

基于野外观测与能量守恒原理分析饱和裸土与水面蒸发量的差异

李婉歆, 尹红美, 王文科, 卢艳莹, 王艺柯

Evaporation between saturated bare soil and water – an analysis based on field observations and energy balance consideration LI Wanxin, YIN Hongmei, WANG Wenke, LU Yanying, and WANG Yike

在线阅读 View online: https://doi.org/10.16030/j.cnki.issn.1000-3665.202012028

您可能感兴趣的其他文章

Articles you may be interested in

基于蒸渗仪和解析法估算毛乌素沙地潜水蒸发量

Estimation of groundwater evaporation based on lysimeter experiment and analytical solution in the Mu Us sandy land 王文科, 尹红美, 黄金廷, 李俊亭 水文地质工程地质. 2021, 48(4): 1-6

格尔木河流域水面蒸发特征及影响因素分析

Characteristics of evaporation and its effect factors in the Golmud River catchment 黄金廷, 李宗泽, 王文科, 宋歌, 王嘉玮 水文地质工程地质. 2021, 48(3): 31-37

半干旱地区地表--地下水系统水热运移与裸土蒸发研究

Hydrothermal transfer and bare soil evaporation in surface-groundwater systems in semi-arid areas 马稚桐, 王文科, 赵明, 黄金廷, 卢艳莹, 侯昕悦, 王一 水文地质工程地质. 2021, 48(4): 7-14

鄂尔多斯高原湖泊蒸发原位试验研究

Research on in-situ test of lake evaporation in the Ordos Plateau 许文豪, 王晓勇, 张俊, 尹立河, 贾伍慧, 朱立峰, 董佳秋, 孙芳强 水文地质工程地质. 2019, 46(5): 16-23

巴丹吉林沙漠潜水蒸发的数值模拟研究

Numerical simulation of groundwater evaporation in the Badain Jaran Desert of China 周燕怡, 王旭升 水文地质工程地质. 2019, 46(5): 44-54

不同沉积环境下马兰黄土孔隙分布与土水特征的模式分析

Mode analysis of pore distribution and soil -water characteristic curve of Malan loess under different depositional environments 李同录,张辉,李萍,康海伟, 葛书磊 水文地质工程地质. 2020, 47(3): 107-114

关注微信公众号,获得更多资讯信息

DOI: 10.16030/j.cnki.issn.1000-3665.202012028

基于野外观测与能量守恒原理分析饱和裸土 与水面蒸发量的差异

李婉歆^{1,2}, 尹红美³, 王文科^{1,2}, 卢艳莹^{1,2}, 王艺柯^{1,2} (1. 长安大学水利与环境学院, 陕西 西安 710054; 2. 旱区地下水文与生态效应教育部 重点实验室, 陕西 西安 710054; 3. 河南省地质矿产勘查开发局 第一地质环境调查院, 河南 郑州 450045)

摘要: 准确计算裸土蒸发量对研究旱区地下水文循环过程具有重要意义。潜在蒸发量是计算裸土实际蒸发量的重要指标,由于饱和裸土蒸发量(*PE*_s)难以获取,因此常用水面蒸发量(*PE*_w)替代,但该方法的有效性有待验证。本研究基于蒸渗 仪实测蒸发量、气象要素等野外观测数据,对比了2种饱和砂土与水面蒸发量昼夜变化特征及其差异。实测结果表明,年 内平均饱和裸土蒸发量大于水面蒸发量;春夏两季蒸发强烈,两者差异最为显著;在天尺度上,水面蒸发量曲线滞后于饱和 裸土。有效能量(*R*_n-*G*_s/*N*_w)是决定潜在蒸发量差异的主要因素。与纯水相比,饱和裸土中固相颗粒的存在,削弱了短波辐 射的穿透能力,影响净辐射量(*R*_n),并导致土体热容降低,影响土面总热通量(*G*_s)。计算结果表明,饱和裸土可用于蒸发的 有效能量大于水面(*R*_{n,s}-*G*_s>*R*_{n,w}-*N*_w),因此饱和裸土蒸发量较大;由于饱和裸土剖面升温更快,水体储热变化量(*N*_w)曲线滞 后于土面总热通量(*G*_s),因此饱和裸土日蒸发量峰值也早于水面出现。该研究为准确计算实际蒸发量、提升地下水资源估 测精度提供了理论依据。

