

悬挂式止水帷幕条件下深基坑开挖变形特性研究

向朱锋,徐金明

Deformation characteristics of deep foundation pit with suspended waterproof curtain during excavation

XIANG Zhufeng and XU Jinming

在线阅读 View online: https://doi.org/10.16030/j.cnki.issn.1000-3665.202208019

您可能感兴趣的其他文章

Articles you may be interested in

北京地铁新宫站基坑复合支护过渡部位的冗余度设计

Research on redundancy design of the transition section of composite pit support in the foundation pit of the Xingong Station of the Beijing subway

闫建龙, 闫亚斌, 沈宇鹏, 王潇 水文地质工程地质. 2019, 46(2): 162-162

基坑降水对声纳渗流检测精度的影响分析

Influence of foundation pit dewatering on sonar seepage detection accuracy 江杰,魏丽,钟有信,胡盛斌,杨杉楠 水文地质工程地质. 2020, 47(5): 73-80

北京不同区域明挖基坑地表沉降变形特征研究

Characteristics of surface settlement and deformation of open cut foundation pit in different areas of Beijing 张建全,张克利,程贵方 水文地质工程地质. 2021, 48(6): 131-139

深厚软土地区基坑墙底抗隆起稳定性Prandlt计算式的讨论

A discussion of the Prandlt calculation formula for anti-uplift stability of the bottom of a foundation pit wall in deep soft soil areas 阳吉宝 水文地质工程地质. 2021, 48(2): 61-69

武汉地区厚互层土中基坑抗突涌破坏评价方法研究

Study of evaluation method of anti-uprush stability of foundation pit with thick interbedded soil layers in Wuhan 熊宗海, 冯晓腊, 张红章, 范卫琴, 程华强 水文地质工程地质. 2020, 47(2): 134-140

深厚黄土地基浸水湿陷变形及竖向土压力作用分析

Analysis of collapsible deformation and vertical soil pressure action of thick loess foundation 屈宏录, 刘德仁, 孙英萍, 闫炳舟, 徐硕昌, 张严 水文地质工程地质. 2022, 49(4): 157-164

关注微信公众号,获得更多资讯信息

DOI: 10.16030/j.cnki.issn.1000-3665.202208019

向朱锋, 徐金明. 悬挂式止水帷幕条件下深基坑开挖变形特性研究 [J]. 水文地质工程地质, 2023, 50(5): 96-106. XIANG Zhufeng, XU Jinming. Deformation characteristics of deep foundation pit with suspended waterproof curtain during excavation[J]. Hydrogeology & Engineering Geology, 2023, 50(5): 96-106.

悬挂式止水帷幕条件下深基坑开挖变形特性研究

向朱锋,徐金明

(上海大学土木工程系,上海 200444)

摘要:降水条件对基坑开挖的变形特性具有重要影响。为了研究悬挂式止水帷幕结合承压非完整井组成的墙井系统条件 下基坑开挖过程中的变形问题,以某悬挂式止水帷幕深基坑为例,通过定义降水井和地表渗流边界条件建立了考虑分级降 水和基坑开挖实际工况的三维流固耦合有限元数值分析模型,使用现场监测数据与数值模拟结果互相验证的方法研究了 悬挂式止水帷幕情况下基坑开挖过程中地下连续墙变形和地表沉降的变化特征,对比分析了悬挂式止水帷幕和落底式止 水帷幕条件下的地表沉降。结果表明:在不同分级降水情况下,降水深度初次达到场地第一承压水含水层降水期间产生的 地下连续墙水平位移增量最大,地表沉降也主要在这一期间产生;悬挂式止水帷幕情况下的地表沉降最大值约为落底式止 水帷幕的 2.7 倍,最大值位置距地下连续墙边缘的距离比落底式止水帷幕大 0.85 m;地下连续墙水平位移峰值处,降水期间 产生的位移占 28%,地表沉降峰值处,降水期间产生的沉降占 49%;使用悬挂式止水帷幕时,距地下连续墙边缘 12 倍开挖深 度处,地表沉降与地表沉降峰值的比值为 0.1、该距离比落底式止水帷幕大 13 m 左右。研究成果对确定深基坑降水方案、 保证深基坑开挖施工安全具有一定的参考价值。

关键词:悬挂式止水帷幕;分级降水;深基坑;基坑变形 中图分类号:TU46+3 文献标志码:A

文章编号: 1000-3665(2023)05-0096-11

Deformation characteristics of deep foundation pit with suspended waterproof curtain during excavation

XIANG Zhufeng, XU Jinming

(Department of Civil Engineering, Shanghai University, Shanghai 200444, China)

Abstract: Dewatering conditions have an important influence on the deformation characteristics of foundation pit excavation. In order to study the deformation problem during foundation pit excavation under the condition of a wall-well system consisting of suspended waterproof curtain combined with confined partially penetrating well, this study takes a deep foundation pit with suspended waterproof curtain as an example, uses the finite element numerical analysis to establish a 3D fluid-solid interaction model, and takes into account the actual working conditions of graded dewatering during the pit excavation by defining the seepage boundary conditions of the dewatering well and the surface. The monitoring data and simulation results are combined to explore the variation features of underground diaphragm wall deformation and surface settlement with suspended waterproof curtain is further compared and analyzed. The results show that in dewatering process of the foundation pit at all levels, the horizontal displacement increment of the underground diaphragm wall is the greatest with the most of the surface

