赵志飞,任小荣,李策,等.氧气反应模式-电感耦合等离子体串联质谱法测定土壤中的镉[J].岩矿测试,2021,40(1): 95-102.

ZHAO Zhi - fei, REN Xiao - rong, LI Ce, et al. Determination of Cadmium in Soil Samples by ICP - MS/MS Using Oxygen Reaction Mode[J]. Rock and Mineral Analysis, 2021, 40(1):95 - 102. [DOI: 10.15898/j. cnki. 11 - 2131/td. 202003150034]

氧气反应模式 - 电感耦合等离子体串联质谱法测定土壤中 的镉

赵志飞¹,任小荣²,李策²,郭朝¹,宋娟娥¹,龚华³ (1.安捷伦科技(中国)有限公司,北京 100102;

2. 湖北省地质实验测试中心, 湖北 武汉 430022;

3. 中国科学院南京土壤研究所, 江苏南京 210000)

摘要:应用电感耦合等离子体质谱法(ICP-MS)分析土壤中的镉元素时,锆的氢氧化物、钼的氧化物、锡的同位素会对镉造成严重的干扰,导致准确测定土壤中镉的难度较大。本文采用电感耦合等离子体串接质谱法(ICP-MS/MS),选取无同质异位素干扰的¹¹¹Cd为分析谱线,在MS/MS模式下碰撞反应池中通入的氧气可以与⁹⁴Zr¹⁶O¹H⁺、⁹⁵Mo¹⁶O⁺进行电子转移、去氢、加氧等反应,抑制这些多原子离子对¹¹¹Cd的重叠干扰。结果表明:氧气流量越大,去除多原子离子的效果越好,当氧气流量在 0.45mL/min 时,溶液中 2000μg/L 以下的锆、1000μg/L 以下的钼在¹¹¹Cd 处形成的多原子重叠干扰小于 0.005μg/L。实验在石墨消解仪中采用氢氟酸 - 硝酸 - 高氯酸消解样品,盐酸复溶,溶液定容稀释至 1000 倍测定,方法检出限(3δ)达到 0.003 μg/g; 本方法经过国家土壤一级标准物质验证,11 个国家土壤一级标准物质的测量值和认定值的相对误差在 ±7% 以内,3 个国家土壤一级标准物质的精密度(RSD, n = 12)小于5%。本方法可以作为土壤样品中痕量 镉元素的分析方法。

关键词:土壤;镉;氧气反应模式;多原子离子;电感耦合等离子体串接质谱法

要点:

(1) 电感耦合等离子体串接质谱氧气模式直接分析土壤中¹¹¹Cd。

(2) 优化氧气流量为 0.45mL/min 时,溶液中 2000µg/L 锆、1000µg/L 钼对镉的干扰降低至 0.005µg/L 以下。

(3) 方法检出限为 0.003 µg/g, 可以满足土壤样品中痕量镉的分析。

中图分类号: S151.93; O657.63 文献标识码: A

镉是一种毒性较大的重金属污染物,镉在土壤、 水质、农作物中的分布及污染情况一直是地质、环 保、农业等部门关注的重点。镉元素常见的测量方 法有石墨炉原子吸收光谱法^[1],该法测量单个样品 的时间较长,不适合大量样品的分析;电感耦合等离 子体发射光谱法^[2-3],该法检出限相对较高,仅适合 分析镉含量较高的样品;电感耦合等离子体质谱法 (ICP – MS),该法具有检出限低、多元素同时测定等 优点,已经成为环境、食品、地质等行业检测痕量或 超痕量镉的重要手段^[4-7]。

ICP - MS 法测定镉元素时,会受到同质异位素 和多原子离子的干扰,基体较为简单的样品如水样、 食品中各干扰元素含量较低,形成的干扰也较少,使 用 ICP - MS 法分析镉元素时多采用无同质异位素 干扰的¹¹¹Cd 进行分析^[8-11];复杂基体样品如合金、 矿物、土壤等经处理后¹¹¹Cd 会受到 Mo 和 Zr 的氧化 物和氢氧化物的重叠干扰,在进行此类样品分析时 经常选择¹¹⁴Cd 采用系数校正的方式扣除¹¹⁴Sn 的