关键词:潜在蒸发量;蒸渗仪;饱和裸土蒸发;水面蒸发
中图分类号: P641.2
文献标志码: A
文章编号: 1000-3665(2021)03-0038-07

Evaporation between saturated bare soil and water – an analysis based on field observations and energy balance consideration

LI Wanxin^{1,2}, YIN Hongmei³, WANG Wenke^{1,2}, LU Yanying^{1,2}, WANG Yike^{1,2}

(1. School of Water and Environment, Chang'an University, Xi'an, Shaanxi 710054, China; 2. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Regions, Ministry of Education, Xi'an, Shaanxi 710054, China; 3. The First Institute of Geo-Environment Investigation, Henan Bureau of Geology and Mineral Exploration and Development, Zhengzhou, Henan 450045, China)

Abstract: Accurate estimation of evaporation rate in bare soil is of great significance for hydrogeological processes in arid regions. Potential evaporation has been regard as a standard to estimate the actual evaporation rate. In applications, evaporation rate in the saturated bare soil (PE_s) is often replaced by water evaporation rate (PE_w). Whether this simplification is adequate needs to be verified. This research is based on the measured potential evaporation rates (by lysimeters) and meteorological elements. The results show that PE_s is higher than PE_w on a yearly scale, and the differences are more obvious especially in spring and summer. In summer, PE_s is

收稿日期: 2020-12-13; 修订日期: 2021-02-25

基金项目:国家重点研发计划项目(2018YFC0406504);国家自然科学基金重点项目(41230314);长安大学研究生短期出国访学项目 (300104190103)

第一作者: 李婉歆(1991-), 女, 博士研究生, 主要从事旱区蒸发问题研究。E-mail: appleliwanxin01@163.com

通讯作者: 王文科(1962-), 男, 教授, 博士生导师, 主要从事旱区地下水文过程与生态效应研究。E-mail: wenkew@chd.edu.cn

· 39 ·

greater than PE_w at day but smaller at night. Besides, the curve of PE_w lags behind PE_s . Detailed analyses of evaporation dynamics over fully saturated bare sandy soils and water surface are provided by energy balance considerations. *PE* dynamics are mainly governed by available energy $(R_n - G_s/N_w)$. Compared with water, the existence of solid particles in the saturated bare soil results in a smaller albedo and heat capacity, which has a further influence on R_n and G_s . Available energy for the saturated bare sandy soil is higher than that of water $(R_{n,s}-G_s>R_{n,w}-N_w)$, resulting in a higher rate for *PE*_s. The peak value of G_s exists earlier than N_w , leading to lag of *PE*_w behind *PE*_s. This research provides a theoretical basis for accurate calculation of the actual evaporation rate and groundwater resources.

Keywords: potential evaporation; lysimeter; saturated bare soil evaporation; water evaporation

蒸发是全球水文循环的重要过程之一^[1],也是土 壤-植被-大气系统中土-气界面水热传输的重要过程^[2-3]。 在蒸发强烈、植被稀疏的西北旱区,裸土蒸发是地下水 的主要排泄途径之一,准确计算裸土实际蒸发量对旱 区水资源管理、土壤盐渍化防治具有重要意义^[4-9]。

但受技术限制,区域裸土实际蒸发量难以直接 测量。潜在蒸发量(Potential Evaporation, PE)由 Thornthwaite^[10]首次提出,是估算裸土实际蒸发量的重 要基准参数^[11-12]。然而,在实际应用中,蒸发基准面 的选取尚不明确,主要原因是潜在蒸发量有多种定义 及计算方法。依照蒸发面状态,潜在蒸发量有多种定义 及计算方法。依照蒸发面状态,潜在蒸发量的定义可 分为两类:第一类指饱和裸土面或湿润表面的蒸发量 (PE_s),是潜在蒸发量的最初定义。例如知名的 Penman 公式,和考虑了气象要素与界面能量通量的 Penma-Monteith 公式^[13],是蒸发量最主要的计算方法之一^[14]。 第二类指水面蒸发量(PE_w),例如 Shuttleworth^[15] 和 Mahart 等^[16]将潜在蒸发量定义为"理想化、宽阔的 自由水面蒸发量",认为潜在蒸发速率仅受大气条件 控制。Kessomkiat 等^[17]、Granger^[18]和 Kirono 等^[19]也 提出,水面蒸发量近似等于饱和裸土蒸发量。