收稿日期: 2022-08-11; 修订日期: 2022-11-07 投稿网址: www.swdzgcdz.com

第一作者: 向朱锋(1997-), 男, 硕士研究生, 主要从事岩土工程的研究工作。E-mail: xiangzhufeng0743@163.com

通讯作者: 徐金明(1963-), 男, 博士, 教授, 博士生导师, 主要从事工程地质与岩土工程的教学与科研工作。E-mail: xjming@163.com

subsidence as the dewatering depth reaches the first confined aquifer. The maximum surface settlement generated by foundation pit with suspended waterproof curtain is about 2.7 times that with drop waterproof curtain, with the greater 0.8 m of the maximum surface settlement location. At the peak of horizontal displacement of underground diaphragm wall, the displacement during dewatering accounts for 28%, and at the peak of surface settlement, the settlement during dewatering accounts for 49%. When the suspended waterproof curtain is used at 12 times the excavation depth from the edge of the diaphragm wall, the ratio of surface settlement to the peak of surface settlement is 0.1, which is about 13 m greater than that of the drop waterproof curtain. The research results are of a reference value for determining the deep foundation pit dewatering scheme and ensuring the safety of deep foundation pit excavation construction.

Keywords: suspended waterproof curtain; graded dewatering; deep foundation pit; foundation pit deformation

深基坑开挖工程中,为防止基坑积水、坑底突涌、 保证基坑开挖过程的施工安全,往往需要采用降隔水 组合的方案来控制基坑施工过程中产生的地下水。 隔水通常采用布置落底式止水帷幕或悬挂式止水帷 幕等方式实现,悬挂式止水帷幕未穿透场地含水层, 坑外地下水可能会在帷幕底部绕流并进入基坑;落底 式止水帷幕贯穿含水层,坑外地下水不会流入基坑内 部。由于含水层一般埋藏较深,采用落底式止水帷 幕,施工难度大、造价高,因此,深基坑地下水控制中 大量采用悬挂式止水帷幕进行隔水并结合减压井进 行降水的组合方案^[1-4],而悬挂式止水帷幕基坑降水 引起的地表沉降可以达到总沉降的 50% 以上^[5-6],对 基坑变形的影响也远大于落底式止水帷幕基坑。因 此,有必要研究悬挂式止水帷幕基坑降水开挖过程中 的基坑变形和地表沉降特性。

许多学者采用数值模拟、现场试验、实测分析、 理论分析对基坑降水开挖过程中的变形特性进行了 研究。如,孙琳等四对某沿海基坑工程进行了数值模 拟,发现基坑开挖时,考虑降水会导致支护结构增加 4 mm 的水平位移; Leung 等^[8] 统计了 14 个深基坑降水 开挖过程中地下连续墙水平位移的监测数据,发现地 下连续墙最大水平位移的平均值为 0.23 倍基坑开挖 深度;张军等¹⁹对某锚定基坑工程进行了试验分析, 总结了基坑降水过程中,地下连续墙水平位移和竖向 弯矩的变化规律; Liu 等^[10] 对某地铁基坑工程进行了 实测分析,总结了地表沉降在基坑降水开挖过程中的 变化规律; Roberts 等^[11] 对某隧道基坑进行了试验分 析,认为距基坑边缘3倍基坑开挖深度以内,由开挖 导致的地表沉降要比由降水导致的地表沉降更加明 显;江杰等[12] 以某车站基坑为例,通过建立三维流固 耦合数值模型并结合现场监测数据,研究了基坑开挖 前降水对周边地表沉降的影响;何山[13]对某车站基坑 降水工程进行了数值模拟,预测了基坑降水在满足施 工安全条件下的地表沉降值;胡长明等[14]以某地铁基 坑为例,推导了降水引起地表沉降的计算公式;娄平 等15]以长沙市地铁5号线某车站基坑为例,采用数值 模拟与理论公式推导的方法,研究了基坑降水过程中 地表沉降达到稳定所需的时间; Khosravi 等¹⁶ 通过建 立基坑降水三维数值模型并结合监测数据,发现由于 降水导致的地表沉降占总沉降的 30%; 张建全等^[17] 统 计了某地区不同区域基坑降水开挖过程中地表沉降 的监测数据,发现地表沉降峰值点距地下连续墙边缘 距离与基坑深度的比值约为 0.3; 秦胜伍等[18] 基于 Stacking 模型融合预测深圳某深基坑地面沉降, 验证 了该方法的适用性和优越性; Zheng 等[19] 对某地铁基 坑降水工程建立三维流固数值模型,发现坑内降水会 使地下连续墙产生10mm的水平位移。上述研究大 多聚焦落底式止水帷幕条件下基坑降水开挖过程中 的变形特性,针对悬挂式止水帷幕条件下基坑特性的 研究成果较少。