收稿日期: 2020-03-15; 修回日期: 2020-04-17; 接受日期: 2020-08-24 作者简介: 赵志飞,硕士,应用工程师,从事原子光谱方法开发与研究。E-mail: zzfeel@126.com。

干扰^[12-16]。

电感耦合等离子体串联质谱法(ICP - MS/MS) 相比于单极杆 ICP - MS,具有更强的复杂基体中多 原子干扰的去除能力,最近几年广泛应用于冶金、环 境、地质、食品、生命科学等领域^[17-25]。本文研究了 ICP - MS/MS 应用于土壤镉元素分析时干扰的抑制 效果,选择了反应气体,优化了仪器条件,考察了 ICP - MS/MS 对钼和锆的氧化物、氢氧化物的干扰 抑制效果,选取部分国家土壤一级标准物质对镉元 素进行准确度验证,建立了准确测定土壤中镉元素 的分析方法。

1 实验部分

1.1 仪器及工作条件

8900型电感耦合等离子体串接质谱仪(美国 Agilent公司)。仪器优化后的主要参数条件如下: 等离子体功率1550W,雾化气流速0.85L/min,补偿 气流速0.2L/min;进样泵速0.2r/s;反应气体为氧 气;氧气流速0.45mL/min(30%量程);等离子体模 式为串接模式。

1.2 样品和主要试剂

国家一级土壤标准物质(中国地质科学院地球 物理地球化学勘查研究所)。

镉、锆、钼元素标准储备液:1000mg/L(国家有 色金属及电子材料分析测试中心)。

盐酸、硝酸、高氯酸、氢氟酸(优级纯,美国 Merk 公司)。

去离子水(电阻率 18MΩ・cm,美国 Millipore 公司)。

1.3 土壤样品前处理

采用四酸消解体系^[26-27],准确称取 0.1000g 样 品置于聚四氟乙烯消解管中,沿管壁加入 1mL 去离 子水,分别加入 4mL 氢氟酸、4mL 硝酸、1mL 高氯 酸,将盛有样品和混合酸的聚四氟乙烯消解管放入 高通量石墨消解仪中,升温至 120℃保持 0.5h,再升 温至 140℃加热 1h,最后升温至 160℃继续加热,直 至加入的酸蒸发完毕(白烟冒尽),冷却 5min 后加 入 2mL 盐酸(2mol/L)复溶提取,并用去离子水准确 定容至 100mL 聚丙烯比色管中,摇匀,静置待测。

2 结果与讨论

— 96 —

2.1 测量同位素的选择

镉元素有 8 个同位素,除了¹¹¹Cd 没有同质异位 素干扰,其他均有同质异位素干扰。镉元素丰度最 高的¹¹⁴Cd 受到¹¹⁴Sn 的干扰,分析土壤中镉时一般采 用¹¹⁴Cd 在线扣除 Sn 干扰的方式^[26-29],但是文献报 道中干扰系数并不相同。王妃等^[30]、禹莲玲等^[31] 发现锡的含量不同对镉的干扰程度也不同,同一实 验条件下干扰系数并不固定,锡的浓度越高,干扰系 数越小。¹¹¹Cd 存在¹¹¹ZrOH⁺、¹¹¹MoO⁺等多原子重叠 干扰。王 岚等^[32]采用膜去溶技术有效抑制了 ¹¹¹ZrOH⁺、¹¹¹MoO⁺的产生,准确测定了地质样品中 的¹¹¹Cd。ICP – MS/MS 在串接模式下有多重选择可 以降低多原子离子干扰。本文采用 ICP – MS/MS 分 析土壤中的镉,选取¹¹¹Cd 作为测定同位素,通过优 化仪器参数抑制锆和钼的氧化物干扰,避免了采用 干扰系数校正法。

2.2 测量模式的选择

Mo和Zr的氧化物和氢氧化物⁹⁵Mo¹⁶O、⁹⁴Zr¹⁶O¹H 对¹¹¹Cd都存在不同程度的干扰。由于土壤中 Mo和 Zr的含量是Cd的数十倍至数万倍,这些多原子离 子的叠加干扰都可以导致¹¹¹Cd测试结果不准确。 马晓龙等^[33]采用单极杆 ICP - MS 验证了氧气可有 效抑制⁹⁴Zr¹⁶O¹H 对¹¹¹Cd 的干扰,本实验考虑在 ICP - MS/MS分析中,使用氧气反应模式抑制⁹⁵Mo¹⁶O、 ⁹⁴Zr¹⁶O¹H对¹¹¹Cd 的干扰。

