧结过程中可以通过析晶处理析出微晶 相,既可以降低烧结温度、又减少了陶瓷基体中的玻璃 相,降低因过量玻璃相存在对陶瓷材料性能的不利影 响。

ZTA 陶瓷具有耐腐蚀、耐磨损、高硬度及高性价比 等特性,是一种应用广泛的高性能结构陶瓷材料。采 用纳米原料,在 ZTA 中引入 TiC 可以进一步改善其力 学性能^[9-10],但因 TiC 具有较强的共价键,ZTA/TiC 复 合陶瓷的烧结往往需要较高的烧结温度或者采用特殊 烧结设备,成为制约其成本降低的重要因素。为避免 传统液相添加剂因玻璃相的存在降低材料的力学性 能^[11-15],引入具有析晶特性的玻璃态物质高炉渣作为 助烧剂,既降低了复合陶瓷的烧结温度,又可提高材料 的力学性能。

1 试验

1.1 试验原料

以α-Al₂O₃为主要原料,辅以纳米Al₂O₃、ZrO₂和 TiC等超细原料,引入高炉冶金矿渣为助烧剂,热压烧 结制备高性能 ZTA 陶瓷,并对力学性能、微观结构及 物相组成进行研究。试验过程中所用的原料及性能指 标见表1。

收稿日期:2020-05-18

基金项目:河南省科技攻关资助项目(172102210008);智汇郑州・1125 聚才计划创新领军团队(2016XT013) 作者简介:卢红霞(1969 –),女,教授,博士,主要从事先进陶瓷材料及工业废弃物资源利用的研究, E – mail:luhx@ zzu. edu. cn。

表 1	口证	【验原	料乃	2性1	能指	标
	•			+,,	1011	

Table 1 Raw materials and their parameters

原料名称	性能指标	生产厂家
$\alpha - Al_2O_3$	分析纯,2 μm	天津市科密欧科技有限公司
纳米 Al ₂ O ₃	99.9%,30 nm	上海阿拉丁生化科技股份有限公司
ZrO_2	$3 \mathrm{Y} - \mathrm{ZrO}_2$	焦作李封工业有限责任公司
TiC	99%,50 nm	上海麦克林生化科技有限公司
高炉冶金矿渣	水淬渣	河南某钢铁公司

1.2 试验仪器与设备

根据阿基米德原理,测定和计算样品的体积密度、

试验所用的主要仪器设备 表 2

Table 2 Main equipment in the experiment	en
--	----

显气孔率和吸水率。利用日本电子株式会社(JEOL) 的 JSM - 7001F 场发射扫描电子显微镜表征原料粉体 及烧成样品的显微形貌,并对部分样品进行能谱分析 元素组成及分布状态。采用日本产 D/MAX - 2550V 型号 X 射线衍射仪分析 Al,O,、ZrO,、TiC 和高炉渣等 粉体以及烧结样品的物相组成。测试条件:Cu 旋转阳 极,石墨单色器滤波,辐射靶材为 CuK_a($\lambda = 0.15406$ nm), 电压为 35 kV, 电流为 30 mA, 扫描速度为 5° / min,根据需要设定扫描角度范围,温度为室温。试验 所涉及的主要仪器、设备及用途见表2。

Table 2 Main equipment in the experiment							
设备名称	设备型号	生产厂家	试验用途				
精密分析天平	STP FA1004	上海上平仪器有限公司	称量				
高能球磨机	SPEX8000M	美国 SPEX	粉碎混料				
电热鼓风干燥箱	FN101 – 2A	湘潭市中山仪器厂	干燥				
超声波清洗器	KH – 400KDE	昆山禾创超声有限公司	清洗				
X 荧光光谱仪	XRF – 1700	日本 Shimadzu	成分分析				
激光粒度分析仪	Zetasizer 3000HS	英国 Marlvern	粒度分析				
热重分析仪	STA449C	德国 NETZSCH 公司	热重分析				
真空热压烧结炉	CVI HP	美国 CVI 公司	烧结				
激光切割机	LCM100	郑州鑫锐机械设备有限公司	切割样品				
自动压力研磨抛光机	UNIPOL – 1200S	沈阳科晶自动化设备有限公司	研磨抛光				
平面磨床	M618	江南赛特数控设备有限公司	研磨抛光				
电子式万能试验机	WD – P4504	山东济南泰思特仪器有限公司	强韧性检测				
显微硬度计	HV0.2	上海钜晶精密仪器制造有限公司	硬度检测				
X 射线衍射仪	D/MAX - 2550V	日本 Rigaku Tokyo	物相检测				
扫描电子显微镜	JSM – 7001F	日本电子株式会社	微观形貌分析				