关于悬挂式止水帷幕基坑的变形特性,何绍衡 等^[20]建立了某场地地下水类型主要为潜水的悬挂式 止水帷幕基坑降水三维流固耦合数值模拟,结合现场 实测数据,总结了不同降水期间地下连续墙水位位移 的变化规律;郑刚等^[21]对某复杂地质条件下地铁车站 悬挂式止水帷幕进行了深基坑开挖前的降水试验,发 现复杂地层中存在较多含水透镜体,悬挂式止水帷幕 基坑内外存在较强的水力联系,坑内降水引起了围护 结构的较大侧移与地表沉降;李瑛等^[22]建立了悬挂式 止水帷幕基坑抽水量与坑外水头降深的关系式,总结 了降水过程中坑外水头降深的变化规律;李又云等^[23] 认为,悬挂式止水帷幕降水过程中采取回灌措施可在 一定程度上减小基坑周边的地表沉降;Li等^[24]统计 了7个悬挂式止水帷幕基坑降水开挖过程中地表沉 降的监测数据,发现距离地下连续墙边缘 15 m 左右的 地表沉降值最大;骆祖江等^[25]建立了深基坑降水三维 渗流与地面沉降耦合数学模型,对悬挂式止水帷幕深 基坑降水方案进行了模拟和优化。

现有的悬挂式止水帷幕条件下基坑开挖过程变 形特性研究,较少考虑基坑分级降水与开挖耦合^[26-27] 的实际施工过程,坑内降水多只考虑潜水层的疏干降 水,且对悬挂式止水帷幕和坑内承压非完整降水井组 成的墙井系统^[28]的研究较少。本文以某深基坑工程 为背景,采用有限元分析软件 ABAQUS 建立三维流固 耦合有限元数值分析模型,结合现场监测结果与数值 模拟结果,研究悬挂式止水帷幕分级减压降水条件下 深基坑开挖过程中的变形特性。

1 工程概况

1.1 地理位置

某隧道依次穿越尹山湖西路、中心河、尹山湖 (图1),路线全长2056m(其中,穿越尹山湖段1136m, 敞开段200m),含有E、F2个匝道,出口匝道暗埋段 334m(E、F匝道分别为184m、150m),出口匝道敞开 段386m(E、F匝道分别为181,205m)。

1.2 基坑及围护结构

隧道围护结构主体采用 600 mm 厚的地下连续 墙,本文取隧道中段最不利位置基坑进行研究,基坑 起止里程为: K2+767—K2+812,全长 45 m,基坑开挖 深度为 10.645 m,该段基坑采用明挖顺作法施工,地下 连续墙不同深度处共设 3 道支撑(1 道钢筋混凝土支 撑+2 道钢支撑)。

表1 研究区土层性质

Table 1 Characteristics of the soil layers in the study area

土层特征	土层名称	含水层名称	厚度/m
	素填土	潜水层	2.63
$(3)_2$	粉质黏土	弱透水层	4.30
$(4)_1$	粉质黏土	弱透水层	4.50
(4) ₂	粉砂夹粉土	承压水层	6.30
51	粉质黏土夹粉砂	弱透水层	6.20
(5) ₂	粉砂夹粉质黏土	承压水层	5.40
$\overline{\mathbb{O}}_1$	粉质黏土	弱透水层	5.67

1.3 土层条件

本工程各土层如表1所示,主要软弱土层为第④2 层(粉砂夹粉土)、第⑤2 层(粉砂夹粉质黏土),埋藏于 基坑开挖深度以下,含水率高、强度低,基坑开挖过程 中容易发生坑底突涌。场地地下水主要有潜水、承压 水。潜水层为富水性差的素填土层;第一承压水层为 富水性中等的④2 层,水位标高为-12.93 m,底板埋藏 深度为17.73 m;第二承压水层为富水性好的⑤2 层,水 位标高为-25.43 m,底板埋藏深度为29.33 m。

1.4 地下水控制方案

考虑到施工造价以及地下水控制对周边环境的 影响,本工程选用降、隔水组合的方案来控制基坑施 工过程中的地下水。其中隔水通过在基坑周围布设 悬挂式止水帷幕实现、降水通过在坑内布置承压非完 整降水井实现(图 2)。图 2 中,地下连续墙兼用于悬

挂式止水帷幕,厚度为 0.6 m、高度为 26.0 m;承压非 完整井底嵌入第一承压水层。

1.4.1 降水井设计及监测点布置

完整井降水施工难度高、对周边环境危害大;为 避免这些缺点,本工程坑内降水井采用承压非完整 井,井径 705 mm,井深为 h_e+6 m(h_e为基坑开挖深 度),井底嵌入场地④2 层(粉砂夹粉土),井深范围内 均设置滤管。降水井总体上按单井降水面积 200~ 250 m²进行布置,研究区段降水井纵向间距约为 20 m,横向间距约为 14 m,共布置 7 口降水井。监测 数据主要包括地下连续墙不同深度处的水平位移、 距地下连续墙边缘不同位置处地表的沉降与坑外水 位变化。

研究区段基坑降水井及监测点位置如图3所示。

1.4.2 止水帷幕设计

为降低施工难度、减少造价,本工程选用悬挂式 止水帷幕(图 4)。在钢筋混凝土地下连墙底部填充 6 m 的素连续墙,地连墙总深度为 26 m,墙体底部嵌入 到⑤2 层。

Fig. 4 Suspended curtain arrangement

2 基坑降水开挖的三维流固耦合模型

为分析基坑降水开挖过程中由于土体渗流和固 结导致的基坑变形问题,采用有限元分析软件 ABA-QUS 中的孔隙流体渗透-应力耦合分析步,通过在命 令流文件中定义降水井和地表渗流边界条件来建立 基坑降水开挖的三维流固耦合有限元数值分析模型。 2.1 模型假设

