崔玉荣,肖志斌,涂家润,等.氧化物型含铀矿物微区原位 Hf 同位素分析技术研究进展[J]. 岩矿测试,2022,41(5):691-703. CUI Yurong, XIAO Zhibin, TU Jiarun, et al. Research Progress *in situ* Hf Isotopic Analysis of Oxide-type U-bearing Accessory Minerals[J]. Rock and Mineral Analysis,2022,41(5):691-703. 【DOI: 10.15898/j. cnki. 11-2131/td. 202205180104】

# 氧化物型含铀矿物微区原位 Hf 同位素分析技术研究进展

崔玉荣<sup>1,2</sup>,肖志斌<sup>1,2</sup>,涂家润<sup>1,2</sup>,周红英<sup>1,2</sup>,李国占<sup>1,2</sup>

(1. 中国地质调查局天津地质调查中心, 天津 300170;

2. 华北地质科技创新中心, 天津 300170)

摘要:近二十年来,Lu-Hf 同位素分析技术得到了快速发展,为探讨岩石成因、物质来源及壳幔演化过程提供了重要手段。其中,锆石微区原位 Hf 同位素测定方法已经被广泛应用于同位素地球化学研究中。然而, 金红石、锡石和铌铁矿等氧化物型含铀矿物激光剥蚀多接收等离子体质谱(LA-MC-ICPMS) Hf 同位素测定 方法发展较为缓慢。本文结合近年来相关研究工作,简要介绍副矿物 Lu-Hf 同位素分析技术的发展历史, 系统梳理了金红石、锡石和铌铁矿等氧化物型含铀矿物原位 Hf 同位素测定方法研究的最新进展以及存在的 问题。基于该方法目前存在的同质异位数干扰校正策略、质量监控标样的缺乏以及较低的 Hf 含量如何提高 分析灵敏度等技术难点进行了详细论述。氧化物型含铀矿物的 Hf 含量普遍不高,在测试时需要更大的剥蚀 束斑直径。而飞秒激光具有剥蚀的样品粒径细小且均匀的特点,采用飞秒激光与 LA-MC-ICPMS(fs-LA-MC-ICPMS) 相结合,可以减小剥蚀束斑从而提高原位分析的空间分辨率,是未来氧化物型含铀矿物原位 Hf 同位素分析的发展方向。

关键词:Hf同位素;激光剥蚀多接收等离子体质谱法;金红石;锡石;铌铁矿;同质异位数干扰校正要点:

(1)开发金红石、锡石和铌铁矿等氧化物型含铀矿物原位 Hf 同位素测定方法具有重要的科学意义。

(2)总结针对金红石、锡石和铌铁矿等氧化物型含铀矿物的同质异位数干扰校正策略。

(3) 评述研发基体匹配标准物质的三种方案。

中图分类号: 0562.6; 0657.63 文献标识码: A

随着分析技术的快速发展,锆石原位 Hf 同位素 测定方法已经被广泛应用于同位素地球化学研究 中,成为探讨岩石成因、成矿物质来源及壳幔演化过 程的重要技术手段<sup>[1-3]</sup>。但对部分岩石而言,锆石 的缺乏严重阻碍了对其形成演化过程的约束,迫切 需要开发其他含铀矿物的 Hf 同位素测定方法。金 红石(TiO<sub>2</sub>)、锡石(SnO<sub>2</sub>)和铌铁矿[(Fe, Mn)(Ta, Nb)<sub>2</sub>O<sub>6</sub>]等含铀矿物成分单一,结构简单,而且成因 比较明确,容易得到地质意义明确的 Hf 同位素组成 信息。目前,国内外学者对锆石、斜锆石、异性石、钙 钛锆石等 Hf 含量较高的矿物进行了大量的原位 Hf 同位素测定方法研究<sup>[3-13]</sup>,但对于 Hf 含量较低 (通常<100µg/g)或 Yb/Hf 比值较高(一般>0.1)的 金红石、锡石和铌铁矿等氧化物型含铀矿物原位 Hf 同位素测定方法的文献报道较少<sup>[14-20]</sup>。金红石、锡 石和铌铁矿有时往往存在于同一种岩体或矿床中, 因此研究它们的 Hf 同位素组成可以为相关岩石或 矿床的演化过程提供重要信息;特别是配合微区 U-Pb 定年和微量元素分析,可以对矿物的成因演 化提供重要的制约参数,具有广阔的应用前 景<sup>[17,21-22]</sup>。金红石广泛分布于火成岩、沉积岩和变 质岩中,能够记录高级变质岩峰期变质过程,其与锆 石封闭温度的不同,进而可以揭示与锆石不一样的 变质演化过程<sup>[17,23]</sup>。榴辉岩中高 Nb/Ta 比和金红

收稿日期: 2022-05-18; 修回日期: 2022-07-12; 接受日期: 2022-08-20

基金项目: 国家自然科学基金项目(41873066, 42073055); 国家自然科学基金青年基金项目(42103025)

作者简介: 崔玉荣, 硕士, 高级工程师, 主要从事同位素地质年代学和地球化学研究。E-mail: cyr007@ mail. ustc. edu. cn。

石 Hf 同位素组成可以限定次大陆岩石圈地幔的来 源[15]。锡石是锡多金属矿床中重要的矿石矿物,并 且在一些稀有金属伟晶岩和花岗岩中也广泛存在。 同时锡石具有较为特殊的微量元素组成,例如与岩 浆热液相关的矿床中锡石高场强元素含量较高 (HfO,含量0~0.3%)<sup>[24]</sup>,而与沉积或变质热液相 关的矿床中锡石高场强元素含量则较低(Hf含量 <0.1µg/g)<sup>[25-26]</sup>。因此锡石中微量元素含量和 Hf 同位素组成相结合可以更好地指示成矿流体的来 源。Kendall - Langley 等<sup>[18]</sup> 首次对西澳大利亚州 Li-Cs-Ta 伟晶岩群中锡石进行原位 Hf 同位素测 定,获得的 Lu-Hf 同位素组成数据提供了对 Li-Cs-Ta 伟晶岩熔体来源的认识,为国内外同行抛砖引 玉,提供了新的研究方向。然而,此研究成果由于缺 乏溶液法 Hf 同位素数据和锡石质量监控标样,其数 据的准确性有待于进一步验证。

铌铁矿一般存在于铌铁稀土矿床、稀有金属花 岗岩和伟晶岩、碱性花岗岩、正长岩和碳酸岩中。铌 铁矿成因较为简单,其Hf同位素组成数据将能够对 铌铁稀土矿床及富含铌铁矿岩石的成因、演化历史 起到较好的制约作用。Tang 等(2021)<sup>[20]</sup> 最近对铌 铁矿族矿物进行了微区原位 Hf 同位素测定方法研 究,结合溶液法 Hf 同位素数据验证了 LA-MC-ICPMS Hf 同位素测定结果的准确性,并且确定了铌 铁矿 U-Pb 年代学标样 NP-2 和 Coltan139 可以作 为部分铌铁矿原位 Hf 同位素分析的标准物质。但 由于铌铁矿族矿物有的Ta,O,含量较高(>65wt%), 强 Ta 信号会产生严重的拖尾效应,即使选择 <sup>178</sup> Hf/<sup>177</sup> Hf=1.4672 进行 Hf 同位素质量分馏校正, 获得的<sup>176</sup>Hf/<sup>177</sup>Hf 比值与溶液法比值差别较大<sup>[20]</sup>。 鉴于目前仍缺乏这种高 Ta 矿物 Hf 同位素分析标准 物质,对于同质异位数干扰校正效果还无法评估。

基于此,本文对微区原位 Lu-Hf 同位素分析技 术进行了系统梳理,评述金红石、锡石和铌铁矿等氧 化物型含铀矿物原位 Hf 同位素测定方法研究的最 新进展以及技术难点和解决方案,进而能够推动国 内外实验室建立金红石、锡石和铌铁矿等氧化物型 含铀矿物原位 Hf 同位素测定的新方法体系,为相关 岩石和矿床的源区、成因及演化过程提供重要的技 术支撑。