1.3 试验方案

图 1 为添加高炉渣制备 ZTA 陶瓷的主要工艺过 程。在对各种化学原料和高炉渣进行物相组成分析、 粒度分析、形貌分析及热分析的基础上,研究原料配方 与助烧剂高炉渣的添加量对 ZTA 陶瓷微观结构及力 学性能的影响。

图 1 试验方案 Fig. 1 Experimental scheme

采用美国 CVI 公司的 CVI HP 真空热压烧结炉进 行烧结(如图2所示),工艺流程分为:装料→抽真空→ 升温到1200 ℃→充氩气缓慢加压→在目标温度保温 保压 30 min→降温泄压→脱模。

Fig. 2 Schematic diagram of vacuum hot pressing furnace

1.3.1 抗弯强度测试

按照国标 GB 6569—2006《精细陶瓷弯曲强度试 验方法》,采用三点弯曲法在型号为 WD - P4504 的电 子式万能试验机上测试样品的抗弯强度,样品通过型 号为 DH - GB3015 激光切割机切割加工成 2 mm ×

3 mm × 16 mm 的长条,表面粗磨后用金刚石研磨膏研 磨抛光。试样及加载方式如图 3 所示,测试时跨距为 10 mm,载荷加载速率 0.5 mm/min,每组试验选用 6 根 样品测试后取平均值。其计算公式为:

$$\sigma_f = 3FL/2bh^2 \tag{1}$$

式中: σ_{f} — 断裂模数,即抗弯强度,MPa;F— 破坏 载荷,N;L— 两支撑端口跨距,mm;b— 样品宽度,mm; h— 样品厚度,mm。

图3 三点弯曲法测试抗弯强度示意图

Fig. 3 Schematic diagram of three – point bending method for testing flexural strength

1.3.2 断裂韧性测试

试样的断裂韧性通过单边切口梁法(SENB)来测定。样品经激光切割机加工成尺寸为4 mm×2 mm× 22 mm的长条(缺口深度 a 为 1.6~2 mm),用型号为 UNIPOL-1200S自动压力研磨抛光机将其表面研磨抛 光。试样及加载方式如图4 所示,跨距 L 为 16 mm,以 0.05 mm/min 的恒定速率连续施加载荷,直至试样断 裂,每次选取6个试样测平均值 K_{ic}。其公式如下:

$$K_{\rm IC} = (P/bh^{1/2})Y$$
 (2)

$$Y = (L/h) \left\{ \frac{3f^{1/2}}{[2(1+2f)(1-f)^{3/2}]} \right\} \times \left[1.99 - f(1-f)(2.15-3.93f+2.7f^2) \right]$$
(3)

$$f = a/h$$
 (4)

式中:Y — 几何因子; K_{IC} — 断裂韧性, MPa·m^{1/2}; P — 最大载荷, N;b — 样品厚度, mm;h — 样品高度, mm;a — 样品缺口深度, mm;L — 跨距, mm;0.4 < a/h < 0.6。

图4 单边切口梁法测试断裂韧性示意图

- Fig. 4 Schematic diagram of SENB for testing fracture toughness
- 2 高炉冶金矿渣特性研究

2.1 高炉渣的产生及预处理

在高炉冶炼生铁的过程中会产生许多副产品,高 炉渣作为被排除的一种废渣,它是由矿石中的一些无 法炼进生铁中的杂质、灰分和助熔剂所形成的易熔物 质。采用水淬粒化工艺对高炉渣进行冷却处理,90% 以上的高炉渣被处理成粒状水渣,其中玻璃质含量高 达95%,具有良好的潜在活性。如图5所示,在1400 ~1600℃的炉温下,铁矿石中的铝矾土、脉石与助熔 剂高温下进行反应,生成易熔的钙铝酸盐,其反应方程 式如下:

$$CaCO_3 = CaO + CO_2 \uparrow$$
 (5)

$$3\text{CaO} + \text{Al}_2\text{O}_3 = \text{Ca}_3\text{Al}_2\text{O}_6 \tag{6}$$

$$3CaO + SiO_2 = CaSiO_3$$
 (7)