基坑开挖过程中,沿开挖方向土层性质与地下水 位会发生动态变化。为简化计算,建立数值分析模型 时作如下假设:

(1)土层的本构模型采用修正剑桥模型;

(2)各土层厚度沿水平方向不变;

(3)基坑围护结构的本构模型采用线弹性模型,围护结构与土体的接触服从库伦摩擦定律;

(4)将降水前的土体视作正常固结状态;

(5)初始地下水位在地表。

2.2 模型尺寸以及边界

基坑降水及开挖模型如图 5 所示。图中, X 代表 横向, Y 代表基坑延伸方向, Z 代表基坑深度方向。基 坑开挖深度为 10.645 m, 基坑宽度为 42.22 m, 考虑到 边界效应, 模型深度取 50 m, 模型水平方向的土体边 界距地下连续墙边缘的距离取 150 m。第一道支撑采 用截面尺寸为 0.8 m × 0.8 m 的钢筋混凝土支撑, 第二、 三道支撑采用直径为 0.69 m、厚为 0.016 m 的钢支撑。

模型中各部件单元属性为:地下连续墙采用线性的8结点六面体非协调单元,土体采用线性的8结点六面体非协调单元,土体采用线性的8节点 六面体孔隙减缩单元,混凝土支撑、钢支撑采用空间 线性的2结点梁单元,降水井采用曲面4节点薄壳单 元。位移边界条件为:模型四周表面指定法向的位移 约束,底面指定X、Y、Z方向的位移约束。水压边界 条件为:模型左右边界设置为固定在当前幅值的定水 头边界,底面设置为不透水边界。

2.3 计算工况

本工程基坑开挖分四级,每次开挖至支撑下方

0.5 m处;待支撑施工完毕后,方可继续开挖。其中, 一级开挖为基坑开挖至第一道支撑下方 0.5 m处,二、 三、四级开挖依此类推。采用分级降水方案:基坑开 挖过程中降水分为四级,每级开挖施工前该级降水为 地下水位降至该级开挖面以下 1 m。

数值模型使用"生死单元法"和孔隙流体渗透-应 力耦合分析步来模拟基坑分级降水开挖全过程,基坑 施工过程的模拟工况如下:

工况一:初始地应力平衡;

工况二:激活地下连续墙和降水井;

工况三:一级降水,使地下水降至地表下1.8 m;

工况四:一级开挖至地表下 0.8 m, 施加第一道钢 筋混凝土支撑;

工况五:二级降水,使地下水降至地表下 5.56 m;

工况六:二级开挖至地表下 4.56 m, 施加第二道钢 支撑;

工况七:三级降水,使地下水降至地表下 8.96 m;

工况八:三级开挖至地表下 7.96 m, 施加第三道钢 支撑;

工况九:四级降水,使地下水降至地表下11.65 m; 工况十:四级开挖至坑底(地表下10.65 m)。

2.4 模型材料参数

依据勘察报告、降水试验和文献 [29] 的方法确定 有限元模拟分析模型中各层土体以及基坑围护结构 物理力学参数(表 2),其中各土层的竖直渗透系数和 水平渗透系数由现场抽水试验并且参照曾超峰等^[30] 根据有限元反演得出的渗透系数来确定。

围护结构与土体的接触行为包含法向挤压行为 和切向滑动摩擦行为,法向挤压行为设置为硬接触模 型;切向滑动摩擦行为服从库伦摩擦定律,数值模型 中通过定义围护结构与土体的接触属性来实现。其 中,触面的极限剪切滑移量设置为5mm、摩擦系数设 置为0.3。

地下连续墙为 C35 混凝土, 混凝土支撑为 C30 混凝土, 钢支撑采用 Φ609 钢管、壁厚为 16 mm, 地下连续墙、混凝土支撑、钢支撑、降水井材料性质参数见表 3。

2.5 降水过程的模拟

通过在命令流文件中定义降水井和地表渗流边 界条件来模拟实际基坑降水过程。其中渗流边界条 件选择自由渗出段(drainage-only flow, DOF)边界,该 条件的物理意义为: DOF 边界上孔隙水压力(*p*_w)为正 时,外法线方向的渗流速度(*v*_n)与*p*_w成正比,以模拟 表 2 各十层物理力学性质参数

•	1	01	

Table 2Physical and mechanical parameters of the soil layers								
各土层性质	$ ho/(g \cdot cm^{-3})$	λ	М	e_1	κ	$K_{\rm v}/({\rm m}\cdot{\rm d}^{-1})$	$K_{\rm H}/({ m m}\cdot{ m d}^{-1})$	υ
D3	1.90	0.077 0	0.570	0.811	0.009 0	3.89×10 ⁻³	5.84×10 ⁻³	0.33
$(3)_2$	1.94	0.055 3	0.979	0.822	0.006 5	5.62×10 ⁻³	8.43×10 ⁻³	0.33
$(4)_1$	1.89	0.044 5	0.979	0.696	0.005 2	8.21×10^{-3}	1.23×10^{-2}	0.33
(4) ₂	1.91	0.029 3	1.202	0.640	0.003 4	1.73	2.60	0.23
5,	1.89	0.032 0	0.900	0.611	0.003 7	5.18×10^{-2}	7.77×10^{-2}	0.33
52	1.94	0.019 1	1.382	0.585	0.002 2	2.59	3.89	0.23
(7).	1.00	0.020.5	0.000	0.676	0.003.5	5.00×10^{-3}	7.50×10^{-3}	0.28