ICP – MS/MS 氧气模式下分别引入 800µg/L 的 错单标溶液和 200µg/L 的钼单标溶液,采用产物离 子扫描模式: Q_1 选择 m/z = 111 只使¹¹¹ ZrOH⁺或者 ¹¹¹MoO⁺通过,碰撞反应池中通入氧气, Q_2 扫描 m/z在 2 ~ 275 之间所有质量数的信号强度,主要产物离 子的信号强度结果见表 1。

表1 ZrOH/MoO 和氧气主要产物的质量数及信号强度

Table	1	Main	reaction	products	and	signal	intensity	of
		ZrOH	OH/MoO and oxygen					

与准密运	Q1 和 Q2 分析的质量数	信号强度
你准倍仪	m/z	(cps)
	$111 \rightarrow 32$	39817
	$111 \rightarrow 127$	4073
钻里标浴液	$111 \rightarrow 110$	868
	$111 \rightarrow 126$	813
阳光仁淡泽	$111 \rightarrow 32$	36109
田平尓浴液	$111 \rightarrow 127$	1750

从表1中的数据可以推断,ZrOH⁺和O₂主要发 生了电荷转移、加氧、去氢等反应,生成¹⁶O¹⁶O⁺、 ⁹⁴Zr¹⁶O¹⁶O¹H⁺、⁹⁴Zr¹⁶O⁺、⁹⁴Zr¹⁶O¹⁶O⁺。马晓龙等^[33] 研究了单极杆 ICP – MS 下氧气和锆的氧化物反应

2.3 氧气模式下干扰抑制效果

碰撞反应池通入的氧气流速大小影响反应进行 的程度和镉元素信号强弱,土壤中锆元素含量普遍 高于钼元素,本方法使用锆单标优化氧气流速。在 0~0.75mL/min内改变氧气流速,分别对800µg/L 锆单标溶液和1µg/L 镉单标溶液进行分析,观察 ⁹⁴Zr¹⁶O¹H⁺干扰的抑制效果和¹¹¹Cd 的灵敏度,结果 见表 2。从表 2 中数据可以看出,氧气流速在 0.450mL/min时 ZrOH 的干扰信号降到50cps 以下, 同时¹¹¹Cd 信号强度最高,以下实验中氧气流速选择 0.450mL/min。

为了验证干扰抑制的效果,对不同浓度的错单 标溶液和钼单标溶液在普通的氦气模式和优化后的 氧气模式下同时进行分析。为了降低氧化物干扰, 氦气模式下优化仪器参数使钼的氧化物产率小于 0.02%,两个模式下的¹¹¹Cd分析结果见表3。从 表3中数据可以看出,氦气模式下锆对¹¹¹Cd的干扰 系数大约为0.00009~0.00014,干扰系数和徐进力 等^[34]的研究结论基本相同。即使氧化物产率很低, 100 μg/L的锆和 50μg/L 的钼对¹¹¹Cd 的干扰大于 0.01μg/L,这对于土壤中痕量镉的影响已经不可忽 略;同时还表明干扰程度和锆、钼的浓度不是简单的 线性关系。从氧气模式下的数据可以看出:在实验 条件下溶液中 2000µg/L 的锆在¹¹¹ Cd 处产生 0.004µg/L的干扰;溶液中 1000µg/L 的钼在¹¹¹ Cd 处产生0.005µg/L的干扰。按照样品前处理方式, 当固体样品中锆含量小于 2000µg/g、钼含量小于 1000µg/g 时,本方法测量镉的干扰都小于 0.005µg/g,干扰抑制效果较好。

表 2 氧气流速的优化

Table 2 Optimization of oxygen flor

氧气流速	Zr 单标 m/z = 111 处	Cd 单标 m/z = 111 处
(mL/min)	信号强度(cps)	信号强度(cps)
0.000	623.35	6288.14
0.075	670.02	6024.69
0.150	593.35	8971.34
0.225	335.50	12464.13
0.300	138.00	16208.14
0.375	45.00	18299.17
0.450	21.00	18905.01
0.525	4.50	18352.57
0.600	2.00	17020.81
0.675	2.00	16071.31
0.750	2.50	14624.65