图 5 炼铁高炉及炉内化学变化过程示意图 Fig. 5 Schematic diagram of ironmaking blast furnace and chemical reaction process in furnace

由于未经处理的高炉冶金矿渣粒径很大,使用前 一般会对其进行一定预处理。高炉渣的活性与冶炼条 件、冷却条件以及铁矿石和造渣原料的化学成分等密 切相关。本文所研究的高炉渣产自河南某钢铁公司, 其粒度分布见表3,高炉渣颗粒分布在0.1~5 mm 之 间,大多数颗粒粒径为1~2 mm。为进一步探究高炉 渣的特性,利用高能球磨机对高炉渣进行球磨处理,球 磨30min后将其置于干燥箱中至恒重,过200目筛后

表3 筛分法测得的高炉渣粒度分布

 Table 3
 Particle size distribution of blast furnace slag measured

 by screening method

粒度/mm	> 3.2	3.2~2.5	2.5~1.6	1.6~0.45	0.45~0.3	0.3~0.2	0.2~0.1	3 ≤0.13
含量/%	1.76	1.01	14.6	68.48	10.72	1.43	1.3	0.70

图 6 高炉渣原料和球磨处理高炉渣的 SEM 图 Fig. 6 SEM images of BFS raw materials and ball grinding BFS

含量

21.38

8.27

妥善放置以备使用。图6是高炉渣原料和球磨处理30 min后高炉渣的微观形貌,由图可知,高炉渣为灰白 色,粒度为2~10 μm。

2.2 化学组成及物相组成

高炉渣的化学组成因产地不同而存在差异,取决于矿石质量、助熔剂成分、焦炭量以及冶炼生铁的种类,大体上含有 Al₂O₃、SiO₂、CaO 等化合物。通过 XRF 分析,高炉渣的化学组成如表 4 所示,主要为 CaO、SiO₂、Al₂O₃、MgO 等硅酸盐成分,并含有少量的 Fe₂O₃、TiO₂和 ZrO₂等晶核剂。

表 4	高炉渣	的化学组	1成				/%
Table	4 Chen	nical con	position	of blast	furnace	slag	
组成	SiO ₂	Al_2O_2	CaO	MgO	TiO,	Fe, 0,	ZrO ₂

2.69

1.65

1.34

0.17

52.86

通过 XRD 分析高炉渣粉体的物相组成如图 7 所示。从图中可以看出,在25°~40°范围存在非晶态"馒头峰",表明高炉渣为无定形玻璃态。

图 7 高炉渣的 XRD 图谱

Fig. 7 XRD pattern of blast furnace slag

2.3 差热分析及析晶特性

高炉渣差热分析结果如图8所示。从图中775℃

图 8 高炉渣的 DSC 曲线 Fig. 8 DSC curve of blast furnace slag

处的吸热峰可知,玻璃体中的晶核剂(TiO₂、Fe₂O₃)在 775 ℃吸热形核;无定形玻璃态的高炉渣在812~855 ℃ 发生析晶,整个析晶过程伴随热量放出,形成放热峰。

将球磨粉碎后的高炉渣压片成型,在马弗炉中 855℃热处理1h,对高炉渣进行析晶处理,图9为高炉 渣在855℃保温1h晶化处理后的XRD曲线,从图中 可以看出,晶化处理后高炉渣的主晶相是以 Ca₂Al₂SiO₇为基础的固溶体,在扫描电镜下的微观形 貌中可观察到1μm左右的微晶(如图10所示)。

图 9 热处理后高炉渣的 XRD 图谱 Fig. 9 XRD pattern of blast furnace slag after heat treatment

图 10 晶化处理后高炉渣的 SEM 图 Fig. 10 SEM image of blast furnace slag after crystallization

图 11 为高炉渣析晶过程的示意图。从图(a)可以 看出,室温下高炉渣颗粒间存在一定空隙;在温度升高 至核化温度的过程中(图 b),玻璃颗粒逐渐软化,黏度 降低,玻璃相形成晶核并发生核化;当达到晶化温度时