注:ρ为密度;λ为土体压缩指数;M为土体应力比;e_i为压力为1 kPa时土体的孔隙比;κ为土体回弹指数;K_v为土体竖直渗透系数;K_a为土体水平渗透系数; o为泊松比。

表 3 围护结构及降水井材料参数

 Table 3
 Material parameters of the retaining structure and dewatering well

参数	$\rho/(g \cdot cm^{-3})$	<i>E</i> /MPa	v
地下连续墙	2.42	31 500	0.20
混凝土支撑	2.36	30 000	0.20
钢支撑	7.85	200 000	0.20
降水井	7.85	210 000	0.20
>>>			

注:E为弹性模量。

地下水从降水井滤管排出的过程; pw 为负时, vn=0, 以防止从降水井滤管排出的地下水回流, 即

$$\nu_{n} = \begin{cases} k_{s} p_{w} & p_{w} > 0\\ 0 & p_{w} \le 0 \end{cases}$$
(1)

式中:k_s——渗透系数/(m·d⁻¹)。

DOF 边界条件的关键控制参数为 k_s,采用式(2)计 算(推导过程见文献 [20]):

$$k_{\rm s} = \frac{A \sum_{i=1}^{n} u h_i}{\pi D L N t p_{\rm w}}$$
(2)

式中:L----降水井滤管长度/m;

D----井径/m;

hi——降水井滤管范围内承压含水层厚度/m;

N----承压非完整井个数;

t----降水时间/d。

2.6 基坑降水渗流场的模拟结果

基坑降水过程中地下水渗流矢量分布的模拟结 果如图 6(a)所示。可以看出,悬挂式止水帷幕没有将 基坑的内外水力联系彻底切断,在降水井井泵压力的 作用下,坑外地下水在止水帷幕底部绕流、并进入基 坑;④2层与⑤2层渗流方向基本为水平向、渗流速度 在地下连续墙底部附近达到最大,这一渗流容易造成 地下连续墙产生两端小中间大的水平位移(即内凹型

(a) 地下水渗流矢量分布

水平位移^[5])和坑外地表沉降。

基坑降水过程中坑内孔隙水压力等值线分布如 图 6(b)所示。可以看出,降水井附近孔隙水压力急 剧下降、形成明显的降水漏斗。基坑外水位监测井 SWY49处水位变化的数值模拟结果与监测值的历时 曲线如图 7 所示。可以看出,数值模拟结果与监测值 基本一致;水位下降深度最大值为 1.7 m,水位变化呈 现出降水开始时水位逐渐下降、降水停止后水位逐渐 恢复的规律。

图 6 和图 7 符合渗流理论、与何绍衡等^[20]的数值

模拟结果基本一致,坑外水位变化数值模拟结果也与 监测值基本一致,因此,本文建立的基坑降水开挖三 维流固耦合数值模型具有较好的可靠性。

3 悬挂式止水帷幕条件下深基坑施工力学 特性

结合现场实测数据,根据前述基坑分级降水开挖 三维流固耦合数值模型,研究"承压非完整井+悬挂 式止水帷幕"方案中基坑开挖引起的地下连续墙水平 位移和周边地表沉降。地下连续墙水平位移监测数 据取自监测点 CX94,地表沉降监测数据取自监测点 DB100-1、DB100-2、DB100-3、DB100-4、DB100-5、 DB100-6、DB100-7。为区分本基坑工程中各级降水和 开挖对地下连续墙水平位移和地表沉降的影响,使用 地下连续墙水平位移增量和地表沉降增量来研究基 坑分级降水和开挖对地下连续墙变形的影响。一级 降水期间产生的地下连续墙水平位移增量为一级降 水结束时地下连续墙的水平位移值与开始时的位移 值之差,其余各级降水和开挖的计算方式与此类似。 3.1 地下连续墙水平位移增量

基坑竣工后地下连续墙水平位移与降水和开挖的关系如图 8 所示。可以看出,采用悬挂式止水帷幕 基坑降水与耦合模型得到的数值模拟值与监测值基 本一致,这也验证了前述数值模型的正确性。基坑竣 工后,地下连续墙产生两端小中间大的内凹型水平位 移,水平位移峰值为 29.82 mm,即基坑开挖深度(*h*_e) 的 0.28%,小于本工程控制值(0.3%*h*_e)。地下连续墙水 平位移峰值发生在地表下 8.5 m 处(即 *h*_e-2.145 m 处), 地下连续墙水平位移峰值点位于(*h*_e-3, *h*_e+3), 与李方

明等。的统计结果一致。

图 9 为各级降水、基坑开挖引起的不同深度地下 连续墙水平位移增量的数值模拟结果。可以看出,一 级降水、一级开挖期间,由于未施作支撑,地下连续墙 水平位移增量峰值发生在墙顶处,水平位移增量呈即 悬臂形分布;二、三、四级降水和开挖期间,地下连续 墙水平位移增量分布形式是两端小中间大(即内凸 型);基坑竣工后,降水引起的累计地下连续墙水平位 移峰值为 8.23 mm、占基坑竣工后地下连续墙水平位 移峰值的 28%,开挖引起的累计水平位移峰值为 21.16 mm、占基坑竣工后地下连续墙水平位移峰值 的 72%。由此可见,地下连续墙水平位移主要在基坑 开挖期间产生。