在众多水文模型中,常用系数α乘以饱和裸土蒸 发量(*PE*_s)计算实际蒸发量(*E*_a),系数α与地下水位埋 深、土壤类型、极限蒸发深度、土壤蒸发阻力等因素 相关^[11-12]。由于饱和裸土蒸发量难以获取,因此常 用水面蒸发量替代。但水是单相介质,饱和裸土是固-液两相介质,从水文地质学的角度而言,固体颗粒的 存在会引起蒸发面水分的不连续分布,进而影响界面 的水-热传输^[20-21]。

当前虽有众多学者指出,使用水面蒸发量代替饱 和裸土蒸发量(如计算潜水蒸发量)会产生较大误 差^[10,22-23],但尚未有研究从能量角度定量研究二者差 异。在我国,结合地下水开展长期场地尺度的蒸发试 验研究较少。本文基于野外观测,使用大型蒸渗仪实 时监测饱和裸土与水面蒸发量、标准气象要素及剖面 温度等参数,依据能量守恒公式分析两种蒸发面的潜 在蒸发量差异,相关结论为进一步提高蒸发量计算精 度提供了理论支持。

1 试验材料与方法

1.1 研究区概况与试验方案

试验区位于长安大学水与环境原位试验场,地处 关中盆地,北邻渭河南邻秦岭,四季分明气候较为温 和,属温带季风气候。多年平均气温 14.9 ℃,平均相 对湿度 62%,平均风速 2.4 m/s,全年盛行东北风,年降 水量为 530 mm,年蒸发量为 1305 mm,年蒸发量大于 年降水量。

测量蒸发量的试验装置见图 1,蒸渗柱由玻璃钢 制成,面积为1m²。蒸渗柱底部填有反滤层,并与马 氏瓶-自动补水仪相连,用于测量定水头条件下的蒸发 量,该仪器具有精度高、自动化、操作简单等优势,仪 器由本团队研发并获得一项实用新型专利^[24]。

平衡杯(B)连接蒸渗柱(A)与马氏瓶(C),三者总 水头一致。蒸发时蒸渗柱水头下降,马氏瓶通过平衡 杯向蒸渗柱补水,马氏瓶上方的压力传感器可测量液 位变化。将液位变化率Δh_C换算为蒸发率Δh_A:

$$\pi \cdot r_{\rm A}^2 \cdot \Delta h_{\rm A} = \pi \cdot r_{\rm C}^2 \cdot \Delta h_{\rm C} \tag{1}$$

式中: r_A——蒸渗柱半径,取 56.5 cm;

r_C——马氏瓶半径,取5.8 cm。

蒸渗柱每蒸发1mm水分,马氏瓶液位下降94mm。 降雨时蒸渗柱内水头增加,雨水经平衡杯的溢流口流 出,进而保持蒸渗柱内地下水位埋深始终为0m,仪器 电箱记录液位变化频率为10min/次。蒸渗柱内分别 填充均质细砂、粗砂和水3种介质,柱体埋在地面以 下,表面与土面齐平,颗粒组成见表1,砂样水热参数 见表2。

表 1 砂样颗粒分析 Table 1 Particle compositions of sands in the lysimeter

粒径 /mm	粒径组成/%				
	≥2.00	$2.00 \sim 0.50$	0.50 ~ 0.25	0.25 ~ 0.075	< 0.075
细砂	0	0	32.7	57.5	9.8
粗砂	21.5	43.7	24.8	8.9	1.1

表 2 砂样水热参数 Table 2 Hydraulic and thermal parameters of sands in the lysimeter

砂样	饱和含水率/(cm ³ ·cm ⁻³)	热容/($MJ \cdot m^{-3} \cdot K^{-1}$)
细砂	0.39	2.2
粗砂	0.37	2.1

此外,蒸渗柱内设有温度探头(饱和裸土使用 MPS 6型负压一温度探头,水使用 1/3DIN 型温度探 头),埋深分别为:近地表(3 cm),5,10,20,30,50 cm。 饱和裸土表层还埋放热通量板(型号: HFP01)。气象 站紧邻潜在蒸发量试验区,可观测温度、湿度、辐射、 风速及气压等 30 多项气象要素,监测频率最高可达 5 min/次,降雨、冰冻等特殊天气未计入统计。