(图 c),晶粒长大并逐渐形成玻璃晶界;图(d)为烧结过 程结束,在玻璃体中形成的晶粒均匀分布的微晶玻璃。

3 结果与讨论

3.1 以纳米 TiC 为增强相制备 ZTA 陶瓷

图 12 为 Al₂O₃(含 15% 纳米 Al₂O₃)和 ZrO₂ 的质 量比为7:3,分别添加0%、2%、4%、6%和8%(均为 质量分数,下同)的纳米 TiC,1 650 ℃下烧结30 min,所 得样品相对密度与显气孔率随 TiC 含量的变化。由图 可知,TiC 含量为0~6%时,材料的相对密度在99%以 上,当 TiC 含量为0~6%时,材料的相对密度在99%以 上,当 TiC 含量为6%时出现最大值,为0.4%。这 是由于纳米 TiC 的含量较少时,与纳米 ZrO₂ 均匀地分 散到基体中以填充孔隙,而且纳米 Al₂O₃颗粒具有较 大的表面能也将促进烧结,使得复合陶瓷致密化程度 高、孔隙率低。随着纳米 TiC 含量逐渐升高,由于其具 有较大的表面活性而难以分散,易发生团聚,使纳米颗 粒失去了原有的纳米尺寸效应,影响了坯体的密度,且 在烧结过程中团聚体中产生的气体难以排出,形成闭 气孔,影响 ZTA 陶瓷的致密化。

图 13 TiC 含量对 ZTA 陶瓷抗弯强度和断裂韧性的影响 Fig. 13 Effects of TiC contents on flexural strength and fracture toughness of ZTA ceramics

图 13 是在 1 650 ℃烧结 30 min 时 ZTA 陶瓷的抗 弯强度和断裂韧性随纳米 TiC 含量的变化。从图中可 以看出,随着纳米 TiC 含量的增加,复合陶瓷的抗弯强 度逐渐减小,当 TiC 含量为 2% 时,抗弯强度为 615 MPa;由图可知,随着纳米 TiC 含量的逐渐增加,陶瓷的 断裂韧性逐渐降低,未添加纳米 TiC 样品的断裂韧性 为5.15 MPa・m^{1/2},纳米 TiC 含量为 2% 时,断裂韧性 明显提高,可达 5.58 MPa・m^{1/2}。

图 14 为不同 TiC 含量的 ZTA 陶瓷经1 650 ℃烧结 后断面的微观形貌。从图(a)中可以看出,向 ZTA 体 系中添加2%的纳米TiC,晶粒大小均匀,组织结构致 密,陶瓷的断裂方式为沿晶断裂和穿晶断裂同时存在。 由于在烧结过程中,在烧结驱动力的作用下,细小的纳 米 Al₂O₃、ZrO₂ 和 TiC 颗粒充填在基体的孔隙中,孔隙 率降低,晶粒间结合更为紧密。如图(b)所示,当TiC 含量增加到4%时,纳米颗粒已经开始出现团聚的现 象,团聚体与 Al,O, 之间存在空隙,这是由于 TiC 和 ZrO2颗粒细小,具有较大表面能,在高温下极易烧结成 大粒径的团聚体,纳米 TiC 和 ZrO, 团聚的大颗粒和 Al,O, 晶粒之间会形成一定的晶界阻隔,在 Al,O, 基体 内形成大量的微裂纹和气孔缺陷。如图(c)所示,当纳 米 TiC 含量为 6% 时,由于纳米 TiC 和 ZrO2 颗粒填充 Al,O, 基体空隙效果明显,复合陶瓷的相对密度逐渐增 加;然而在纳米 TiC 含量为 8% 时,纳米 TiC 含量达到 临界值,填充效果减弱,过多的纳米颗粒形成团聚影响 陶瓷致密,造成相对密度降低。从图(d)中还可以看 出大颗粒的 Al₂O₃ 堆垛,基体中形成大量的缺陷和烧 结过程中未及时排出的气体形成的闭气孔,影响了 ZTA 陶瓷的力学性能,上述结果分析和复合陶瓷的物 理性能与力学性能数据相符。

图 14 不同 TiC 含量的 ZTA 陶瓷断面 SEM 图 Fig. 14 Cross – section SEM of ZTA ceramics with different TiC contents

添加纳米 TiC 粉体能显著改善 ZTA 陶瓷的力学性

1%

能,由于纳米 TiC 颗粒能抑制 Al₂O₃、ZrO₂ 晶粒生长,使 组织结构均匀稳定且致密,极大程度降低基体的闭气 孔和缺陷数量,此外,硬质相对晶界的钉扎作用,以及 陶瓷内部晶粒的细化,使基体中产生大量的微裂纹和 次晶界,增加晶界体积比,并增强晶界结合强度,致使 裂纹扩展过程中沿晶内扩展形成穿晶断裂,有利于提 高复合陶瓷的常温和高温力学性能。