由图9还可以看出,各级基坑开挖产生的地下连续墙水平位移增量随支撑施加而逐级递减;各级降水过程中,三级降水期间地下连续墙水平位移增量峰值为5.14 mm、占降水期间累计水平位移增量峰值的62%,主要原因是此时降水深度初次达到第一承压水含水层(④2层),该层地下水以较大渗流速度水平流向降水井滤管,渗流力加剧了地下连续墙的水平向变形;第四级降水期间,由于支撑数量的增加、水平向渗流力的消散,地下连续墙水平位移增量逐步减小。

由以上分析可知,采用悬挂式止水帷幕结合承压 非完整井的地下水控制方案时,地下连续墙水平位移 主要在分级开挖期间产生,坑内分级降水对地下连续 墙水平变形的影响较小;各级降水期间的地下连续墙 水平位移增量不是逐级递减,而是在降水深度初次达 到第一承压水含水层时达到最大。

3.2 周边地表沉降

不同止水帷幕基坑竣工后地表沉降与降水和开挖的关系如图 10 所示。可以看出,采用悬挂式止水 帷幕时,模拟值与实测值基本一致(实测值比数值 模拟结果略小,原因是实际工程中在坑外采取回灌 措施来抑制地表沉降,而在数值模拟中并未在坑外 布设回灌井);基坑周边地表沉降变化呈现为先下 降、后上升、最后趋于平稳的凹槽型,地表沉降峰值 为56.36 mm(即 0.53%h_e)、距地下连续墙边缘 14.05 m (即 1.32h_e)。落底式止水帷幕基坑产生的地表沉降峰 值为 22.35 mm(0.21%h_e)、距地下连续墙边缘 13.20 m (1.24h_e)。由此可见,同等条件下,悬挂式止水帷幕产 生的地表沉降峰值约为落底式止水帷幕的 2.7 倍,地

表沉降峰值位置距地下连续墙边缘距离比落底式止 水帷幕大 0.85 m(0.08h_e)。

图 11 为各级降水和基坑开挖引起的周边地表沉降增量数值模拟结果。可以看出,各级降水、基坑开挖期间产生的周边地表沉降增量变化趋势均为凹槽型;基坑竣工后,地表沉降峰值点处,降水期间累计产生的地表沉降增量为 29.24 mm、占峰值的 49%,开挖期间为 30.14 mm、占峰值的 51%;各级降水期间,地表沉降增量主要在三、四级降水期间产生,原因主要是:三、四级降水期间降水深度达到④2层(即场地第一承压水含水层),此时含水层中地下水被较快抽出、导致坑外水位迅速下降与土体大量沉降。

construction phase

图 12 为基坑竣工后地表沉降的归一化曲线, 图 中, x 为距地下连续墙边缘的距离, S_{max} 为地表沉降峰 值, S 为地表沉降, 主要、次要影响区划分位置处的地 表沉降为 0.1 倍地表沉降峰值。可以看出, 主要影响 区内地表沉降较大, 次影响区内地表沉降可忽略不 计; 使用悬挂式止水帷幕和落底式止水帷幕时, 主要 影响区范围分别为距地下连续墙边缘 12h_e和 10.8h_e。

由以上分析可知,采用"悬挂式止水帷幕+承压 非完整井"进行分级降水过程中,基坑竣工后地表沉 降峰值处的降水期间累计地表沉降占到了一半;地表 沉降主要出现于降水深度达到场地第一承压含水层 时的降水期间;使用悬挂式止水帷幕时,周边地表沉 降主要影响区范围可达距地下连续墙边缘的12h_e,比 落底式止水帷幕要大 1.2h_e(约 13 m)。

Fig. 12 Normalized surface settlement curve after foundation pit completion

4 结论

(1)在不同分级降水情况下,降水深度初次达到场地第一承压水含水层时降水期间产生的地下连续墙水平位移增量最大,占降水期间累计水平位移增量峰值的62%;基坑竣工后地下连续墙水平位移峰值处,降水期间产生的位移占28%,降水对地下连续墙水平变形的影响较小。

(2) 悬挂式止水帷幕条件下地表沉降峰值约为落 底式止水帷幕的 2.7 倍, 沉降峰值位置距地下连续墙 边缘距离比落底式止水帷幕大 0.8 m 左右。

(3) 悬挂式止水帷幕条件下,分级降水过程中地 表沉降主要产生于降水深度达到承压含水层时,基 坑竣工后地表沉降峰值处,降水期间产生的沉降 占49%。

(4)使用悬挂式止水帷幕时,距地下连续墙边缘12倍开挖深度处,地表沉降与地表沉降峰值的比值为0.1,该距离比落底式止水帷幕的大13m左右。

参考文献(References):

- [1] 董崇泽,孙智杰.硬岩水文地质参数井同径止水与分层抽水试验研究[J].水文地质工程地质,2022,49(4): 55-61. [DONG Chongze, SUN Zhijie. Experimental investigation on same diameter sealing and stratified pumping of hard rock hydrogeological parameter well[J]. Hydrogeology & Engineering Geology, 2022, 49(4): 55-61. (in Chinese with English abstract)]
- [2] 邓祺文,陈刚,郑可,等.基于广义径向流模型的非均