# 1 Lu-Hf 同位素分析技术发展历史

Lu-Hf 同位素分析技术的发展历史可以划分为 热电离质谱法(TIMS)、二次离子探针质谱法 - 692 - (SIMS)、多接收等离子体质谱法(MC-ICPMS)三个 阶段<sup>[27-29]</sup>。尤其是 MC-ICPMS 技术的出现大大加 快了 Hf 同位素分析技术的发展,因其离子源(ICP) 具有高达 8000℃ 的温度,能够使传统的 TIMS 技术 在 2000℃下难以充分电离的 Hf 元素完全电离,样 品用量降到 10ng 以下,数据精度可以显著提高。目 前主要采用以下两种方法:一是采用传统的化学处 理方法,先将样品进行溶解、分离,然后进行质谱测 试。该方法对高、低含量的样品均非常有效<sup>[30]</sup>:但 处理流程较为繁琐,速度慢,且得到的结果为样品 Hf 同位素组成的平均值,不能获得由于复杂地质过 程造成的单矿物之间或者单个矿物内部不同成分环 带同位素组成的变化[27,31-35]。二是采用激光剥蚀 多接收等离子体质谱(LA-MC-ICPMS)技术测定高 Hf含量副矿物中 Hf 同位素组成,该方法具有较高 的空间分辨率(约30~60µm),可以实现原位获取 矿物内部 Hf 同位素组成的空间变化信息,甚至能够 给出同位素比值在微米尺度上的变化,而且通过透 反射、背散射图像分析可以尽量避开包裹体、继承核 等;对样品的制备要求较低,测试速度较快,单点测 试只需要 1~2min<sup>[5-7,10-13,29,36-37]</sup>。但是该方法对低 Hf 含量样品的测定还存在诸多难点。例如,对锡石 进行原位 Hf 同位素测定时,采用的剥蚀束斑直径为 90~145µm<sup>[18]</sup>:对铌铁矿进行原位 Hf 同位素测定 时,采用的剥蚀束斑直径为120µm、160µm<sup>[20]</sup>,较大 的剥蚀束斑降低了分析的空间分辨率。

微区原位 Lu-Hf 同位素分析技术真正突破是 在多接收等离子体质谱发明之后才实现的。Walder 等[38-39]利用多接收等离子体离子源与多接收扇形 磁式质谱仪结合,使得高效、高精度 Lu-Hf 同位素 分析成为可能,并获得与传统方法相当的数据精度, 分析效率显著提升。Thirlwall 等<sup>[29]</sup>首次发表了基 于激光剥蚀系统(LA)与 MC-ICPMS 联合的微区 Hf 同位素分析结果。随后,国际上不同实验室建立了 微区原位 Lu-Hf 同位素分析方法<sup>[39-42]</sup>,但对于分析 过程中同质异位数干扰校正策略存在四种不同方 案。一种方案是在 Hf 同位素标准溶液中加入适量 的 Yb 溶液,通过改变 Yb 的分馏校正系数 $\beta_{(Yb)}$ 来获 得正确的溶液的 Hf 同位素比值<sup>[40-41]</sup>。而 Machado 等<sup>[42]</sup>认为可以在激光剥蚀的同时加入 Yb 溶液来获 得校正激光数据的 β<sub>(Yb)</sub> 值。这两种校正方法都忽 略了溶液进样和激光进样在分析过程中分馏校正系 数的差异以及 $\beta_{(Yb)}$ 值随时间的变化,因此没有得到 进一步推广。Woodhead 等<sup>[43]</sup>提出在锆石激光剥蚀

过程中直接测定<sup>173</sup>Yb 和<sup>171</sup>Yb 的信号强度,从而计 算出 Yb 的分馏校正系数。然而由于锆石中 Yb 含 量较低,给出的β<sub>(Yb</sub>)值以及计算出的 Hf 同位素比 值误差较大,此方案也没有得到广泛应用。

随后 lizuka 等<sup>[44]</sup>提出可以采用激光剥蚀过程 中β<sub>(Yb</sub>)的平均值来进行同质异位数干扰校正,同时 该研究还发现在载气中加入少量氮气,不但可以提 高分析灵敏度,还可以在几乎不影响<sup>176</sup>Lu/<sup>176</sup>Hf比 值测试的情况下显著降低<sup>176</sup>Yb/<sup>176</sup>Hf的测量值,究 其原因可能是由 Yb、Lu 和 Hf 元素不同的蒸发焓导 致<sup>[11]</sup>。之后,中国少数几个实验室建立了锆石微区 Lu-Hf 同位素分析方法<sup>[3,5,27,45]</sup>。吴福元等<sup>[27]</sup>对 Lu-Hf 同位素体系及其岩石学应用进行了详细论 述,确定了 lizuka 等<sup>[44]</sup>提出的基于锆石 Yb 同位素 组成测量值来计算平均分馏校正系数的方案是获得 微区原位 Hf 同位素数据准确度和精度最高的同质 异位数干扰校正策略。此后,锆石原位 Hf 同位素分

在近十几年的时间里,中国诸多单位相继开发 了 LA-MC-ICPMS 锆石 Lu-Hf 同位素分析方法,并 通过优化仪器参数使得分析灵敏度有了进一步

表 1 氧化物型含铀矿物的相关微量元素含量

Table 1 Trace element concentrations of oxide-type U-bearing minerals

提升<sup>[6-7,10-11,46-47]</sup>。至此, 锆石原位 Hf 同位素分析 的研究论文大量涌现, 每年有近千篇论文发表, 这些 成果使得我们对以前难以触及问题的讨论变得现 实。目前锆石 LA-MC-ICPMS Lu-Hf 同位素分析的 单点测试内部精度可以达到 20×10<sup>-6</sup>, 大概是溶液 法 Hf 同位素分析不确定度的 3~5 倍<sup>[48]</sup>。

# 2 氧化物型含铀矿物微区原位 Hf 同位素 分析技术研究进展

目前,金红石、锡石和铌铁矿等氧化物型含铀矿 物原位 Hf 同位素测定方法研究程度不同。早在 2005年就有学者尝试建立了金红石原位 Hf 同位素 分析方法,但相对不成熟<sup>[14-18]</sup>;锡石和铌铁矿原位 Hf 同位素分析方法近两年才见报道<sup>[18,20]</sup>。通过对 近年来文献的氧化物型含铀矿物微量元素数据进行 统计分析(表1)可以看出,部分金红石、锡石是非常 有潜力的原位 Hf 同位素测定对象,铌铁矿采用 Gu 等<sup>[46]</sup>的校正策略也是可以尝试的对象。以下对金 红石、锡石和铌铁矿等氧化物型含铀矿物原位 Hf 同 位素测定方法分别进行论述。

| 矿物种类          |            |            | 元素比值           |          | 数据来源  |         |         |                  |      |
|---------------|------------|------------|----------------|----------|-------|---------|---------|------------------|------|
|               | Yb         | Lu         | Hf             | U        | Pb    | Th      | Yb/Hf   | Lu/Hf            | 参考文献 |
| 金红石 R10       | -          | 0.041      | 38             | 44.1     | 0.08  | < 0.004 | -       | 0.001            | [49] |
| 金红石 R19       | -          | 0.127      | 8.65           | -        | -     | -       | -       | 0.0147           | [49] |
| 金红石 JDX       | 0.015      | 0.006      | 50             | 1.1      | 0.52  | 0.005   | 0.0003  | 0.0001           | [17] |
| 金红石 SR-1      | -          | -          | 42500          | -        | -     | -       | -       | -                | [16] |
| 金红石 SR-2      | -          | -          | 3990           | -        | -     | -       | -       | -                | [16] |
| 金红石 SR-2B     | -          | -          | 2790           | -        | -     | -       | -       | -                | [16] |
| 金红石 SR-3      | -          | -          | 388            | -        | -     | -       | -       | -                | [16] |
| 金红石 SR-3A     | -          | -          | 416            | -        | -     | -       | -       | -                | [16] |
| 金红石 RMJG      | -          | -          | 102            | 80.0     | 17.90 | 0.001   | -       | -                | [19] |
| 金红石 R632      | -          | -          | 108            | 153~1000 | 11~72 | 0.2~5   | -       | -                | [50] |
| 锡石样品          | 0.15       | 0.03       | 0.08           | 0.25     | 4.31  | 0.07    | 1.9     | 0.4              | [25] |
| 锡石样品          | 0.16       | 0.03       | 0.07           | 0.27     | 3.75  | 0.07    | 2.3     | 0.4              | [25] |
| 锡石样品          | 0.054~0.40 | 0.048~0.16 | 0~2.9          | -        | -     | -       | -       | -                | [26] |
| 锡石样品          | _          | <1         | $243{\sim}407$ | 1~14     | -     | 0~1     | -       | < 0.004          | [18] |
| 铌铁矿 Coltan139 | 95.4       | 11.2       | 454            | 2118     | 147   | 86      | 0.21    | 0.025            | [51] |
| 铌铁矿 NP-2      | _          | 0.309      | 241            | -        | -     | -       | -       | 0.001            | [20] |
| 铌铁矿 713-79    | _          | 0.029      | 276            | -        | -     | -       | -       | 0.0001           | [20] |
| 铌铁矿 U-1       | -          | 0.024      | 266            | -        | -     | -       | -       | 0.0001           | [20] |
| 铌铁矿 U−3       | _          | 0.039      | 595            | -        | -     | -       | -       | 0.0001           | [20] |
| 铌铁矿样品         | 69~348     | 9~70       | $340 \sim 842$ | -        | -     | 37~1190 | 0.2~0.5 | $0.02 \sim 0.07$ | [52] |
| 铌铁矿样品         | _          | 0~6        | 19~367         | 39~1489  | -     | 1~79    | -       | 0.06~0.1         | [18] |
|               |            |            |                |          |       |         |         |                  |      |