3.2 高炉冶金矿渣对 ZTA 陶瓷性能的影响

通过对高炉冶金矿渣的特性分析可知,由于在形成过程中的急速降温,造成其为一种玻璃态物质,具有较高的能态,并含有大量的陶瓷传统烧结助剂成分,如CaO、SiO₂、Al₂O₃、MgO等。通过对其差热分析及析晶特性研究可知,高炉渣原料经高温煅烧,可得到大量的Ca₂Al₂SiO₇ 晶相,Ca₂Al₂SiO₇ 具有良好的物理性能和力学性能。因此,高炉冶金矿渣在 ZTA 陶瓷烧结过程中的作用,具有很大的研究意义。

为了研究高炉渣在 ZTA 陶瓷烧结中的作用,在上 述配方的基础上,设定高炉渣的添加量(质量分数,下 同)为0%、2%、4%、6%、8% 五个组分,各组配方原料 的质量分数(见表5)。烧结温度为1550 ℃,烧结时间 为30 min,烧结压力为30 MPa,烧结后通过水冷降温至 200 ℃,并随炉冷却到室温。最后对 ZTA 陶瓷的物理 性能、力学性能和显微结构进行分析表征。

表5 各原料的	质量分数
---------	------

Table 5 Composition of raw materials

	-				
序号	高炉渣	$\alpha - Al_2O_3$	nano – Al_2O_3	ZrO_2	TiC
1	0	55	15	30	2
2	2	55	15	30	2
3	4	55	15	30	2
4	6	55	15	30	2
5	8	55	15	30	2

图 15 不同高炉渣添加量的 ZTA 陶瓷相对密度和显气孔率 Fig. 15 Relative density and apparent porosity of ZTA ceramics with different BFS contents

图 15 为高炉渣添加量对 ZTA 陶瓷相对密度和显 气孔率的影响。从图中可知,随着高炉渣添加量的升 高,ZTA 陶瓷的相对密度在 99.5% 上下波动且变化不大;显气孔率先减小后增大,当高炉渣添加量为 6%时,陶瓷的显气孔率低至 0.1%,致密度达到 99.5%。 说明高炉渣起到了助熔作用,添加适量的高炉渣可以降低 ZTA 陶瓷的显气孔率。由于纳米 Al₂O₃和 ZrO₂ 均匀分布于基体的孔隙中,高温烧结的微晶玻璃相,使 原本充填性好的陶瓷基体更加致密,有利于 ZTA 陶瓷 力学性能的提升。

不同高炉渣添加量的 ZTA 陶瓷经 1 550 ℃烧结的 抗弯强度和断裂韧性变化曲线如图 16 所示。从图中 可以看出,未添加高炉渣的 ZTA 陶瓷的抗弯强度和断 裂韧性分别为 565 MPa 和 5.28 MPa · m^{1/2},当高炉渣添 加量为 4%,复合陶瓷的抗弯强度达到 650 MPa,断裂韧 性达到 6.03 MPa · m^{1/2},分别提高了 15% 和14.2%。

图 16 不同高炉渣添加量的 ZTA 陶瓷抗弯强度和断裂韧性 Fig. 16 Flexural strength and fracture toughness of ZTA ceramics with different BFS contents

图 17 不同高炉渣添加量的 ZTA 陶瓷的 SEM 图 Fig. 17 SEM images of ZTA ceramics with different blast furnace slag additions

为了研究不同高炉渣添加量对 ZTA 陶瓷烧结的 影响,进一步分析了 ZTA 陶瓷的微观结构,不同高炉 渣添加量的复合材料断面形貌如图 17 所示。从图(a) 中可以看出,2% 高炉渣的添加不会显著改变 ZTA 陶 瓷的显微结构,Al,O,棒状晶粒的形成几乎无法显现。 如图(b)进一步添加高炉渣(4%)可以显著呈现棒状 生长的 Al₂O, 晶粒, 这与其他文献报道的结果相一 致[16-18]。高炉渣在烧结过程中形成微晶玻璃,在 Al_2O_3 晶界的偏析,通过增加晶界处 Al^{3+} 和 O^{2-} 之间的 离子键来抑制晶界扩散系数。因此,高炉渣添加量越 大,晶粒越细,除 ZrO2 晶粒尺寸减小外, Al2O3 与 ZrO2 之间的界面也越强。尽管 ZrO, 和 Al, O, 晶粒分布均 匀,但仍不能避免细小的团聚。进一步添加高炉渣 (6%)显著改变了 ZTA 陶瓷的微观结构, 足够多的 Al,O, 晶粒发生棒状生长,包裹在团聚体周围,相互联 锁,从而降低致密性,因此,在微观结构中出现更多具 有更大尺寸的孔隙如图(c)所示。随着高炉渣含量的 升高(8%),1 550 ℃烧结并经过析晶处理析出的 Ca, Al, SiO, 微晶相也相应增多(图 18), ZrO, 晶粒在 ZTA 基体中的团聚程度增加,结合图(d),此时 ZrO,颗 粒长大严重,超出临界尺寸,增韧效果较弱,材料内部 缺陷增多,所以材料的抗弯强度及断裂韧性下降严重。