2.4 分析方法评价

2.4.1 方法准确度

选择 11 个国家土壤一级标准物质,按照拟定的 实验条件,每个标准物质平行制备两份溶液,在优化 后的仪器参数下测定土壤中的镉元素含量,测定结 果见表4。测定值与认定值的相对误差均在 ±7% 以内,测定值与认定值吻合较好。

2.4.2 方法检出限和精密度

按照本文土壤样品前处理方法制备样品空白 12份,在优化后的仪器条件下进行测定,具体数据 见表5,计算样品空白测定结果的标准偏差(SD), 样品稀释倍数乘以3倍标准偏差计算方法检出限。

图 1 ICP - MS/MS 氧气模式分析¹¹¹Cd 示意图

Fig. 1 Schematic diagram of ICP - MS/MS oxygen model analysis of ¹¹¹Cd

表 3 不同模式下¹¹¹Cd 干扰情况对比

Table 3 Interference elimination effects in different mod

标准溶液	浓度	氦气模式下 ¹¹¹ Cd 测定结果		工业至粉	氧气模式下 ¹¹¹ Cd 测定结果	
	(µg/L)	浓度(µg/L)	信号强度(cps)	「仉杀奴	浓度(µg/L)	信号强度(cps)
锆单标溶液	100	0.014	87	0.00014	0.000	3
	200	0.028	173	0.00014	0.000	3
	400	0.040	247	0.00010	0.001	10
	800	0.095	580	0.00012	0.001	20
	2000	0.171	1047	0.00009	0.004	60
钼单标溶液	20	0.006	37	0.0003	0.000	3
	50	0.014	87	0.0003	0.000	3
	100	0.020	120	0.0002	0.000	7
	200	0.049	303	0.0002	0.001	13
	1000	0.172	1053	0.0002	0.005	70
	2000	0.353	2167	0.0002	0.018	237

注:表中分析的是 Zr 单标溶液和 Mo 单标溶液,镉的预测浓度都为0。

表4 土壤一级标准物质镉分析结果

Table 4 Analytical results of Cd in soil national standard substances

标准物质护导	认定值	测定值	相对误差
你他彻贝细与	(µg/g)	$(\mu g/g)$	(%)
CBW07385	0.28 ± 0.02	0.285	1.8
GDw07385	0.28 ± 0.02	0.282	0.7
GBW07388	0 066 + 0 007	0.067	1.5
	0.000 ± 0.007	0.068	3.0
GBW07389	0.14 ± 0.01	0.143	2.1
	0.11 2 0.01	0.141	0.7
CBW07407	0.08 ± 0.02	0.079	-1.3
00007407	0.00 ± 0.02	0.079	-1.3
CBW07408	0.13 ± 0.02 0.15 ± 0.02	0.131	0.8
00007400		0.132	1.5
CBW07426		0.149	-0.7
00007420		0.154	2.7
CBW07427	0.13 ± 0.01	0.131	0.8
00007427		0.127	-2.3
CBW07449	0.108 ± 0.011	0.105	-2.8
00007447	0.108 ± 0.011	0.108	0.0
CBW07451	0.065 ± 0.012	0.061	-6.2
00007451	0.005 ± 0.012	0.062	-4.6
CBW07452	0.15 ± 0.02	0.148	-1.3
001107132	0.15 ± 0.02	0.152	1.3
CBW07453	0.106 ± 0.007	0.103	-2.8
0Dw07-55	0.100 ± 0.007	0.105	-0.9

表 5 方法检出限和精密度

Table 5 Detection limit and precision tests of the method

本方法测定镉检出限为0.003mg/kg,优于多目标地球化学调查76种元素分析方案、全国土壤污染状况调查对镉元素检出限(0.03mg/kg)的要求。

选取 GBW07389、GBW07408、GBW07451 三个国家土壤一级标准物质平行分析 12次,精密度以相对标准偏差(RSD)计,分别为 1.8%、4.4%、2.4%。本方法检出限、精密度和膜去溶ICP-MS测定地质环境样品中¹¹¹Cd 的水平相当^[32]。