注:表中"-"代表暂无数据,矿物后面的编号代表的是矿物标样的名称,例如"金红石 R10"代表的是"金红石标样 R10"。

#### 2.1 金红石原位 Hf 同位素测定方法

金红石(TiO<sub>2</sub>)矿物成分较为单一,结构简单, 属于四方晶系,稳定而不易受后期地质事件的影响, 广泛存在于火成岩和变质岩中。金红石通常具有较 高的 U 含量和少量的普通 Pb,因此是较为理想的 U-Pb 定年矿物<sup>[49,53-55]</sup>。天然金红石矿物中 Hf 含 量约为 50μg/g,重稀土元素含量<0.1μg/g,人工合 成的 金红 石矿物中 Hf 含量可高达上万 μg/g (表1),具备开展原位 Hf 同位素分析的条件。但由 于金红石极低的 Yb 和 Lu 含量导致无法通过自身 测量准确获得分馏校正系数<sup>[17,49]</sup>,从而影响了 Hf 同位素比值的分析精度。

Choukroun 等<sup>[14]</sup> 最早开始探索金红石原位 Hf 同位素测定的可能性,同质异位数干扰采用 Griffin 等<sup>[40]</sup>的校正策略,获得的数据精度比锆石原位 Hf 同位素分析精度差一个数量级以上。后续的研究工 作大多假设 Yb、Lu 和 Hf 的分馏校正系数是相同的 来进行同质异位数干扰校正,所获得的数据准确度 和分析精度有不同程度地提升[15,17,19]。随后 Aulbach 等<sup>[15]</sup>建立了金红石原位 Hf 同位素测定方 法,他们均采用锆石标样 Mud Tank 来监控仪器状 态,并认为锆石和金红石之间不存在明显的基体效 应,该结论与李杨等<sup>[17]</sup>的观点相悖。Ewing 等<sup>[16]</sup>研 究表明通过内插法每隔 10 个样品进行 1 次基线校 正可以显著提升金红石原位 Hf 同位素分析精度。 其同质异位数校正策略是先通过外标锆石 Mud Tank 建立 Yb 和 Hf 的分馏校正系数相关关系,再通 过人工合成金红石外标 SR-2 计算准确获得 Hf 的 分馏校正系数,利用这些外标获得的 Yb 和 Hf 的分 馏校正系数并假设 Lu 和 Yb 的分馏校正系数相同 来计算 Hf 同位素比值,可以明显改善数据的准确度 和精度,随后进一步拓展了该技术的应用范 围<sup>[56-57]</sup>。李杨等<sup>[17]</sup>报道了该技术的开发和实际应 用,采用实验室内部参考物质金红石 JDX 作外标监 控仪器,并且通过系列实验研究表明,锆石 Hf 同位 素测定的外部标准无法用来作金红石 Hf 同位素测 定的外标,存在明显的基体效应。Zhang 等<sup>[19]</sup>研发 出适用于金红石微区原位 U-Pb 定年和 Hf 同位素 测定的分析标样 RMJG.可以为国内外微区实验室 开发金红石原位 Hf 同位素分析方法提供质量监控 标样。金红石中 Ta 含量通常为几百 µg/g,从目前 获得的 Hf 同位素数据结果来看, Ta 对 Hf 同位素组 成测定几乎没有影响。当前金红石原位 Hf 同位素 分析较为理想的质量监控标样有 JDX、R10 和 RMJG

— 694 —

等,并且已有溶液法 Lu-Hf 同位素定值结果<sup>[17,19]</sup>, Hf 含量为 50µg/g 左右,可以为国内外实验室开展 原位 Hf 同位素测定方法提供监控标样。

#### 2.2 锡石原位 Hf 同位素测定方法

锡石(SnO<sub>2</sub>)是锡多金属矿床中重要的矿石矿 物.在伟晶岩和花岗岩中也广泛存在,其形成多与岩 浆后期热液活动有关。同时锡石属于四方晶系金红 石族矿物,结构性质比较稳定,当其含有较高的U、 Th 时,可以作为 U-Th-Pb 同位素测年对象<sup>[58]</sup>。近 十年来,锡石 U-Pb 同位素测年方法得到了较为广 泛的应用<sup>[18,21,58-62]</sup>。锡石中 Hf 含量一般为几百 µg/g,与金红石相似同样具有极低的 Yb 和 Lu 含量 (表1),理论上可以开展原位 Hf 同位素分析。然而 锡石中 Ta 含量较高(1wt%~3wt%),如此高的 Ta 含 量是否会对 Hf 同位素的准确测定产生影响则需要 评估<sup>[48]</sup>。Li-Cs-Ta 伟晶岩中锡石的 W 和 Ta 含量 可能处于 wt%水平,在低分辨率分析模式下进行锡 石原位 Hf 同位素测定时,可以明显降低<sup>180</sup>Hf 信号 强度,<sup>180</sup>Ta 对<sup>180</sup>Hf 的同质异位数干扰较小<sup>[18]</sup>。目 前国内外只有一篇文献报道了锡石原位 Hf 同位素 分析结果。Kendall-Langley 等<sup>[18]</sup>对锡石原位 Hf 同 位素测定进行了尝试,先采用 Hf 内部同位素 对179Hf/177Hf= 0.7325[32])进行Hf同位素质量分馏 校正,再用外部锆石标样 Mud Tank 来校正锡石的 Hf 同位素分馏,考虑到不同矿物基体对 Hf 同位素 分馏的影响可能不同,其数据的可靠性有待进一步 验证。由于缺乏锡石原位 Hf 同位素分析标准物质 来进行质量监控,目前还无法有效地评估锡石原位 Hf 同位素分析的准确度。

#### 2.3 铌铁矿原位 Hf 同位素测定方法

铌铁矿,化学式(Fe, Mn)(Ta, Nb)<sub>2</sub>O<sub>6</sub>,是铌铁 稀土矿床中重要的矿石矿物,属于斜方晶系,有较高 的 U、Th 含量,低普通 Pb,是较为理想的、有潜力的 U-Pb 同位素测年矿物,可用于直接测定铌铁稀土 矿床的成矿时代<sup>[51-52,63-66]</sup>。Deng 等<sup>[52]</sup>对中国小秦 岭地区的花岗伟晶岩及相关矿床中铌铁矿进行 LA-ICPMS U-Pb 同位素测年和微量元素研究,测 得铌铁矿中 Hf、Yb、Lu 含量分别为 340~842µg/g、 69.2~348µg/g、9.1~70.8µg/g,从而可以计算出 Yb/Hf、Lu/Hf 分别为 0.2~0.5、0.02~0.07(表1)。 Che 等<sup>[51]</sup>对目前的铌铁矿 U – Pb 年龄标样 Coltan139 进行了微量元素测定,获得的 Hf、Yb、Lu 含量分别为 454µg/g、95.4µg/g、11.2µg/g,Yb/Hf、 Lu/Hf 分别为 0.21、0.025(表1)。由此可以看出铌 铁矿虽然具有较高的 Hf 含量,同时伴随着稍高的 Lu、Yb含量.那么如何进行高Lu/Hf、Yb/Hf的干扰 扣除是需要解决的关键问题。通常 Yb/Hf 大于 0.4 ~0.5.Lu/Hf 大于 0.08 的副矿物不适合进行 Lu-Hf 同位素测定[8]。因此,要对铌铁矿样品进行筛选, 选择合适的样品进行方法研究。迄今为止,只有南 京大学实验室对铌铁矿原位 Hf 同位素测定方法进 行了相关报道<sup>[20]</sup>。当铌铁矿的 Hf 含量(50~2650 μg/g)较高,Lu 和 Yb 含量(<1μg/g)很低时,通常采 用与金红石相类似的同质异位数校正方法,一般假 设Lu、Yb和Hf的分馏校正系数相同来计算Hf同 位素比值。但是, 铌铁矿中 Ta 是主量元素之一 (Ta2O5>12.67wt%),因此开发铌铁矿原位 Hf 同位 素测定方法的技术难点来自 Ta 拖尾效应对 Hf 同位 素测定的影响。Ta 有<sup>180</sup>Ta 和<sup>181</sup>Ta 两个同位素,当 Ta 含量较低时(几百 μg/g)不会对<sup>176</sup>Hf/<sup>177</sup>Hf 比值 测定产生同质异位数干扰:但对富 Ta 样品进行原位 Hf 同位素测试时,<sup>180</sup>Ta 不仅会对<sup>180</sup>Hf 产生同质异 位数干扰,其较强的拖尾效应甚至会影响<sup>179</sup>Hf 和<sup>178</sup>Hf。鉴于 Hf 同位素测试过程中的质量分馏是 基于<sup>179</sup>Hf/<sup>177</sup>Hf=0.7325<sup>[32]</sup>进行校正的,所以错误 的<sup>179</sup>Hf 信号强度会影响最终测定的<sup>176</sup>Hf/<sup>177</sup>Hf 比值 的准确性。因此,在铌铁矿原位 Hf 同位素分析测定 时应选择<sup>178</sup>Hf/<sup>177</sup>Hf=1.4672 进行 Hf 同位素质量分 馏校正,可以有效地规避强 Ta 信号拖尾效应对 Hf 同位素准确测定的影响<sup>[20]</sup>。但对于重钽铁矿 713-79 (Ta<sub>2</sub>O<sub>5</sub> 为 65. 71wt%),选择<sup>178</sup>Hf/<sup>177</sup>Hf = 1.4672 进行 Hf 同位素质量分馏校正时,获得 的<sup>176</sup>Hf/<sup>177</sup>Hf=0.282903±0.000070(2SD;n=29),溶 液法获得的<sup>176</sup>Hf/<sup>177</sup>Hf=0.282749±0.000028(2SD; n=5),两者差别较大,结果表明当Ta,O,含量大于 65.71wt%时,无法采用<sup>178</sup>Hf/<sup>177</sup>Hf=1.4672进行Hf 同位素分馏校正<sup>[20]</sup>。目前铌铁矿原位 Hf 同位素分 析技术的质量监控标样较少,对于重钽铁矿这种 Ta,O,含量很高的样品还无法进行准确的分馏校 正。Tang 等<sup>[20]</sup> 研究表明铌铁矿 U-Pb 测年标样 NP-2 和 Coltan139 可以作为铌铁矿原位 Hf 同位素 分析的标准物质,由于这两种标样数量有限,仍需要 开发更多的铌铁矿微区原位 Hf 同位素分析标准物质。