1.2 计算方法

当土壤一直处于饱和状态时,蒸发过程由能量控制^[25]。饱和裸土与水面的能量守恒公式为:

$$R_{n,s} - G_s - H_s = LE_s$$

$$R_{n,w} - N_w - H_w = LE_w$$
(2)

式中: R_{n,s} — 土面净辐射量/(W·m⁻²); R_{n,w} — 水面净辐射量/(W·m⁻²); G. — 土面总热通量,包含实测热通量及土表储

 $N_{\rm w}$ —水体储热变化量/($W \cdot m^{-2}$);

H_s——土面显热通量/(W·m⁻²); H_w——水面显热通量/(W·m⁻²);

LE, ____土面潜热通量/(W·m⁻²);

*LE*_w — 水面潜热通量/(W·m⁻²)。

众多学者对以上各参数及计算方法进行了大量 研究,本文使用的具体计算过程参考文献 [26]。现利 用 2018 年 7 月-2019 年 8 月 1 个完整水文年的数据 进行分析。

2 结果与讨论

2.1 实测潜在蒸发量变化规律

试验期间的气象数据见图 2,年平均气温 15.6 ℃, 平均相对湿度 59%,平均风速 2.3 m/s,累计降水量 460 mm,年内有 3 个降水高峰,分别为:春季 4—5 月, 夏季 7—8 月和秋季 9—10 月。7—8 月气温最高、辐 射最强,温度峰值出现在 15:00,短波向下辐射量在 12:50 达到峰值,12—翌年1 月气温最低。

sand, coarse sand and water

试验期间的实测潜在蒸发量(PE)见图 2。3 种介 质蒸发量变化趋势相同,降水量大的月份蒸发量有所

削弱。试验结果表明,2种饱和裸土年蒸发量整体大 于水面,其中饱和细砂蒸发量大于饱和粗砂。在年尺 度上,使用水面蒸发量代替饱和细砂蒸发量会低估约 14%的潜在蒸发量;在季节尺度上,秋冬两季3种介质 蒸发量近似,蒸发量差异主要集中在春夏两季,且气温 越高、蒸发越剧烈差异越明显,夏季饱和细砂与饱和 粗砂、水面蒸发量的差异分别高达9%和17%。以2019 年8月为例,饱和细砂与水面的月蒸发量差值达18%, 其中单日差异最高可达21%。由此可以推测,使用水面 蒸发量代替饱和裸土蒸发量将会低估春夏季的蒸发量, 进而影响年际和更长时间尺度上的蒸发量计算精度。 2.2 基于能量守恒公式计算潜在蒸发量

为进一步讨论差异产生的原因,本文选择蒸发强 烈的 2019 年 8 月进行分析。如图 3(d)所示,饱和裸 土与水面蒸发量昼夜变化差异明显,夏季白天水面蒸 发量小于饱和裸土,且蒸发曲线滞后于饱和裸土约 4 h, 夜间水面蒸发量大于饱和裸土。

使用式(2)分别计算 2 种饱和裸土与水面的潜热 通量(*LE*)并与实测值进行对比,数据频率为 1 h/次,计 算结果见图 3。计算曲线与实测曲线变化趋势一致且 相关性较高,水面的计算曲线与实测曲线两者相关系数 r=0.847,饱和细砂和饱和粗砂相应的相关系数 r分别为 0.878,0.843。因此,使用能量守恒公式能较好地 拟合实测潜在蒸发量。

2.3 饱和裸土与水面蒸发量差异分析

对于不同介质,式(2)中的各能量项存在差异。 以蒸渗柱为系统进行分析,净辐射(R_n)为蒸发过程的 能量来源,热通量/热储量(G_s/N_w)代表土/水体剖面温 度变化消耗的能量,显热通量(H)为土一气界面温差 消耗的能量^[25-26],2019年8月3种介质能量项的平均 昼夜变化曲线如图4所示。

由于水面温度低于饱和裸土(图 5),因此长波散 射量较小;水面短波反照率小于饱和裸土^[27],因此水 体接收到的净辐射量大于饱和裸土,见图 4 (a)。相较 于土体,辐射对水体有更强的穿透能力。然而净辐射 量较高并不代表蒸发量更大,这是由于水体储热变化 (*N*_w)远大于饱和裸土热通量(*G*_s)。白天在太阳照射 下蒸发面温度升高,水的热容为 4.18 MJ/(m³·K),约为 饱和裸土的 2 倍(表 2),因此在升温过程中水体储存 了更多能量(*N*_w 正值较大),导致可用于蒸发的有效