图 18 不同高炉渣添加量的 ZTA 陶瓷的物相图谱 Fig. 18 XRD of ZTA ceramics with different BFS contents

图 19 Al₂O₃ 晶粒棒状生长模型 Fig. 19 Rod growth model of Al₂O₃ grains

将高炉渣添加到 ZTA 陶瓷基体中,随着烧结温度 升高,晶粒和晶界之间的活性增加,高炉渣在 Al₂O₃ 晶 界之间生成液相,削弱了 Al₂O₃ 晶粒之间的结合作用, 为 Al₂O₃ 晶粒的自由生长提供了强有力的条件。因 此,Al₂O₃ 晶粒以各向异性方式自由生长,如果生长动 力足够,就会长成棒状晶体。

4 结论

(1)添加 15% 纳米 α - Al₂O₃ 和 2% 纳米 TiC,
1 650 ℃烧结 30 min 制备的 ZTA 陶瓷,相对密度为
99.5%,显气孔率为0.2%,ZTA 陶瓷的抗弯强度和断裂韧性分别为 615 MPa 和 5.58 MPa ⋅ m^{1/2}。

(2)当 ZTA 复合材料中添加 4% 的高炉渣,1 550 ℃烧结 30 min,低温下力学性能得到明显提升,抗弯强 度和断裂韧性分别为 650 MPa 和 6.03 MPa · m^{1/2},比 相同温度下未添加高炉渣时分别提高了 15% 和 14.2%,烧结温度降低了 50 ℃以上。

(3)高炉渣在烧结过程中,在 Al₂O₃ 晶粒界面间产 生的液相促进 Al₂O₃ 晶粒的自由生长,驱动力足够大 会生长为棒状晶,在受力过程中棒晶的拔出和裂纹的 偏转有利于 ZTA 陶瓷力学性能的提升。

参考文献:

- [1] 卢红霞,刘红玉,李利剑,等.利用炼铁高炉渣制备微晶玻璃新型建材 变废为宝[J].砖瓦,2008(6):42-43.
- [2] 工业固废网.中国大宗工业固体废物综合利用产业发展报告 (2018—2019年度)[R].北京,2019.
- [3] KHATER G A. The use of Saudi slag for the production of glass ceramic materials[J]. Ceramics International, 2002, 28(1): 59 – 67.
- [4] TULYAGANOV D U, RIBEIRO M J, LABRINCHA J A. Development of glass – ceramics by sintering and crystallization of fine powders of calcium – magnesium – aluminosilicate glass [J]. Ceramics International, 2002, 28(5): 515 – 520.
- [5] 杜根杰. 我国大宗工业固废综合利用问题及未来发展趋势解读[J]. 混凝土世界,2018 (11):12-16.
- [6] 许莹,张玉柱,卢翔. 由熔融高炉渣制备微晶玻璃[J]. 工程科学学报,2015,37(5):633-637.
- [7] FRANCIS A A, ABDEL R M K, DAOUD A. Processing, structures and compressive properties of porous glass – ceramic composites prepared from secondary by – product materials [J]. Ceramics International, 2013, 39 (6): 7089 – 7095.
- [8] 樊涌,李宇,苍大强,等. 污泥和高炉渣协同制备微晶玻璃[J]. 北京 科技大学学报,2013,35(7):901-907.
- [9] GONG J G, MIAO H Z, ZHE Z, et al. Effect of TiC particle size on the toughness characteristics of Al₂O₃ – TiC composites [J]. Materials Letters, 2001, 49(3): 235 – 238.
- [10] YOU X Q, SI T Z, LIU N, et al. Effect of grain size on thermal shock resistance of Al₂O₃ – TiC ceramics [J]. Ceramics International, 2005, 31(1): 33 – 38.
- [11] REJAB N A, AZHAR A Z A, KIAN K S, et al. Effects of MgO addition on the phase, mechanical properties, and microstructure of zirconia toughened alumina added with CeO₂ (ZTA – CeO₂) ceramic composite [J]. Materials Science and Engineering A, 2014, 595: 18 – 24.
- [12] NAGA S M, HASSAN A M, AWAAD M. Physical and mechanical properties of Ta₂O₅ doped zirconia – toughened alumina (ZTA) composites [J]. Ceramics International, 2015, 41(5): 6248 – 6255.
- [13] CHAE J, CHO B. Effect of SiO₂, CaCO₃ and talc on sintering behavior of ZTA [J]. Journal of Ceramic Processing Research, 2013, 14(2): 210-212.
- [14] LU H X, CAI Y, HE M, et al. Preparation and properties of lanth doped ZTA ceramics with plate – like crystals by microwave sinte [J].