质孔隙含水层井流试验分析[J].水文地质工程地质, 2022, 49(2): 17 - 23. [DENG Qiwen, CHEN Gang, ZHENG Ke, et al. Pumping tests analyses of a heterogeneous pore aquifer based on the Generalized Radial Flow model[J]. Hydrogeology & Engineering Geology, 2022, 49(2): 17 - 23. (in Chinese with English abstract)]

- [3] 周火垚,王华钦,张维泉. 悬挂式止水在基坑工程中的应用[J]. 岩土工程学报, 2012, 34(增刊1): 470 473. [ZHOU Huoyao, WANG Huaqin, ZHANG Weiquan. Application of pensile impervious curtain to excavations[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(Sup 1): 470 473. (in Chinese with English abstract)]
- [4] 刘胜利,蒋盛钢,曹成勇.强透水砂卵地层深基坑地下水控制方案比选与优化设计[J].铁道科学与工程学报,2018,15(12):3189-3197.[LIU Shengli,JIANG Shenggang, CAO Chengyong. Comparison and optimization of alternatives to groundwater control for a deep excavation in highly permeable sand and gravel[J]. Journal of Railway Science and Engineering, 2018, 15(12):3189-3197. (in Chinese with English abstract)]
- [5] 李方明,陈国兴,刘雪珠.悬挂式帷幕地铁深基坑变 形特性研究[J].岩土工程学报,2018,40(12):2182-2190. [LI Fangming, CHEN Guoxing, LIU Xuezhu. Deformation characteristics of suspended curtain deep foundation pit of metro lines[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12):2182-2190. (in Chinese with English abstract)]
- [6] 彭祎,成建梅,马郧,等.基于改进阻力系数法的悬挂 式帷幕基坑渗流计算[J].地质科技通报,2021, 40(4):179-186. [PENG Yi, CHENG Jianmei, MA Yun, et al. Seepage calculation of foundation with suspended curtain based on improved resistance coefficient method[J]. Bulletin of Geological Science and Technology, 2021, 40(4):179-186. (in Chinese with English abstract)]
- [7] 孙琳,李云安,鲁贤成,等.基坑开挖及降水对周边地 铁隧道变形的影响分析[J].安全与环境工程,2020, 27(4): 207 - 214. [SUN Lin, LI Yun'an, LU Xiancheng, et al. Influence of foundation pit excavation and dewatering on deformation of surrounding subway tunnels[J]. Safety and Environmental Engineering, 2020, 27(4): 207 - 214. (in Chinese with English abstract)]
- [8] LEUNG E H Y, NG C W W. Wall and ground movements

associated with deep excavations supported by cast in situ wall in mixed ground conditions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 132(2): 129–143.

- [9] 张军,冯佳蕊,翟少磊.洞庭湖大桥锚定基坑降水及 对地连墙影响分析[J].地下空间与工程学报,2018, 14(增刊1): 256 - 262. [ZHANG Jun, FENG Jiarui, ZHAI Shaolei. Dewatering of anchored foundation pit of Dongting Lake bridge and its influence on diaphragm wall[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(Sup 1): 256 - 262. (in Chinese with English abstract)]
- [10] LIU G B, NG C W W, WANG Z W. Observed performance of a deep multistrutted excavation in Shanghai soft clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(8): 1004 – 1013.
- [11] ROBERTS T O L, ROSCOE H, POWRIE W, et al. Controlling clay pore pressures for cut-and-cover tunnelling[J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 2007, 160(4): 227 – 236.
- [12] 江杰,杨杉楠,胡盛斌,等.预降水过程中止水帷幕缺陷对基坑变形的影响[J].广西大学学报(自然科学版), 2020, 45(5): 996 1005. [JIANG Jie, YANG Shannan, HU Shengbin, et al. Influence of waterproof curtain defect on foundation pit deformation in pre-dewatering process[J]. Journal of Guangxi University (Natural Science Edition), 2020, 45(5): 996 1005. (in Chinese with English abstract)]
- [13] 何山. 宁波地铁3号线仇毕站基坑工程地下水控制数 值分析[J]. 施工技术, 2017, 46(增刊2): 231 - 234.
 [HE Shan. Numerical analysis of ground water control in qiubi station of Ningbo metro line 3[J]. Construction Technology, 2017, 46(Sup 2): 231 - 234. (in Chinese with English abstract)]
- [14] 胡长明,林成.黄土深基坑潜水区降水诱发地面沉降的简化算法[J].中国地质灾害与防治学报,2021,32(3):76 83. [HU Changming, LIN Cheng. Simplified calculation of settlement due to dewatering of phreatic aquifer in loess area[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(3):76 83. (in Chinese with English abstract)]
- [15] 娄平,赵星,汤卓,等.朝阳站富水砂卵石层施工动态
 降水控制技术研究[J].铁道科学与工程学报,2019,
 16(2):457 463. [LOU Ping, ZHAO Xing, TANG

Zhuo, et al. Study on dynamic dewatering control technology for water-rich sandy gravel layer in Chaoyang Station [J]. Journal of Railway Science and Engineering, 2019, 16(2): 457 – 463. (in Chinese with English abstract)]