# 3 存在的问题及技术难点

## 3.1 同质异位素干扰的准确扣除

(1)较低的 Yb 和 Lu 含量的扣除 金红石、锡石和铌铁矿等氧化物型含铀矿物 具有极低的 Yb 和 Lu 含量,这一特点虽然使得我们 难以获得准确的干扰校正系数,却也暗示可能无需 进行 Yb 和 Lu 的干扰校正,但是由低 Yb 和 Lu 含量 引起的 Hf 同位素测试结果的不确定度究竟有多大 尚无定论。<sup>176</sup>Hf 有两个同质异位素<sup>176</sup>Lu 和<sup>176</sup>Yb,通 过对<sup>175</sup>Lu 和<sup>172</sup>Yb 的测定对<sup>176</sup>Lu 和<sup>176</sup>Yb 进行干扰 校正。常用的校正公式如下<sup>[67]</sup>。

$$^{176} \text{Hf} = {}^{176} \text{Hf}_{\text{m}} - \left[ {}^{176} \text{Lu}_{\text{m}} \times \left( \frac{{}^{176} \text{Lu}}{{}^{175} \text{Lu}} \right)_{\text{m}} \left( \frac{M_{176}}{M_{175}} \right)^{\beta(\text{Lu})} \right. \\ \left. + {}^{172} \text{Yb}_{\text{m}} \times \left( \frac{{}^{176} \text{Yb}}{{}^{172} \text{Yb}} \right)_{\text{m}} \left( \frac{M_{176}}{M_{172}} \right)^{\beta(\text{Yb})} \left. \right] \\ \beta = \ln\left(\frac{R_{\text{m}}}{R_{\text{s}}}\right) / \ln\left(\frac{M_{\text{A}}}{M_{\text{P}}}\right)$$

式中:<sup>176</sup>Hf<sub>m</sub> 为包含<sup>176</sup>Hf、<sup>176</sup>Lu 和<sup>176</sup>Yb 三个同质异 位素的测量值; $\beta$  为质量分馏校正系数; $R_m$  为测量 比值; $R_1$  为理论比值;M 为质量数。

实际工作中,大家通常采用<sup>179</sup>Hf/<sup>177</sup>Hf = 0.7325<sup>[32]</sup>来计算 β<sub>(III)</sub> 值, 对于分馏校正系数 β<sub>(II)</sub> 和β<sub>(Iu)</sub>的估算以及<sup>176</sup>Yb /<sup>172</sup>Yb 和<sup>175</sup>Lu/<sup>176</sup>Lu 的选 择却有着不同的推荐方案。前人详细报道了<sup>176</sup>Yb 对<sup>176</sup>Hf的同质异位素干扰校正策略以及Yb和Lu 同位素对参考值的选择,本文不再赘述<sup>[27,48]</sup>。金红 石、锡石和铌铁矿等氧化物型含铀矿物中<sup>176</sup>Lu/<sup>177</sup>Hf 比值通常小于 0.002,因此176Hf 的同质异位素干扰 主要来自<sup>176</sup>Yb,可以利用同锆石相类似的处理方 式,采用激光剥蚀过程中 $\beta_{(Yb)}$ 的平均值作为 Yb 的 质量分馏校正系数进行<sup>176</sup>Yb 的干扰校正。吴福元 等<sup>[27]</sup>认为该方法对高 Yb 含量样品同样适用。对于 锆石,通常β<sub>(Yb)</sub>利用测定的<sup>172</sup>Yb和<sup>173</sup>Yb,再根据 <sup>172</sup>Yb/<sup>173</sup>Yb=1.35274<sup>[67]</sup>来计算,同时因为无法单独 计算 $\beta_{(Lu)}$ ,故用 $\beta_{(Yb)}$ 来代替 $\beta_{(Lu)}$ 。而对于金红石、 锡石和铌铁矿等氧化物型含铀矿物,由于 Yb 含量 极低,无法根据测定的<sup>172</sup>Yb 和<sup>173</sup>Yb 来计算 $\beta_{(Yb)}$ ,所 以大多假设  $\beta_{(III)} = \beta_{(III)} = \beta_{(III)}$  来计算最终 的<sup>176</sup>Hf/<sup>177</sup>Hf 比值<sup>[17-18,20]</sup>。对于 Ta 含量较高的铌 铁矿样品(12wt%~48wt%),强Ta信号拖尾效应会 严重影响<sup>176</sup>Hf/<sup>177</sup>Hf 比值的测定,因此应选 取<sup>178</sup>Hf/<sup>177</sup>Hf=1.4672 来计算β(H0),详细论述见文中 2.3 章节。

## (2) 稍高的 Yb 和 Lu 含量的扣除

有的铌铁矿样品 Yb/Hf 和 Lu/Hf 分别为 0.2~ 0.4 和 0.02~0.07,可以采用高 Yb/Hf 比值(大于 0.1)的锆石的干扰校正策略:先在两小时的分析过 程中,使用标准锆石计算适用的( $\beta_{(Yb)}/\beta_{(HI)}$ )。,然后 应用计算出的( $\beta_{(Yb)}/\beta_{(HI)}$ )。进行其他锆石的 Yb 干 扰校正<sup>[46]</sup>。该方法其实是通过外标对未知样品进 行校正,实际校正效果还有待更多实验室验证。这 两种校正方式的差别有多大,目前还未知。因此, 高、低 Yb 含量对样品 Hf 同位素测试结果的影响到 底有多大还需要作进一步深入系统的研究。

#### 3.2 基体匹配的外部标样缺乏

基体效应是 LA-ICPMS 和 SIMS 等微区原位分 析的一个主要问题,用基体匹配的标准样品进行元 素分馏校正是克服基体效应、获得准确分析结果的 关键。寻找和研制出理想的金红石、锡石和铌铁矿 等氧化物型含铀矿物原位 Hf 同位素测定标准物质, 可以解决标样匮乏的难题。制约一个矿物样品是否 可以成为 Hf 同位素标准的关键因素包括:①矿物内 部结构均一,且没有或极少裂隙和包裹体;②微量元 素含量及均一性,特别是 Lu、Yb 和 Hf 的含量,质谱 干扰元素 Lu 和 Yb 含量低;③Hf 同位素组成均一; ④有足够量的样品。

确定 Hf 同位素测定标准物质,可以尝试以下几 种方法。

(1)研发相应的标准物质

Ewing 等<sup>[16]</sup>采用人工合成的金红石 SR-2 作为 实验室的参考物质;陈开运等[68]人工合成了锆石的 Lu-Hf 同位素标样。采用合成的方法可以获得较为 均一的 Hf 含量和 Lu-Hf 同位素组成,但 Yb、Lu、U、 Th、Pb 等微量元素含量无法保证均一。李献华 等<sup>[69]</sup>、周红英等<sup>[70]</sup>和 Luo 等<sup>[71]</sup>均报道了自主研发 的锆石 Hf 同位素标样, Zhang 等<sup>[19]</sup>研发出较为理想 的金红石 U-Pb 测年和 Hf 同位素分析标样,可以采 用类似的方法开发金红石、锡石和铌铁矿等含铀矿 物原位 Hf 同位素标样。以上两类方法各有所长,人 工合成标准物质可以根据需求加入相应的元素充分 混匀后高温下生长结晶,最终合成的标准物质表面 没有裂隙或包裹体,可以保证 Hf 同位素组成较为均 一,但在合成过程中不同元素之间的化学反应无法 控制,可能会导致微量元素含量不均一。寻找天然 标样则要对大量样品进行筛选,难度相当大,目前只 有少数实验室具备这方面的能力。