3 结论

实验结果表明在电感耦合等离子体串接质谱氧 气模式下,碰撞反应池中氧气和⁹⁴Zr¹⁶O¹H、⁹⁵Mo¹⁶O 发生电子转移、加氧、去氢等反应,抑制了这些多原 子离子对¹¹¹Cd 的干扰,土壤样品中的锆含量小于 2000μg/g、钼含量小于 1000μg/g 时对镉测量的影 响可以忽略;通过分析国家土壤一级标准物质,表明 该方法的测定值和认定值吻合,检出限和精密度满 足要求。除了现有 ICP - MS 干扰系数校正法和动 能歧视 ICP - MS 法,本研究建立的氧气反应 ICP -MS/MS 法可作为土壤中痕量镉的分析方法,为多目 标地球化学调查、农业环境调查等提供高质量数据。

	1				
而日	Cd 空白值	Cd 测定值(µg/g)			
坝日	(µg/L)	GBW07408	GBW07451	GBW7389	
	-0.0004 0.0018 0.0007	0.131 0.127 0.132	0.061 0.062 0.065	0.134 0.143 0.142	
12 次测定值	0.0021 -0.0012 0.0019	0.130 0.130 0.132	0.065 0.069 0.070	0.139 0.139 0.145	
	0.0011 0.0013 0.0015	0.133 0.132 0.126	0.067 0.071 0.066	0.146 0.138 0.141	
	0.0014 -0.0002 0.0010	0.127 0.130 0.132	0.068 0.065 0.064	0.136 0.142 0.140	
标准偏差	0.0010	0.0024	0.0029	0.0034	

氧气模式下,化学反应进行程度与氧气以及锆和钼的浓度呈正相关。在本实验氧气流速条件下, 当样品中锆含量大于 2000µg/g、钼含量大于 1000µg/g时,反应不完全会造成干扰消除不完全, 镉分析误差增加。如果采用本方法测定这部分样品 中镉的含量,可以重新优化氧气流速等参数,进一步 降低干扰,以获得准确结果。

4 参考文献

 [1] 邵文军,张激光,刘晶晶.石墨炉原子吸收光谱法测定 岩石和土壤中痕量镉[J].岩矿测试,2008,27(4): 310-312.

Shao W J, Zhang J G, Liu J J. Determination of trace cadmium in rocks and soil by graphite furnace atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2008,27(4):310-312.

[2] 何恬叶,张颖红,胡子文.微波消解 ICP - OES 法测定
 土壤样品中22 种元素[J].分析试验室,2018,37(1):
 84-87.

He T Y, Zhang Y H, Hu Z W. Determination of 22 elements in soil by ICP – OES with microwave digestion [J]. Chinese Journal of Analysis Laboratory, 2018, 37 (1):84-87.

[3] 张更宇,刘伟,崔世荣,等.分类消解-电感耦合等离子体原子发射光谱法测定环境土壤中15种金属元素的含量[J].理化检验(化学分册),2018,54(4):428-432.

Zhang G Y, Liu W, Cui S Y, et al. Determination of 15 metal elements in soil by inductively coupled plasma atomic emission spectrometry [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2018, 54(4):428-432.

 [4] 乔军,佟克兴,李安. 电感耦合等离子体质谱(ICP-MS)法测定葡萄酒中的铜、镉、铅[J]. 中国无机分析 化学,2017,7(4):33-36.
 Qiao J, Tong K X, Li A. Determination of copper,

cadmium,lead in wine by inductively coupled plasma – mass spectrometry (ICP – MS) [J]. Chinese Journal of Inorganic Analytical Chemistry,2017,7(4):33 – 36.

- [5] 宋阳,李现忠,黄文氢,等. ICP MS 技术在石油化工 中的应用[J].石油化工,2016,45(10):1279 - 1287.
 Song Y, Li X Z, Huang W Q, et al. Application of ICP - MS in petrochemical industry [J]. Petrochemical Technology,2016,45(10):1279 - 1287.
- [6] 赵志南,严冬,何群华,等. ICP MS 测定《全国土壤污 染状况详查》项目中 14 种元素[J].环境化学,2017, 36(2):448-452.

Zhao Z N, Yan D, He Q H, et al. Determination of 14 elements in China Soil Pollution Survey by ICP – MS [J]. Environmental Chemistry,2017,36(2):448 – 452.