图 3 饱和细砂、粗砂与水面潜热通量(LE)计算结果与实测曲线及差值

图 4 饱和细砂、饱和粗砂与水面月平均净辐射量、热通量/热储量、显热通量昼夜变化

Fig. 4 Monthly average diurnal cycles of net radiation, heat flux/heat storage, sensible heat flux for fine sand, coarse sand and water

能量(*R*_{n,w}-*N*_w)较小。此外,夏季水体储热变化量(*N*_w) 在中午达到峰值,因此正午水面蒸发量较小,蒸发量 峰值出现在傍晚。日落后蒸发面放热,温度降低,水 体储热变化量(*N*_w)由正值转变为负值,见图 4 (b)。水 体热容大、储热量大且放热缓慢,相较于裸土热通量 (*G*_s),水体储热变化量(*N*_w)负值更大。因此,水体在 夜间可用于蒸发的有效能量更大。值得注意的是,与 其余通量相比,显热通量(*H*)数值较小,因此使用能量 守恒原理研究潜在蒸发量时可忽略该项对潜热通量 的影响^[28]。

与纯水相比,饱和裸土中的固体颗粒削弱了净辐射的穿透能力^[29],因此土壤剖面温度变化更剧烈,见图 5。但饱和裸土热容较小,导致热通量(*G*_s)数值较小,因而计算结果显示细砂可用于蒸发的有效能量(*R*_{n,s}-*G*_s)较大。此外,由于土壤升温较快,饱和土壤日蒸发量峰值也早于水面出现。值得注意的是,由于粗砂热容略小于细砂,剖面温度变化更剧烈、热通量

更大,见图4。因此,在净辐射差异较小的情况下,饱 和粗砂的潜在蒸发量小于饱和细砂。

由上述分析可知, 饱和裸土与水面蒸发量差异由 有效能量(*R*_n-*G_s/N_w*)决定。固体颗粒的存在导致蒸发 介质的辐射反照率与热参数存在差异^[26-27]。其中反 照率影响净辐射量, 热参数影响土壤热通量和水体储 热变化量。

温度是反映复杂能量转化过程的重要指标,图 5 为 3 种介质 8 月平均剖面温度的昼夜变化图。辐射对 水体的穿透性更强,且水热容最大,因此对较浅水体 而言剖面温度传输几乎不存在滞后性,纵向水温梯度 近似于一条竖线(夹角为 0°),见图 5(c)。饱和裸土温 度纵向传输存在滞后,随着深度增加,土壤温度的滞 后效应越明显,最终形成上层土壤温度高于下层的现 象,纵向土温梯度近似于一条斜线,见图 5(a)、图 5(b)。 尽管水体温度分布较均匀,但其升温一降温过程消耗 能量较多(*N*_w>*G*_s),且在时间上存在滞后性(*N*_w滞后 于 G_s), 见图 4(b)。综上所述, 剖面温度的变化对研究 潜在蒸发量昼夜差异具有重要意义, 在相关研究中应 加强观测。

饱和裸土与水体的蒸发是土气、水气界面能量交换的复杂过程。综合试验结果及分析可知,辐射越强、气温越高,两种介质的蒸发量及昼夜变化差异越明显。因此可以推断,使用水面蒸发量代替饱和裸土 蒸发量计算实际蒸发量必将产生较大误差。

值得注意的是,使用能量守恒公式虽能较好地拟 合实测潜在蒸发量并从宏观角度解释不同下垫面潜 在蒸发量差异,但计算结果与实测值仍存在误差,可 能引起误差的原因有:(1)本研究计算结果均基于小 时尺度的实测数据,但受观测条件限制部分参数难以 获取,例如净辐射中的短波反照率受太阳角度影响昼 夜波动较大,使用固定的反照率会高估日出及日落时 间段的净辐射量。(2)在观测土壤温度时,受仪器尺 寸限制,探头无法测量土壤最表层的温度。这在一定 程度上低估了土壤总热通量(G_s)和显热通量(H)。对 水而言,计算水体储热变化量(Nw)时需要使用不同深 度水温的小时平均值,因此需要对连续变化的剖面水 温在时间及深度上进行离散。由于热容较大,水体储 热变化量数值对水温变化较敏感,水温剖分产生的离 散误差会影响水体储热变化量的计算精度。上述观 测及模型误差影响能量守恒公式的计算精度,在下一 步试验中应注意加强对温度、辐射等关键要素的观 测。(3)除能量以外,风速、水汽压差及大气湍流过程 也会影响潜在蒸发量。