(2)研发"替代标样"

金红石和锡石属于晶体结构相同、化学成分不同的同族矿物。崔玉荣等<sup>[58,72]</sup>的研究成果表明,晶体结构相同、化学成分不同的同族矿物之间的年龄标样可以相互替代,而且能把定年误差控制在 3%

以内。这为人们开发金红石、锡石和铌铁矿等氧化 物型含铀矿物原位 Hf 同位素测定标准物质提供了 启发,能否用金红石 Hf 同位素标准物质作质量监控 标样,对锡石进行准确的 Hf 同位素测定,需要学者 进行系列的实验研究加以验证。

(3)水蒸气辅助激光剥蚀方法

利用水蒸气辅助激光剥蚀技术进行副矿物 U-Th-Pb年代学研究,结果表明少量水蒸气引入剥 蚀池前可以显著降低基体效应,从而实现非基体匹配 分析<sup>[60,71]</sup>。李献华等<sup>[73]</sup>也提出利用该方法可以抑制 某些矿物在 LA-ICPMS U-Pb 定年分析过程中的基 体效应,因此可以设法将这一技术引入到含铀副矿物 Hf 同位素测定方法研究中,究竟是否可行,有待于进 一步的实验验证。详细的研究方案如图 1 所示。



#### 图1 技术路线图

Fig. 1 Diagram of technology roadmap

#### 3.3 Hf 含量对测定结果影响的解决方案

对 Hf 含量较低(<50µg/g)样品的测定,低的 Hf 含量使得测定信号强度较低,进而影响数据质 量。因此,可以设法从以下几个方面进行尝试。

(1)改变激光束斑的大小

一般来说,激光剥蚀束斑直径越大,所获得的信号就会越强,所获得的<sup>176</sup>Hf/<sup>177</sup>Hf比值精度就越高。

— 696 —

该技术对样品的颗粒大小有一定的要求,对于厘米 尺度或者大于 100μm 的样品测定可以满足,但对于 小于 100μm 的样品则需慎重。

(2)采用氮气增敏技术

LA-MC-ICPMS 技术基本原理是将聚焦的激光 作用于平整的样品表面,被激光剥蚀出来的样品气溶 胶颗粒被载气带到离子源 ICP,经过离子化样品再进 入 MC-ICPMS 质谱进行同位素比值测定。早期使用 氩气作为载气,后来发现氦气具有灵敏度高、样品气 溶胶沉积少等优点而被广泛用作载气,最近几年研究 表明,气溶胶在进入 ICP 之前,混合少量氮气能把灵 敏度提高 2~3 倍,充分显示了该技术在低含量样品 和高空间分辨率方面的潜在优势和应用前景<sup>[11,44]</sup>。

(3)采用配置 10<sup>13</sup> Ω 高阻的放大器

当前开展 LA-MC-ICPMS Hf 同位素分析的实 验室采用的多接收等离子体质谱仪法拉第接收器放 大器配置的多为 10<sup>11</sup>Ω 高阻,为获得足够的样品信 号强度,对样品含量和颗粒大小要求较高,一般均需 要含量在数百 μg/g,样品颗粒一般要求至少大于 50μm。目前,ThermoFisher 公司最新推出的 10<sup>13</sup>Ω 高阻,将对样品含量的要求拓展到几个 μg/g 的水 平。因此,利用 ThermoFisher 公司推出的 10<sup>13</sup>Ω 高 阻可以将原位测试对样品含量的要求降低一个数量 级以上,极大地提高了该技术的应用范围。

(4)利用飞秒激光与多接收等离子体质谱联机 技术(fs-LA-MC-ICPMS)

飞秒激光是继纳秒激光后,激光剥蚀系统的又 一显著进步,其脉冲宽度从 10<sup>-9</sup>s 发展到 10<sup>-15</sup>s,大 量研究结果表明飞秒激光与固体样品表面作用时间 非常短,热效应程度低,剥蚀的样品粒径细小且均 匀,同时能在一定程度上抑制基体效应<sup>[74-78]</sup>。因此 采用飞秒激光与 MC-ICPMS 联机,可以减小剥蚀束 斑从而提高原位分析的空间分辨率。目前,利用纳 秒激光对金红石、锡石和铌铁矿等含铀矿物进行原 位 Hf 同位素分析时,采用的剥蚀束斑直径>100μm (表 2),虽然大多数样品都可以满足剥蚀条件,但较 大的剥蚀束斑直径无疑降低了空间分辨率。因此, 还需要发展更高空间分辨率的原位 Hf 同位素分析 技术。

## 4 结语与展望

本文对金红石、锡石和铌铁矿等氧化物型含铀 矿物原位 HF 同位素测定方法研究现状及其在地质 学中的应用进行了初步的总结,简要回顾了同质异 位数干扰校正策略发展历程,对同质异位数干扰的 准确校正、质量监控标样的缺乏以及低 HF 含量样品 的准确测定进行了详细论述,为建立氧化物型含铀 矿物微区原位 HF 同位素测定方法提供了技术路线。

目前微区原位分析向更高空间分辨率和更高精 度发展,而对于金红石、锡石和铌铁矿等氧化物型含 铀矿物,其 Hf 含量普遍不高,在测试时需要更大的剥 蚀束斑直径,这样难免降低空间分辨率。因此,如何 提高原位 Hf 同位素分析技术的空间分辨率仍需要更 多的研究探索。相信在未来一段时间内,中国科学家 能够建立一套含铀副矿物更准确更快速的原位 Hf 同 位素测定新方法体系,同时获得一批重要变质事件、 成岩成矿事件等地质事件准确的 Hf 同位素资料,推 动含铀副矿物原位 Hf 同位素测定技术在变质作用、 成岩成矿作用等研究领域的应用。同时,能够研发相 应的含铀副矿物原位 Hf 同位素分析标准物质,为中 国微区同位素年代学和地球化学实验室开发这些副 矿物 Hf 同位素测定方法提供质量监控标样。

#### 表 2 氧化物型含铀矿物原位 Hf 同位素测定法拉第杯结构和典型的激光剥蚀参数

Table 2 Operational parameters and Faraday cup configuration for the measurements of Lu and Hf isotopes of oxide-type U-bearing minerals

| 氧化物型<br>含铀矿物                  | 法拉第杯结构及对应同位素      |                   |                   |                    |                                      |                   |                   |                   |                                                        | 海北司加去教           |                                                             |
|-------------------------------|-------------------|-------------------|-------------------|--------------------|--------------------------------------|-------------------|-------------------|-------------------|--------------------------------------------------------|------------------|-------------------------------------------------------------|
|                               | L4                | L3                | L2                |                    | L1                                   | С                 | H1                | H2                | Н3                                                     | H4               | 做儿羽氓参奴                                                      |
| 金红石<br>Hf 杯结构 <sup>[17]</sup> | <sup>172</sup> Yb | <sup>173</sup> Yb | <sup>175</sup> Lu | <sup>176</sup> Hf, | <sup>176</sup> Yb, <sup>176</sup> Lu | <sup>177</sup> Hf | <sup>178</sup> Hf | <sup>179</sup> Hf | <sup>180</sup> Hf                                      | -                | 束斑大小 60、90、120、160μm,激光<br>频率 20Hz,能量密度 12J/cm <sup>2</sup> |
| 锡石<br>Hf 杯结构 <sup>[18]</sup>  | <sup>171</sup> Yb | <sup>173</sup> Yb | <sup>175</sup> Lu | <sup>176</sup> Hf, | <sup>176</sup> Yb, <sup>176</sup> Lu | <sup>177</sup> Hf | <sup>178</sup> Hf | <sup>179</sup> Hf | <sup>180</sup> Hf, <sup>180</sup> Ta, <sup>180</sup> W | <sup>182</sup> W | 束斑大小 90~145μm,激光频率<br>4Hz,能量密度 6 J/cm <sup>2</sup>          |
| 铌铁矿<br>Hf 杯结构 <sup>[20]</sup> | <sup>172</sup> Yb | <sup>173</sup> Yb | <sup>175</sup> Lu | <sup>176</sup> Hf, | <sup>176</sup> Yb, <sup>176</sup> Lu | <sup>177</sup> Hf | <sup>178</sup> Hf | <sup>179</sup> Hf | <sup>180</sup> Hf, <sup>180</sup> Ta                   | -                | 束斑大小 120μm、160μm,激光<br>频率 20Hz,能量密度 8J/cm <sup>2</sup>      |

**致谢**:中国地质调查局天津地质调查中心李惠民 研究员、李志丹高级工程师在成文过程中给予了 帮助,在此表示衷心的感谢。

### 5 参考文献

- Duchene S, Blichert-Toft J, Luais B, et al. The Lu-Hf dating of garnets and the ages of the Alpine high pressure metamorphism [J]. Nature, 1997, 387: 586-589.
- [2] 郑建平,路凤香,余淳梅,等.汉诺坝玄武岩中麻粒岩 捕虏体锆石 Hf 同位素、U-Pb 定年和微量元素研究: 华北下地壳早期演化的记录[J].科学通报,2004,49 (4):375-383.