- [7] 张保科,温宏利,王蕾,等. 封闭压力酸溶-盐酸提取 - 电感耦合等离子体质谱法测定地质样品中的多元 素[J]. 岩矿测试,2011,30(6):737-744.
 Zhang B K, Wen H L, Wang L, et al. Determination of multiple elements in geological samples by closed pressure acid solution - hydrochloric acid extraction inductively coupled plasma - mass spectrometry [J]. Rock and Mineral Analysis,2011,30(6):737-744.
- [8] 戴冠苹,高敬铭,张红云,等. ICP MS和GFAAS测定 粮食中镉的对比研究[J]. 粮油食品科技,2018,26
 (4):36-39.
 Dai G P,Gao J M, Zhang H Y, et al. Comparative study

on the determination of cadmium in grain by ICP – MS and GFAAS[J]. Science and Technology of Cereals, Oils and Foods, 2018, 26(4):36–39.

[9] 徐迪伟,陈荣乐. ICP – MS 检测饮用水中 31 种元素的 方法研究[J].中国卫生检验杂志,2018,27(19): 2761 – 2764.

Xu D W, Chen R L. Study on the determination of 31 metal elements in drinking water by inductively coupled plasma – mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2018, 27(19):2761 – 2764.

[10] 鲁森娟,凌飞,柳展飞.电感耦合等离子体质谱法测 定水中 20 种金属元素[J].能源环境保护,2016,30 (4):56-58.

Lu M J, Ling F, Liu Z F. Study on determination of 20 kinds of elements in the water by ICP – MS[J]. Energy Environmental Protection, 2016, 30(4):56 – 58.

 [11] 王静,王鑫,耿哲,等.碰撞池-电感耦合等离子体质 谱测定海水重金属[J].环境工程学报,2016,10(4): 2139-2143.

Wang J, Wang X, Geng Z, et al. Determination of heavy metal in marine waters by collision cell inductively coupled plasma – mass spectrometry [J]. Chinese Journal of Environmental Engineering, 2016, 10 (4): 2139 – 2143.

 [12] 王佳翰,冯俊,王达成,等. 电感耦合等离子体质谱法 测定地球化学样品中钼镉钨铀锡[J]. 冶金分析, 2017,37(6):20-25.

Wang J H, Feng J, Wang D C, et al. Determination of molybdenum, cadmium, tungsten, uranium and tin in geochemical samples by inductively coupled plasma – mass spectrometry [J]. Metallurgical Analysis, 2017, 37 (6):20-25.

[13] 李刚,曹小燕.电感耦合等离子体质谱法测定地质样

2021年

品中锗和镉的干扰及校正[J]. 岩矿测试,2008,27 (3):197-200.

Li G, Cao X Y. Interference and its elimination in determination of germanium and cadmium in geological samples by inductively coupled plasma – mass spectrometry [J]. Rock and Mineral Analysis, 2008, 27 (3):197–200.

 [14] 孙朝阳,董利明,贺颖婷,等. 电感耦合等离子体质谱 法测定地质样品中钪镓锗铟镉铊时的干扰及其消除 方法[J]. 理化检验(化学分册),2016,52(9): 1026-1030.

> Sun Z Y, Dong L M, He Y T, et al. Interference and elimination method of Sc, Ga, Ge, In, Cd, Tl in geological samples by inductively coupled plasma – mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2016, 52(9):1026 – 1030.

- [15] 常学东. ICP MS 方法测定镉的干扰现象分析[J].
 新疆有色金属,2011(6):47-49.
 Chang X D. Analysis of interference phenomena in determination of cadmium by ICP MS method [J].
 Xinjiang Nonferrous Metals,2011(6):47-49.
- [16] 罗策,雷小燕,黄永红,等.电感耦合等离子体质谱法 测定锆及锆合金中镉含量的质谱干扰分析[J].分析 科学学报,2016,32(4):515-519.

Luo C, Lei X Y, Huang Y H, et al. Determination of cadmium in zirconium and zirconium alloys by ICP – MS [J]. Journal of Analytical Science, 2016, 32 (4): 515–519.

 [17] 靳兰兰,王秀季,李会来,等. 电感耦合等离子体质谱 技术进展及其在冶金分析中的应用[J]. 冶金分析, 2016,36(7):1-14.