- [16] KHOSRAVI M, KHOSRAVI M H, GHOREISHI NAJAFABADI S H. Determining the portion of dewatering-induced settlement in excavation pit projects[J]. International Journal of Geotechnical Engineering, 2021, 15(5): 563 – 573.
- [17] 张建全,张克利,程贵方.北京不同区域明挖基坑地 表沉降变形特征研究[J].水文地质工程地质,2021, 48(6):131 - 139. [ZHANG Jianquan, ZHANG Keli, CHENG Guifang. Characteristics of surface settlement and deformation of open cut foundation pit in different areas of Beijing[J]. Hydrogeology & Engineering Geology, 2021, 48(6):131 - 139. (in Chinese with English abstract)]
- [18] 秦胜伍,张延庆,张领帅,等.基于Stacking模型融合的 深基坑地面沉降预测[J].吉林大学学报(地球科学 版),2021,51(5):1316-1323. [QIN Shengwu, ZHANG Yanqing, ZHANG Lingshuai, et al. Prediction of ground settlement around deep foundation pit based on stacking model fusion[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(5): 1316 - 1323. (in Chinese with English abstract)]
- [19] ZHENG Gang, ZENG Chaofeng, DIAO Yu, et al. Test and numerical research on wall deflections induced by preexcavation dewatering[J]. Computers and Geotechnics, 2014, 62(8): 244 – 256.
- [20] 何绍衡,夏唐代,李连祥,等.地下水渗流对悬挂式止水帷幕基坑变形影响[J].浙江大学学报(工学版),2019,53(4):713-723. [HE Shaoheng, XIA Tangdai,LI Lianxiang, et al. Influence of groundwater seepage on deformation of foundation pits with suspended impervious curtains[J]. Journal of Zhejiang University (Engineering Science),2019,53(4):713-723. (in Chinese with English abstract)]
- [21] 郑刚,赵悦镔,程雪松,等.复杂地层中基坑降水引发的水位及沉降分析与控制对策[J].土木工程学报, 2019,52(增刊1):135-142.[ZHENG Gang, ZHAO Yuebin, CHENG Xuesong, et al. Strategy and analysis of the settlement and deformation caused by dewatering under complicated geological condition[J]. China Civil Engineering Journal, 2019, 52(Sup 1): 135 - 142. (in Chinese with English abstract)]
- [22] 李瑛,陈东,刘兴旺,等.悬挂式止水帷幕深基坑减压

降水的简化计算方法[J]. 岩土力学, 2021, 42(3): 826-832. [LI Ying, CHEN Dong, LIU Xingwang, et al. Simplified calculation method of decompression dewatering for deep excavation with suspended waterproof curtain[J]. Rock and Soil Mechanics, 2021, 42(3): 826-832. (in Chinese with English abstract)]

- [23] 李又云,杨立新,刘伟,等. 悬挂式止水帷幕深基坑分级降水开挖变形特性[J]. 科学技术与工程, 2021, 21(5): 1995 2001. [LI Youyun, YANG Lixin, LIU Wei, et al. The deformation characteristics of deep foundation pit with suspended curtain in the process of graded dewatering excavation[J]. Science Technology and Engineering, 2021, 21(5): 1995 2001. (in Chinese with English abstract)]
- [24] LI Fangming, CHEN Guoxing. Study of ground surface settlement of foundation pit with suspended waterproof curtain in Yangtze River floodplain[J]. Tunnel Construction, 2018, 38(1): 33 – 40.
- [25] 骆祖江,成磊,张兴旺,等.悬挂式止水帷幕深基坑降水方案模拟优化[J].吉林大学学报(地球科学版), 2022, 52(6): 1946 - 1956. [LUO Zujiang, CHENG Lei, ZHANG Xingwang, et al. Simulation and optimization of dewatering scheme for deep foundation pit with suspended waterproof curtain[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(6): 1946 -1956. (in Chinese with English abstract)]
- [26] LIU Wenbin. Impact of the excavation and dewatering of the foundation pit on the stability of the plug-in steel

cylinder[J]. IOP Conference Series: Earth and Environmental Science, 2021, 651(3); 032032.

- [27] CHEN Xiaopeng, LU Qingrui, JIANG Xiaoyi, et al. The influence of steel bracing on the stability of foundation pit excavation under dewatering condition[J]. IOP Conference Series: Earth and Environmental Science, 2021, 719(3): 032054.
- SHI Jinjiang, WU Bo, LIU Yi, et al. Analysis of the influence of groundwater seepage on the deformation of deep foundation pit with suspended impervious curtain [J]. Advances in Mechanical Engineering, 2022, 14(3): 168781322210851.
- [29] 郑刚,曾超峰.基坑开挖前潜水降水引起的地下连续 墙侧移研究[J].岩土工程学报, 2013, 35(12): 2153 2163. [ZHENG Gang, ZENG Chaofeng. Lateral displacement of diaphragm wall by dewatering of phreatic water before excavation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2153 - 2163. (in Chinese with English abstract)]
- [30] 曾超峰,薛秀丽,郑刚.软土地基渗透性条件对基坑 预降水过程中支护墙侧移的影响研究[J].岩土力学, 2017, 38(10): 3039 - 3047. [ZENG Chaofeng, XUE Xiuli, ZHENG Gang. Effect of soil permeability on wall deflection during pre-excavation dewatering in soft ground[J]. Rock and Soil Mechanics, 2017, 38(10): 3039-3047. (in Chinese with English abstract)]

编辑:刘真真