Zheng J P, Lu F X, Yu C M, et al. Zircon Hf isotope, U-Pb dating and trace elements of granulite xenoliths in Hannuoba basalt: Records of the early evolution of the lower crust in North China [J]. Chinese Science Bulletin, 2004, 49(4): 375-383.

- [3] Wu F Y, Yang Y H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1-2): 105-126.
- [4] Zirakparvar N A, Mathez E A, Rajesh H M, et al. Lu-Hf isotopic evidence of a deep mantle plume source for the ~2.06Ga Bushveld Large Igneous Province[J]. Lithos, 2019,348-349:1-15.
- [5] 徐平,吴福元,谢烈文,等. U-Pb 同位素定年标准锆石的Hf 同位素[J].科学通报,2004,49(14):61-68.
  Xu P, Wu F Y, Xie L W, et al. Determinations of Hf isotopes of zircon standards for U-Pb dating[J]. Chinese Science Bulletin,2004,49(14):61-68.
- [6] Yuan H L,Gao S,Dai M N,et al. Simultaneous determinations of U-Pb age, Hf isotopes and trace element compositions of zircon by excimer laser – ablation quadrupole and multiple – collector ICP – MS [J]. Chemical Geology, 2008,247(1-2):100-118.
- [7] 谢烈文,张艳斌,张辉煌,等. 锆石/斜锆石 U-Pb 和 Lu-Hf 同位素以及微量元素成分的同时原位测定[J]. 科学通报,2008,53(2):220-228.
  Xie L W,Zhang Y B,Zhang H H, et al. Simultaneous *in situ* determinations of U-Pb age, Hf isotopes and trace element compositions of zircon/baddeleyites. [J]. Chinese Science Bulletin,2008,53(2):220-228.
- [8] Wu F Y, Yang Y H, Marks M A W, et al. In situ U-Pb, Sr, Nd and Hf isotopic analysis of eudialyte by LA – (MC) – ICP – MS [J]. Chemical Geology, 2010, 273 (1-2):8-34.
- [9] Wu F Y, Yang Y H, Mitchell R H, et al. In situ U-Pb
  698 —

and Nd-Hf-(Sr) isotopic investigations of zirconolite and calzirtite[J]. Chemical Geology, 2010, 277(1-2): 178-195.

[10] 耿建珍,李怀坤,张健,等. 锆石 Hf 同位素组成的 LA-MC-ICP-MS 测定[J]. 地质通报, 2011, 30(10): 1508-1513.

Geng J Z, Li H K, Zhang J, et al. Zircon Hf isotope analysis by means of LA-MC-ICP-MS[J]. Geological Bulletin of China, 2011, 30(10):1508-1513.

- [11] Hu Z C, Liu Y S, Gao S, et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP - MS [J]. Journal of Analytical Atomic Spectrometry, 2012, 27(9):1391-1399.
- [12] Huang H, Niu Y L, Teng F Z, et al. Discrepancy between bulk-rock and zircon Hf isotopes accompanying Nd-Hf isotope decoupling [J]. Geochimica et Cosmochimica Acta, 2019, 259:17-36.
- Pandur K, Ansdell K M, Eglington B M, et al. In situ U– Pb geochronology, Lu – Hf and Sm – Nd isotope systematics of the Hoidas Lake REE deposit, northerm Saskatchewan, Canada [ J ]. Precambrian Research, 2020,339:1–22.
- [14] Choukroun M,O'Reilly S Y,Griffin W L, et al. Hf isotopes of MARID (mica-amphibole-rutile-ilmenite-diopside) rutile trace metasomatic processes in the lithospheric mantle[J]. Geology, 2005, 33(1):45-48.
- [15] Aulbach S,O'Reilly S Y,Griffin W L,et al. Subcontinental lithospheric mantle origin of high niobium/tantalum ratios in eclogites [J]. Nature Geoscience, 2008, 1(7): 468-472.
- [16] Ewing T A, Rubatto D, Eggins S M, et al. In situ measurement of hafnium isotopes in rutile by LA – MC – ICP – MS: Protocol and applications [J]. Chemical Geology, 2011, 281(1-2):72-82.
- [17] 李杨,杨岳衡,焦淑娟,等.金红石 Hf 同位素激光原 位多接收等离子体质谱(LA-MC-ICP-MS)测定[J]. 中国科学:地球科学,2016,46(6):857-869.
  Li Y,Yang Y H,Jiao S J, et al. *In situ* determination of hafnium isotopes from rutile using LA-MC-ICP-MS
  [J]. Science China: Earth Sciences, 2015, 58: 2134-2144.
- [18] Kendall-Langley L A, Kemp A I S, Grigson J L, et al. U-Pb and reconnaissance Lu – Hf isotope analysis of cassiterite and columbite group minerals from Archean Li -Cs-Ta type pegmatites of western Australia[J]. Lithos, 2020,352-353:105231.

- [19] Zhang L, Wu J L, Tu J R, et al. RMJG Rutile: A new natural reference material for microbeam U-Pb dating and Hf isotopic analysis [J]. Geostandards and Geoanalytical Research, 2020, 44(1):133-145.
- [20] Tang Z M, Che X D, Yang Y H, et al. Precise and accurate Lu – Hf isotope analysis of columbite – group minerals by MC – ICP – MS [J]. Journal of Analytical Atomic Spectrometry, 2021, 36:1643–1656.
- [21] 崔玉荣,涂家润,陈枫,等.LA-(MC)-ICP-MS 锡石 U-Pb 定年研究进展[J].地质学报,2017,91(6): 1386-1399.

Cui Y R, Tu J R, Chen F, et al. The research advances in LA-(MC)-ICP-MS U-Pb dating of cassiterite [J]. Acta Geologica Sinica, 2017, 91(6):1386-1399.

- [22] 涂家润,崔玉荣,周红英,等. 锡石 U-Pb 定年方法评述[J]. 地质调查与研究,2019,42(4):245-253.
  Tu J R, Cui Y R, Zhou H Y, et al. Review of U-Pb dating methods for cassiterite[J]. Geological Survey and Research,2019,42(4):245-253.
- [23] Zack T, Moraes R, Kronz A. Temperature dependence of Zr in rutile:Empirical calibration of a rutile thermometer [J]. Contributions to Mineralogy and Petrology, 2004, 148(4):471-488.
- [24] 黄品赟,汪相,陈洁,等. 赣南淘锡坑锡矿床中锡石晶体形态学和地球化学研究[J]. 地质论评,2012,58
   (5):987-1000.

Huang P Y, Wang X, Chen J, et al. Morphological and geochemical studies of the cassiterite in Taoxikeng tin deposit, southern Jiangxi, China [J]. Geological Review, 2012,58(5):987-1000.

- [25] Jiang S Y, Yu J M, Lu J J. Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: Implication for migmatitic-hydrothermal fluid evolution and ore genesis [J]. Chemical Geology, 2004, 209:193-213.
- [26] 王志强,陈斌,马星华.南岭芙蓉锡矿田锡石原位 LA-ICP-MS U-Pb年代学及地球化学研究:对成矿流体 来源和演化的意义[J].科学通报,2014,59(25): 2505-2519.

Wang Z Q, Chen B, Ma X H. *In situ* LA-ICP-MS U-Pb age and geochemical data of cassiterite of the Furong tin deposit, the Nanling Range: Implications for the origin and evolution of the ore – forming fluid [J]. Chinese Science Bulletin, 2014, 59(25):2505-2519.

[27] 吴福元,李献华,郑永飞,等. Lu-Hf 同位素体系及其 岩石学应用[J]. 岩石学报,2007,23(2):3-38.

Wu F Y, Li X H, Zheng Y F, et al. Lu – Hf isotopic systematics and their applications in petrology [J]. Acta

Petrologica Sinica, 2007, 23(2): 3-38.