Jin L L, Wang X J, Li H L, et al. Progress in inductively coupled plasma – mass spectrometry technology and its application in metallurgical analysis [J]. Metallurgical Analysis, 2016, 36(7): 1-14.

- [18] Jackson S L, Spence J, Janssen D J, et al. Determination of Mn, Fe, Ni, Cu, Zn, Cd and Pb in seawater using offline extraction and triple quadrupole ICP - MS/MS
 [J]. Journal of Analytical Atomic Spectrometry, 2018, 33:304 - 313.
- [19] Luo M Y, Xing S, Yang Y G, et al. Sequential analyses of actinides in large – size soil and sediment samples with total sample dissolution [J]. Journal of Environmental Radioactivity, 2018, 187:73 – 80.
- [20] Taylor V F, Li Z G, Sayarath V, et al. Distinct arsenic metabolites following seaweed consumption in humans [J]. Scientific Reports, 2017, 7:3920.
- [21] Gondikas A, Kammer F, Kaegi R, et al. Where is the nano?
 100 —

Analytical approaches for the detection and quantification of TiO_2 engineered nanoparticles in surface waters [J]. Environmental Science Nano, 2018, 5: 313 – 326.

- [22] Thomas Z, Johan H K. Laser ablation Rb/Sr dating by online chemical separation of Rb and Sr in an oxygen – filled reaction cell [J]. Chemical Geology, 2016, 437: 120 – 133.
- [23] Amr M A, Dawood N D A, Helal A I, et al. Rare earth elements and ¹⁴³Nd/¹⁴⁴ Nd isotope ratio measurements using tandem ICP - CRC - MS/MS: Characterization of Date Palm (*Phoenix Dactylifera* L.) [J]. Journal of Analytical Atomic Spectrometry, 2017, 32:1554 - 1565.
- [24] Pinheiro F C, Amaral C D B, Schiavo D, et al. Determination of arsenic in fruit juices using inductively coupled plasma – tandem mass spectrometry (ICP – MS/ MS) [J]. Food Analytical Methods, 2017, 10 (4): 992 – 998.
- [25] Guo W, Jin L L, Hu S H, et al. Method development for the determination of total fluorine in foods by tandem ICP – mass spectrometry with mass – shift strategy [J]. Journal of Agricultural and Food Chemistry, 2017, 65 (16):3406 – 3412.
- [26] 宋威,胡长春.电感耦合等离子体质谱法测定土壤中的镉[J].广州化工,2018,46(6):95-96.
 Song W, Hu C C. Determination of cadmium in soil by inductively coupled plasma mass spectrometry [J]. Guangzhou Chemical Industry,2018,46(6):95-96.
- [27] 乐淑葵,段永梅. 电感耦合等离子体质谱法(ICP MS)测定土壤中的重金属元素[J]. 中国无机分析化 学,2015,5(3):16-19.
 Le S K, Duan Y M. Determination of heavy metal elements in soil by ICP MS[J]. Chinese Journal of Inorganic Analytical Chemistry,2015,5(3):16-19.
- [28] 侯鹏飞,江冶,曹磊.无高氯酸常压酸溶-ICP-MS 法同时测定土壤中的 As,Cd,Pb,Cr,Zn,Cu,Ni[J]. 地质学刊,2019,43(1):166-170.
 Hou P F,Jiang Y,Cao L. Determination of As,Cd,Pb, Cr,Zn,Cu and Ni in soil by ICP-MS method without perchloric acid[J]. Journal of Geology, 2019,43(1): 166-170.
- [29] 李自强,李小英,钟琦,等. 电感耦合等离子体质谱法 测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J]. 岩矿测试,2016,35(1):37-41.
 Li Z Q,Li X Y,Zhong Q, et al. Determination of Cr,Cu, Cd and Pb in soil samples by inductively coupled plasma mass spectrometry for an investigation of heavy metal pollution[J]. Rock and Mineral Analysis,2016,35(1):

37 - 41.

[30] 王妃,王德淑,汤德能.浅析锡对电感耦合等离子体 质谱法测定镉的干扰[J].中国无机分析化学,2015, 5(2):12-18.

Wang F, Wang D S, Tang D N. Study on interference of tin in the determination of cadmium by inductively coupled plasma – mass spectrometry [J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(2); 12 – 18.