由于试验条件有限,本文基于实测数据,只对比 了2种饱和砂土与水面的蒸发量,从宏观能量守恒角 度解释其差异。拓展观测时间、增加土壤类型、提升 监测技术,结合微观的传热-传质、水气(汽)扩散过 程,从机理上提升对水面与土面、不同岩性土壤之间 潜在蒸发问题的认知是下一步的重点研究内容。

3 结论

(1)饱和裸土年蒸发量大于水面,潜在蒸发量差 异由有效能量(*R_n−G_s/N_w*)决定。与纯水相比,饱和裸 土中固相颗粒的存在导致不同种蒸发介质的实际辐 射反照率与热参数存在差异,最终影响潜在蒸发量。

(2)试验结果表明,饱和裸土与水面在温度越高、 蒸发越强烈的时间段差异越明显。由此可以推测,在 气候炎热、蒸发强烈的旱区,使用水面蒸发量代替饱 和裸土蒸发量计算实际蒸发量将会产生较大误差。

(3)实测结果显示,在蒸发强烈的季节中,时间尺

度越小,潜在蒸发量差异越明显,因此针对精准农业、 灌溉等对蒸发实时变化精度要求较高的领域,应考虑 蒸发面类型并准确计算潜在蒸发量。

参考文献(References):

- [1] 刘昌明,孙睿.水循环的生态学方面: 土壤-植被-大气系统水分能量平衡研究进展[J].水科学进展, 1999, 10(3): 251 259. [LIU Changming, SUN Rui. Ecological aspects of water cycle: advances in soil vegetation atmosphere of energy and water fuxes[J]. Advances in Water Science, 1999, 10(3): 251 259. (in Chinese with English abstract)]
- [2] ABBOTT B W, BISHOP K, ZARNETSKE J P, et al. Human domination of the global water cycle absent from depictions and perceptions[J]. Nature Geoscience, 2019, 12(7): 533 – 540.
- [3] LI N, YUE X Y, WANG W K, et al. Inverse estimation of spatiotemporal flux boundary conditions in unsaturated water flow modeling[J]. Water Resources Research, 2021, 57(1): e2020WR028030.
- [4] 刘昌明,张丹.中国地表潜在蒸散发敏感性的时空变 化特征分析[J].地理学报, 2011, 66(5): 579 - 588.
 [LIU Changming, ZHANG Dan. Temporal and spatial change analysis of the sensitivity of potential evapotranspiration to meteorological influencing factors in China[J]. Acta Geographica Sinica, 2011, 66(5): 579 -588. (in Chinese with English abstract)]
- [5] COENDERS-GERRITS A M J, VAN DER ENT R J, BOGAARD T A, et al. Uncertainties in transpiration estimates[J]. Nature, 2014, 506; E1 – E2.
- [6] 席丹,王文科,赵明,等.玛纳斯河流域山前平原区蒸 散发时空异质性分析[J].水文地质工程地质,2020, 47(2):25-34. [XI Dan, WANG Wenke, ZHAO Ming, et al. Analyses of the spatio-temporal heterogeneity of evapotranspiration in the piedmont of the Manas River Basin[J]. Hydrogeology & Engineering Geology, 2020, 47(2):25-34. (in Chinese with English abstract)]
- MA Z T, WANG W K, ZHANG Z Y, et al. Assessing bare-soil evaporation from different water-table depths using lysimeters and a numerical model in the Ordos Basin, China[J]. Hydrogeology Journal, 2019, 27(7): 2707 2718.
- [8] GONG C C, WANG W K, ZHANG Z Y, et al. Comparison of field methods for estimating evaporation from bare soil using lysimeters in a semi-arid area[J].

Journal of Hydrology, 2020, 590: 125334.