- [28] Salters, Vincent J M. <sup>176</sup>Hf/<sup>177</sup>Hf determination in small samples by a high temperature SIMS technique [J]. Analytical Chemistry, 1994,66(23):4186–4189.
- [29] Thirlwall M F, Walder A J. In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry [J]. Chemical Geology, 1995,122:241-247.
- [30] Ma Q, Yang M, Zhao H, et al. Accurate and precise determination of Lu and Hf contents and Hf isotopic composition at the sub – nanogram level in geological samples using MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2019, 34(6):1256-1262.
- [31] 杨岳衡,张宏福,谢烈文,等. 地质样品中镥-铪同位 素体系的化学分离与质谱测试新进展[J]. 岩矿测 试,2006,25(2):151-158.
  Yang Y H, Zhang H F, Xie L W, et al. Progresses in chemical separation for Lu-Hf isotopic system and mass spectrometric measurement in natural geological samples [J]. Rock and Mineral Analysis, 2006, 25 (2): 151-158.
- [32] Patchett P J, Tatsumoto M. A routine high precision method for Lu-Hf isotope geochemistry and chronology
   [J]. Contributions to Mineralogy and Petrology, 1981,75
   (3):263-267.
- [33] Thirlwall M F, Anczkiewicz R. Multidynamic isotope ratio analysis using MC ICP MS and the causes of secular drift in Hf, Nd and Pb isotope ratios [J]. International Journal of Mass Spectrometry, 2004, 235 (1):59-81.
- [34] 李献华,刘颖,杨岳衡,等. 同一岩石试样的 Lu-Hf 和 Sm-Nd 快速分离及国家岩石标准物质的 Hf-Nd 同位 素比值精确测定[J]. 岩石学报,2007,23(2): 221-226.

Li X H,Liu Y,Yang Y H, et al. Rapid separation of Lu-Hf and Sm-Nd from a single rock dissolution and precise measurement of Hf-Nd isotopic ratios for national rock standards [J]. Acta Petrologica Sinica, 2007, 23 (2): 221-226.

[35] 李津,唐索寒,马健雄,等.金属同位素质谱分析中样 品处理的基本原则与方法[J]. 岩矿测试,2021,40 (5):627-636.

> Li J, Tang S H, Ma J X, et al. Principles and treatment methods for metal isotopes analysis [ J ]. Rock and Mineral Analysis, 2021, 40(5):627-636.

[36] 杨进辉,吴福元,谢烈文,等. 辽东矿洞沟正长岩成因 及其构造意义:锆石原位微区 U-Pb 年龄和 Hf 同位 素制约[J]. 岩石学报,2007,23(2):263-276. Yang J H, Wu F Y, Xie L W, et al. Petrogenesis and tectonic implications of Kuangdonggou syenites in the Liaodong Peninsula, East – North China Craton: Constraints from *in – situ* zircon U – Pb ages and Hf isotopes [J]. Acta Petrologica Sinica, 2007, 23 (2): 263–276.

[37] 肖志斌,张然,叶丽娟,等. 沥青铀矿(GBW04420)的 微区原位 U-Pb 定年分析[J]. 地质调查与研究, 2020,43(1):1-4.

Xiao Z B, Zhang R, Ye L J, et al. *In-situ* U-Pb dating of pitchblende (GBW04420) [J]. Geological Survey and Research, 2020, 43(1):1-4.

- [38] Walder A J, Freedman P A. Communication. Isotopic ratio measurement using a double focusing magnetic sector mass analyser with an inductively coupled plasma as an ion source [J]. Journal of Analytical Atomic Spectrometry, 1992, 7:571-575.
- [39] Walder A J, Platzner I, Freedman P A. Isotope ratio measurement of lead, neodymium and neodymium – samarium mixtures, hafnium and hafnium – lutetium mixtures with a double focusing multiple collector inductively coupled plasma mass spectrometer [J]. Journal of Analytical Atomic Spectrometry, 1993, 8(1): 19-23.
- [40] Griffin W L, Pearson N J, Belousova E, et al. The Hf isotope composition of cratonic mantle: LAM MC ICPMS analysis of zircon megacrysts in kimberlites [J]. Geochimica et Cosmochimica Acta, 2000, 64 (1): 133-147.
- [41] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China: *In-situ* analysis of Hf isotopes, Tonglu and Pingtan igneous complexes [J]. Lithos, 2002, 61(3-4):237-269.
- [42] Machado N, Simonetti A. CHAPTER 9. U-Pb dating and Hf isotopic composition of zircon by laser ablation-MC-ICP-MS[M]//Laser Ablation-ICP-MS in the Earth Sciences Principles & Applications, 2001:121-146.
- [43] Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation[J]. Chemical Geology, 2004, 209:121-135.
- [44] Iizuka T, Hirata T. Improvements of precision and accuracy in *in situ* Hf isotope microanalysis of zircon using the laser ablation – MC – ICPMS technique [J]. Chemical Geology, 2005, 220(1-2):121-137.
- [45] 李献华,梁细荣,韦刚健,等. 锆石 Hf 同位素组成的 LAM-MC-ICP-MS 精确测定[J]. 地球化学,2003,32 (1):86-90.

Li X H, Liang X R, Wei G J, et al. Precise analysis of zircon Hf isotopes by LAM – MC – ICP – MS [J]. Geochimica, 2003, 32(1):86–90.

- [46] Gu H O, Sun H, Wang F Y, et al. A new practical isobaric interference correction model for the *in situ* Hf isotopic analysis using laser ablation-multi-collector-ICP-mass spectrometry of zircons with high Yb/Hf ratios [J]. Journal of Analytical Atomic Spectrometry, 2019, 34 (6):1223-1232.
- [47] 侯可军,李延河,邹天人,等. LA-MC-ICP-MS 锆石 Hf 同位素的分析方法及地质应用[J]. 岩石学报, 2007,23(10):2595-2604.
  Hou K J, Li Y H, Zou T R, et al. Laser ablation-MC-ICPMS technique for Hf isotope microanalysis of zircon and its geological applications [J]. Acta Petrologica Sinica, 2007, 23(10):2595-2604.
- [48] 王浩,杨岳衡,杨进辉. 矿物微区 Lu-Hf 同位素分析 技术研究进展[J]. 岩矿测试,2022. doi:10.15898/j. cnki.11-2131/td.202202210027.
  Wang H, Yang Y H, Yang J H. Processes in microbeam Lu - Hf isotopic analysis on minerals [J]. Rock and Mineral Analysis, 2022. doi: 10.15898/j. cnki. 11 -2131/td.202202210027.
- [49] Luvizotto G L, Zack T, Meyer H P, et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis [J]. Chemical Geology, 2009, 261 (3-4):346-369.
- [50] Axelsson E, Pape J, Berndt J, et al. Rutile R632—A new natural reference material for U–Pb and Zr determination
   [J]. Geostandards and Geoanalytical Research, 2018, 42
   (3):319–338.
- [51] Che X D, Wu F Y, Wang R C, et al. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS
   [J]. Ore Geology Reviews, 2015, 65:979-989.
- [52] Deng X D, Li J W, Zhao X F, et al. U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS:Implications for geochronology of pegmatite and associated ore deposits [J]. Chemical Geology, 2013, 344:1-11.
- [53] Zack T, Stockli D F, Luvizotto G L, et al. In situ U-Pb rutile dating by LA - ICP - MS:<sup>208</sup>Pb correction and prospects for geological applications[J]. Contributions to Mineralogy and Petrology, 2011, 162(3):515-530.
- [54] Li Q L, Lin W, Su W, et al. U-Pb rutile age of lowtemperature eclogites from southwestern Chinese Tianshan, NW China [J]. Lithos, 2011, 122:76-86.
- [55] Santos M M, Lana C, Scholz R, et al. LA-ICP-MS U-Pb dating of rutiles associated with hydrothermal

<sup>— 700 —</sup> 

第 41 卷

mineralization along the southern Araçuaí Belt, SE Brazil [J]. Journal of South American Earth Sciences, 2020, 99:1-15.

- [56] Ewing T A, Rubatto D, Hermann J. Hafnium isotopes and Zr/Hf of rutile and zircon from lower crustal metapelites (Ivrea-Verbano Zone, Italy): Implications for chemical differentiation of the crust [J]. Earth and Planetary Science Letters, 2014, 389:106-118.
- [57] Ewing T A, Müntener O. The mantle source of island arc magmatism during early subduction: Evidence from Hf isotopes in rutile from the Jijal Complex (Kohistan arc, Pakistan) [J]. Lithos, 2018, 308-309:262-277.
- [58] 崔玉荣,周红英,耿建珍,等.氧化物型含铀矿物 LA-ICP-MS U-Pb 年龄测定中的基体效应及其校正方法 [J].地质通报,2015,34(12):2325-2333.

Cui Y R, Zhou H Y, Geng J Z, et al. The matrix effects in oxide-type U-bearing mineral LA-ICP-MS U-Pb isotopic dating and their correction methods [J]. Geological Bulletin of China, 2015, 34 (12): 2325 – 2333.