 [31] 禹莲玲,郭斌,柳昭,等. 电感耦合等离子体质谱法测 定高锡地质样品中的痕量镉[J]. 岩矿测试,2020,39
 (1):77-84.

Yu L L, Guo B, Liu Z, et al. Trace cadmium in geological samples with high content of tin determined by inductively coupled plasma – mass spectrometry [J]. Rock and Mineral Analysis, 2020, 39(1):77 – 84.

[32] 王岚,杨丽芳,谭西早,等. 膜去溶-电感耦合等离子 体质谱法测定环境地质样品中的镉[J]. 岩矿测试, 2017,36(6):574-580.

Wang L, Yang L F, Tan X Z, et al. Determination of

cadmium in environmental geological samples by inductively coupled plasma – mass spectrometry with desolvation [J]. Rock and Mineral Analysis, 2017, 36 (6):574 – 580.

- [33] 马晓龙,李刚,李艳,等. 碰撞反应池-电感耦合等离 子体质谱法测定错基合金中痕量镉[J]. 理化检验 (化学分册),2014,50(3):345-348.
 Ma X L, Li G, Li Y, et al. Determination of trace cadmium in zirconium - based alloys by impact reactor inductively coupled plasma - mass spectrometry [J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis),2014,50(3):345-348.
- [34] 徐进力,邢夏,唐瑞玲,等. 动能歧视模式 ICP MS 测定地球化学样品中 14 种痕量元素[J]. 岩矿测试, 2019,38(4):394-402.
 Xu J L, Xing X, Tang R L, et al. Determination of 14

Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP – MS using kinetic energy discrimination mode [J]. Rock and Mineral Analysis,2019,38(4):394 – 402.

Determination of Cadmium in Soil Samples by ICP – MS/MS Using Oxygen Reaction Mode

ZHAO Zhi – fei^1 , REN Xiao – $rong^2$, LI Ce^2 , GUO Zhao¹, SONG Juan – e^1 , GONG Hua³

- (1. Agilent Technologies (China) Co., LTD, Beijing 100102, China;
- 2. Hubei Geological Research Laboratory, Wuhan 430022, China;
- 3. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210000, China)

HIGHLIGHTS

- (1) Directly analysis ¹¹¹Cd in soil samples by triple quadrupole ICP MS oxygen reaction mode.
- (2) Optimized oxygen flow rate at 0.45mL/min, the interference of 2000µg/L Zr solution and 1000µg/L Mo solution to cadmium can be reduced to less than 0.005µg/L.
- (3) The method detection limit is $0.003 \mu g/g$, which can meet the trace cadmium analysis in soil samples.

ABSTRACT

BACKGROUND: When using inductively coupled plasma – mass spectrometry (ICP – MS) to analyze soil, the zirconium hydroxide, molybdenum oxide, and tin isotopes can cause serious interference on cadmium, which makes it difficult to accurately determine cadmium in soil samples.

OBJECTIVES: To develop a method for accurate determination of Cd in soil samples.

METHODS: ICP – MS/MS was used, and ¹¹¹Cd without isobaric interference was selected as the analysis line. In MS/MS mode, the oxygen introduced into the collision reaction cell can be reacted with ¹¹¹Zr¹⁶O¹H⁺, ¹¹¹Mo¹⁶O⁺, inducing electron transfer, dehydrogenation, oxygenation and other reactions to inhibit the overlapping interference of these polyatomic ions on ¹¹¹Cd.

RESULTS: Oxygen flow was the key factor in this method. 0.45mL/min oxygen flow can reduce oxide interference to less than 0.005 μ g/L when zirconium concentration was lower than 2000 μ g/L and molybdenum concentration was below 1000 μ g/L. The method has been verified by the national reference materials. The relative error of the measured value and recognized value of the 11 national reference materials was within $\pm 7\%$, and the relative standard deviation (n = 12) of three soil reference materials was less than 5%.

CONCLUSIONS: Triple quadrupole ICP – MS oxygen reaction mode can eliminate Zr and Mo polyatomic ion interference on Cd, and this method can be used for the determination of trace Cd in soil samples.

KEY WORDS: soil; cadmium; oxygen reaction mode; polyatomic ion; triple quadrupole inductively coupled plasma – mass spectrometry