Materials Research Innovations, 2012, 16(6): 406 – 412.

- [15] 郭瑞松,郭多力,齐海涛,等.添加稀土氧化物对氧化铝复相陶瓷性能的影响[J]. 硅酸盐学报,2002,30(1):112-116.
- [16] 荣守范. 原位生长柱状晶复合增韧氧化铝陶瓷制备方法及机理研究 [D]. 哈尔滨:哈尔滨理工大学,2008.
- [17] MA D C, CHEN H T, CHENG X Q, et al. Preparation and properties

of ZTA ceramics using blast furnace slag as sintering additives [J]. Materials Research Express, 2019, 6(6): 065201.

[18] ZHANG W T, HE F, XIE J L, et al. Crystallization mechanism and properties of glass ceramics from modified molten blast furnace slag [J]. Journal of Non - Crystalline Solids, 2018, 502; 164 - 171.

Characteristics of Blast Furnace Slag and Its Role in ZTA Ceramics Sintering

LU Hongxia¹, GAO Kai¹, LI Ming Liang¹, LIANG Xinxing²

1. School of Materials Science and Engineering (Henan Province Industrial Technology Research Institute of Resources and Materials), Zhengzhou University, Zhengzhou 450001, China;

2. Zhengzhou Fangming High Temperature Ceramic New Material Co., Ltd., Zhengzhou 452384, China

Abstract: Blast furnace slag is an industrial waste slag produced by ironmaking blast furnace, which contains silicate components such as CaO, Al_2O_3 , SiO_2 and a small amount of crystallization nucleating agents such as Fe_2O_3 , TiO_2 , ZrO_2 . After it was heat treated at 855 °C for 1 h, the crystal phase of $Ca_2Al_2SiO_7$ about 1 µm could be nucleated and crystallized, which indicates that blast furnace slag has high crystallization activity. Adding 4% of blast furnace slag to ZTA, the mechanical properties of ZTA ceramics are significantly improved at low temperatures after sintered at 1 550 °C for 30 min. Flexural strength and fracture toughness are 650 MPa and 6.03 MPa \cdot m^{1/2}, respectively. There are 15% and 14.2% higher than that at the same sintering temperature without addition of blast furnae slag, and the sintering temperature is reduced by more than 50 °C. The grain – refining furnace slag incorporated ZTA ceramic matrix, the liquid phase produces by blast furnace slag during the sintering process, which promotes the growth of Al_2O_3 rod crystal, the rod crystal extraction and crack deflection during the process of stress are conducive to the improvement of the mechanical properties of ZTA ceramics at sign at high temperature enhances the grain boundary strength of ZTA ceramics and further improves the mechanical properties of the materials.

Key words: blast furnace slag; ZTA ceramics; ceramic sintering; crystallization

引用格式:卢红霞,高凯,李明亮,梁新星.高炉冶金矿渣特性及其在 ZTA 陶瓷烧结中的作用[J]. 矿产保护与利用,2020,40(3):26-33. Lu HX, Gao K, Li ML and Liang XX. Characteristics of blast furnace slag and its role in ZTA ceramics sintering[J]. Conservation and utilization of mineral resources, 2020, 40(3): 26-33.

投稿网址:http://kcbh.cbpt.cnki.net

E - mail:kcbh@ chinajournal. net. cn