- [59] Yuan S D, Peng J T, Hao S, et al. In situ LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization [J]. Ore Geology Reviews, 2011, 43: 235-242.
- [60] 陈靖,侯可军,王倩,等. 非基体匹配分馏校正的 LA-ICP-MS 锡石微区 U-Pb 定年方法研究[J]. 岩石学报,2021,37(3):943-955. Chen J, Hou K J, Wang Q, et al. *In situ* U-Pb dating of

cassiterite by LA-ICP-MS without a matrix-matched standard [J]. Acta Petrologica Sinica, 2021, 37 (3): 943-955.

- [61] 周雄,周玉,孙宝伟,等.四川甲基卡稀有金属矿床 134 号脉锡石 U-Pb 定年与地质意义[J]. 岩矿测试, 2021,40(1):156-164.
  Zhou X,Zhou Y,Sun B W, et al. Cassiterite U-Pb dating of No. 134 pegmatite vein in the Jiajika rare metal deposit, western Sichuan and its geological significances
  [J]. Rock and Mineral Analysis, 2021, 40 (1): 156-164.
- [62] Yang M, Romer R L, Yang Y H, et al. U-Pb isotopic dating of cassiterite: Development of reference materials and *in situ* applications by LA - SF - ICP - MS [J]. Chemical Geology, 2022, 593:120754.
- [63] Smith S R, Foster G L, Romer R L, et al. U Pb columbite – tantalite chronology of rare – element pegmatites using TIMS and laser ablation-multi collector

- ICP - MS [ J ]. Contributions to Mineralogy and Petrology, 2004, 147:549-564.

- [64] Che X D, Wang R C, Wu F Y, et al. Episodic Nb-Ta mineralisation in South China: Constraints from *in situ* LA-ICP-MS columbite-tantalite U-Pb dating[J]. Ore Geology Reviews, 2019, 105:71-85.
- [65] Legros H, Mercadier J, Villeneuve J, et al. U-Pb isotopic dating of columbite - tantalite minerals: Development of reference materials and *in situ* applications by ion microprobe[J]. Chemical Geology, 2019, 512:69-84.
- [66] Feng Y G, Ting L, Linnen R, et al. LA-ICP-MS dating of high – uranium columbite from No. 1 pegmatite at Dakalasu, the Chinese Altay orogen: Assessing effect of metamictization on age concordance [J]. Lithos, 2020, 362-363:105461.
- [67] Chu N C, Taylor R N, Chavagnac V, et al. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections[J]. Journal of Analytical Atomic Spectrometry, 2002, 17:1567-1574.
- [68] 陈开运,袁洪林,包志安,等.人工合成锆石 Lu-Hf 同 位素标样方法研究[J]. 岩石矿物学杂志,2012,31
  (2):279-288.
  Chen K Y, Yuan H L, Bao Z A, et al. A preliminary study of the method for synthetic zircon Lu-Hf isotopic

study of the method for synthetic zircon Lu-Hf isotopic standard[J]. Acta Petrologicaet Mineralogica, 2012, 31 (2):279-288.

- [69] 李献华,唐国强,龚冰,等. Qinghu(清湖)锆石:一个新的 U-Pb 年龄和 O,Hf 同位素微区分析工作标样
  [J].科学通报,2013,58(20):1954-1961.
  Li X H, Tang G Q, Gong B, et al. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes [J]. Chinese Science Bulletin, 2013,58(20):1954-1961.
- [70] 周红英,李怀坤,耿建珍,等.一件可能的 Hf 同位素 测定标准锆石[J].地质学报,2013,87(4):554-564.
  Zhou H Y,Li H K,Geng J Z, et al. A potential standard zircon for Hf isotopic analysis [J]. Acta Geologica Sinica,2013,87(4):554-564.
- [71] Luo T, Zang W, Liu Y S, et al. Water vapor-assisted "universal" non-matrix-matched analytical method for the *in situ* U-Pb dating of zircon, monazite, titanite and xenotime by LA - ICP - MS [J]. Analytical Chemistry, 2018,90(15):9016-9024.
- [72] Cui Y R, Tu J R, Geng J Z, et al. Advance in matrix effect study of LA – MC – ICPMS U – Pb dating on U – bearing oxide minerals [J]. Acta Geologica Sinica (English Edition), 2018, 92(4):1680–1681.

- 李献华,李扬,李秋立,等.同位素地质年代学新进展 [73] 与发展趋势[J]. 地质学报, 2022, 96(1):104-122. Li X H, Li Y, Li Q L, et al. Progreess and prospects of radiometric geochronology [J]. Acta Geologica Sinica, 2022.96(1):104-122.
- Poitrasson F, Mao X L, Mao S S, et al. Comparison of [74] ultraviolet femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry analysis in glass, monazite, and zircon [J]. Analytical Chemistry, 2003,75:6184-6190.
- [75] Shaheen M E, Gagnon J E, Fryer B J. Femtosecond (fs) lasers coupled with modern ICP-MS instruments provide new and improved potential for in situ elemental and isotopic analyses in the geosciences [ J ]. Chemical Geology, 2012, 330-331; 260-273.
- 袁洪林,陈开运,包志安,等.飞秒激光剥蚀多接收等 [76]

离子体质谱准确分析地质样品中的铅同位素组成 [J]. 科学通报, 2013, 58(33): 3440-3449.

Yuan H L, Chen K Y, Bao Z A, et al. Determination of lead isotope compositions of geological samples using femtosecond laser ablation MC - ICPMS [ J ]. Chinese Science Bulletin, 2013, 58: 3914-3921.

- [77] Zhao H L, Li J G, Xiao Z B, et al. Determination of formation age (0. 14Ma) of the Pengyang sandstonetype uranium deposit in the Ordos Basin, China; Using pitchblende in situ femtosecond LA - MC - ICP - MS method [J]. Chemical Geology, 2021, 4:747-748.
- Wang C M, Qian X, Zhang Y Z, et al. In-situ S-Pb [78] isotopic and trace elemental compositions of sulfides from the Habo Au polymetallic deposit: Evidences for veintype Au mineralization in the Ailaoshan Au belt [J]. Ore Geology Reviews, 2022, 140: 104583.

# Research Progress in situ Hf Isotopic Analysis of Oxide-type U-bearing **Accessory Minerals**

CUI Yurong<sup>1,2</sup>, XIAO Zhibin<sup>1,2</sup>, TU Jiarun<sup>1,2</sup>, ZHOU Hongying<sup>1,2</sup>, LI Guozhan<sup>1,2</sup>

(1. Tianjin Center, China Geological Survey, Tianjin 300170, China;

2. North China Center for Geoscience Innovation, Tianjin 300170, China)

#### HIGHLIGHTS

- (1) Developing in situ Hf isotopic determination method for the oxide-type U-bearing accessory minerals has important scientific significance.
- (2) The correction strategies for isobaric interference on oxide-type U-bearing accessory minerals, such as rutile, cassiterite and columbite, were discussed.
- (3) Three schemes for developing matrix-matched reference materials were reviewed.



Cassiterite backscattering images





193nm excimer laser ablation system

MC-ICP-MS

# ABSTRACT

**BACKGROUND**: In recent years, the *in situ* Hf isotopic determination method of zircon has been widely used in isotopic geochemistry, and has become an important method to explore the genesis of rocks, the source of ore-forming materials and the evolution of crust and mantle. However, for some rocks, the lack of zircon seriously hinders the restriction of formation and evolution. The development of Hf isotopic determination methods for oxide-type U-bearing accessory minerals, such as rutile, cassiterite and columbite is urgently needed.

**OBJECTIVES**: In order to accelerate the studies of *in situ* Hf isotopic determination of oxide-type U-bearing minerals and their application to the geological research.

**METHODS**: In situ Hf isotopic analysis of oxide-type U-bearing accessory minerals was reviewed with NEPTUNE multiple-collector inductively coupled plasma-mass spectrometry (MC-ICPMS) and a 193nm excimer laser ablation system.

**RESULTS**: Combined with relevant research work in recent years, the development history of Lu - Hf isotope analysis technology for accessory minerals was briefly described, and the latest progress and existing problems in *in -situ* Hf isotope determination methods for oxide-type uranium-bearing minerals such as rutile, cassiterite and niobite were systematically reviewed. The current technical difficulties such as the correction strategy for isobaric interference, the lack of quality control standard samples, the lower Hf content, and the improvement of analytical sensitivity were discussed in detail.

**CONCLUSIONS**: The low Hf content of oxide-type U-bearing accessory minerals requires a larger spot diameter. The femtosecond laser has the characteristics of fine and uniform grain size of the ablation samples. The combination of femtosecond laser and MC-ICPMS (fs-LA-MC-ICPMS) can reduce the spot diameter and improve the spatial resolution, which is the development direction of *in situ* Hf isotope analysis of oxide-type U-bearing accessory minerals in the future.

**KEY WORDS**: hafnium isotope; LA-MC-ICPMS; rutile; cassiterite; columbite; correction strategies for isobars interference