- [9] ZHANG Z Y, WANG W K, WANG Z F, et al. Evaporation from bare ground with different water-table depths based on an in situ experiment in Ordos Plateau, China[J]. Hydrogeology Journal, 2018, 26(5): 1683 – 1691.
- [10] THORNTHWAITE C W. An approach toward a rational classification of climate[J]. Geographical Review, 1948, 38(1): 55.
- [11] 刘佩贵,夏艳,尚熳廷.不同质地裸土潜水蒸发估算方法[J].农业工程学报,2020,36(1):148-153.[LIU Peigui, XIA Yan, SHANG Manting. Estimation methods of phreatic evaporation for different textures in bare soil area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1):148-153.(in Chinese with English abstract)]
- [12] CHANZY A, BRUCKLER L. Significance of soil surface moisture with respect to daily bare soil evaporation[J].
 Water Resources Research, 1993, 29(4): 1113 - 1125.
- PENMAN H L. Natural evaporation from open water, bare soil and grass[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1948, 193(1032): 120 145.
- [14] MCJANNET D L, COOK F J, BURN S. Comparison of techniques for estimating evaporation from an irrigation water storage[J]. Water Resources Research, 2013, 49(3): 1415 – 1428.
- [15] SHUTTLEWORTH W J. Evaporation models in the global water budget[C]//Variations in the global water budget. Dordrecht: Springer Netherlands, 1983: 147-171.
- [16] MAHRT L, EK M. The influence of atmospheric stability on potential evaporation[J]. Journal of Climate and Applied Meteorology, 1984, 23(2): 222 – 234.
- [17] KESSOMKIAT W, FRANSSEN H J H, GRAF A, et al. Estimating random errors of eddy covariance data: an extended two-tower approach[J]. Agricultural and Forest Meteorology, 2013, 171/172: 203 – 219.
- [18] GRANGER R J. An examination of the concept of potential evaporation[J]. Journal of Hydrology, 1989, 111(1/2/3/4): 9-19.
- [19] KIRONO D G C, JONES R N, CLEUGH H A. Panevaporation measurements and Morton-point potential evaporation estimates in Australia: are their trends the same?[J]. International Journal of Climatology, 2009, 29(5): 711 – 718.

- [20] FEDERER C A, VÖRÖSMARTY C, FEKETE B. Intercomparison of methods for calculating potential evaporation in regional and global water balance models[J]. Water Resources Research, 1996, 32(7): 2315-2321.
- [21] MONTEITH J L, UNSWORTH M H. Micrometeorology [C]//Principles of environmental physics. Amsterdam: Elsevier, 2013: 289-320.
- [22] 邢旭光,史文娟,王全九.对常用潜水蒸发经验模型中 E₀值的探讨[J].干旱地区农业研究,2013,31(4):57-60. [XING Xuguang, SHI Wenjuan, WANG Quanjiu. Discussion on E₀ value in common groundwater evaporation empirical models[J]. Agricultural Research in the Arid Areas, 2013, 31(4): 57 - 60. (in Chinese with English abstract)]
- [23] LI W X, WANG W, BRUNNER P, et al. Evaporation over saturated bare soil: the role of soil texture[C]//EGU General Assembly Conference Abstracts, 2020: 412.
- [24] 申圆圆,李俊亭,王文科,等.全自动蒸发降水计量用数据采集装置: CN203721111U[P]. 2014-07-16.
 [SHEN Yuanyuan, LI Junting, WANG Wenke, et al. Automatic data acquisition device for measurement of evaporation and rainfall: CN203721111U[P]. 2014-07-16. (in Chinese)]
- [25] SHELTON M L. Hydroclimatology: perspectives and applications[M]. Cambridge: Cambridge University Press, 2009.
- [26] LI W X, BRUNNER P, HENDRICKS FRANSSEN H J, et al. Potential evaporation dynamics over saturated bare soil and an open water surface[J]. Journal of Hydrology, 2020, 590: 125140.
- [27] GIANNIOU S K, ANTONOPOULOS V Z. Evaporation and energy budget in Lake Vegoritis, Greece[J]. Journal of Hydrology, 2007, 345(3/4): 212 – 223.
- [28] GALLEGO-ELVIRA B, BAILLE A, MARTIN-GORRIZ
 B, et al. Energy balance and evaporation loss of an irrigation reservoir equipped with a suspended cover in a semiarid climate (south-eastern Spain)[J]. Hydrological Processes, 2011, 25(11): 1694 1703.
- [29] 刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用
 [M].北京:科学出版社, 2006. [LIU Wei, FAN Aiwu, HUANG Xiaoming. Theory and application of heat and mass transfer in porous media[M]. Beijing: Science Press, 2006. (in Chinese)]