全新世以来华北平原层圈间水循环演化过程 与区域地下水演变周期性

张光辉 聂振龙 陈宗宇

(国土资源部环境地质开放研究实验室,石家庄)

赖勤波 王金哲

(中国地质科学院水文地质环境地质研究所,河北正定)

摘 要 该文阐述全新世以来大气圈、岩石圈、生物圈与水圈之间水文循环过程中水分通量的演化规律,揭示了近 百年来人类活动对层圈之间水分通量变化的干扰作用,并依据全新世时期千年尺度和百年尺度水文循环演化的特 点,分析和预测了华北平原区域地下水演变的周期性和未来 30~50 a 趋势。

关键词 全新世 华北平原 层圈间水循环 地下水演化 周期性

近百年来,华北平原区域地下水形成过程与水 资源空间分布发生了急剧变化,特别是近 30 a 以来 这种变化更为显著(吴忱等,1992,张宗祜等,1997)。 区域地下水的变化除了与人类活动相关之外,它与 区域水文循环演化过程也存在着密切关系,即地下 水的形成和演变与大气降水和气温变化、陆表水文 环境和水文过程机制的变化密切相关。在全新世以 来的冷暖干湿不同时段,大气水、地表水、包气带水 和地下水系统之间水分通量关系截然不同,具有不 同尺度的周期性变化特点(孔昭寰等,1982;黄荣辉 等,1989;李克让等,1990;张光辉等,2000a,2000b)。 认识层圈间水文循环演化过程是识别人类活动对区 域地下水演变影响程度与机制的基础。

1 区域层圈间水分通量关系一般模式

大气圈、岩石圈、生物圈与水圈之间水分通量关 系模式如图 1 所示。

从图 1 可见,降水入渗与地下水蒸发,是地下水 形成、演化的重要水文过程,也是其与大气圈、岩石 圈、生物圈和地表水系统发生水力联系的重要过程。 但上述水文过程受控于区域水文循环演化规律。

对于一个较大区域而言,存在式(1):

$P = E + (A_i - A_0) - \Delta A \tag{(4)}$	[1)
--	----	--	---

 $(A_{i} - A_{0}) = \Delta A + R + R_{g}$ (2)

图 1 层圈间水分通量关系模式示意图 Fig.1 Pattern of hydrologic cycle in North China Plain

式中 ,P 为陆表变化 ;E 为陆面蒸发 ;R 为天然 地表径流量 ; A_i 为大气输入水汽总量 ; A_0 为大气输 出水汽总量 ; ΔA 大气水汽蓄变量 ; R_g 为区域地下水 径流量。

由此可见,区域蒸发量和径流量与降水量之间 存在正比水分通量关系,径流与蒸发之间为反比水 分通量关系。降水量愈大,径流量和蒸发量愈大(图 2)。上述关系在不同地区,存在不同的阈值。对于 华北平原全新世以来的水文循环过程来讲,年降水 量阈值为 280~350 mm。小于该阈值时,降水基本 全部消耗于蒸发,难产生地表径流,地下水系统出现 负均衡。

责任编辑 :宫月萱。

本文由国土资源部重点基础项目(200010301)国家科技部项目(2000-163)国土资源部百名科技人才项目(98005)和国家自然科学基金项目(49877079)资助。

第一作者 两先门数据9年生,研究员、博士生导师,从事区域水循环演化与资源、环境学研究,邮编 1050061。

2 全新世以来层圈间水分通量演变过 程

2.1 层圈间水分通量关系

对于全新世以来华北平原区域地下水年储变量 (Dr)而言,有

$$Dr = P - R - E \tag{3}$$

利用统计相关方法,对 142 组数据进行相关分析,得到地下水年储变量与年降水、径流、蒸发之间水分通量关系式,即

$$Dr = k_1 P + k_2 E + k_0$$
 (4)

将全新世作为一个时段而言,式中 $k_1 = 0.24$, $k_2 = -0.26$, $k_0 = -0.982$,计算结果的最大误差为 10. 70% 相关系数 0.901。全新世不同时期, k_1 、 k_2 和 k_0 随着区域水循环演化过程而变化(图 3、4、5),由 图可见,层圈间水循环中水分通量的内在联系。

2.2 区域地下水与区域大气降水之间水分通量演 变特征

从图 3 可见,全新世以来不同时期华北平原区 域地下水与大气降水之间的水分通量($Dr = k_1 P$) 关系,因区域水文循环发生百年尺度与千年尺度干 湿冷暖周期变化而改变,其中包含了气候变化对陆 面蒸发(E)的影响和陆表变化对地表径流 ($k_1 P - k_2 E$)的影响以及地下水埋藏条件变化 (k_0)。全新世以来,区域地下水百年尺度多年平均 年净补给系数介于 0.21 ~ 0.27($k_1 = Dr/P$)之间变 化。降水量愈大,净补给系数愈小。区域地下水净 补给与降水之间的水分通量($Dr = k_1 P$)随年降水量 的增大而增大,其变化率($k_1 = Dr/P$)随年降水量的 减小而增大。

全新世夜梁塔5.0~4.0 ka B.P.和 8.0~5.6 ka

B.P.间区域地下水获取的净补给最为稳定,变化率 约为 21.5%,多年平均年净补给量较大,分别为29.3 mm 和 35.2 mm,是现代多年平均补给量 (6.27~9.09 mm/a;氯剖面法实测的 185 a 以来和 295 a 以来多年的平均值)的 3.23~3.87 倍。4 000 a 以来,区域地下水获得的净补给变化频繁,补给量明 显较小,其中 3.1~2.7 ka B.P.和 2.05~ 1.45 ka B.P.期间区域地下水获取的净补给变化较 大,变化率约为 23.5%,年净补给量较小,甚至为负 值 多年平均年储变量分别为 – 4.6 mm 和 – 0.3 mm 表明当时气候干旱,潜水蒸发作用强于补给。

2.3 区域地下水与区域陆面蒸发之间水分通量演 变特征

区域地下水储变量与陆面蒸发量之间的水分通 量($Dr = -k_2 E$)随年蒸发量的增大而增大(为负 值),其变化率($k_2 = Dr/E$)随年蒸发量的减小而增 大(图4),这主要受降水和地表径流变化制约。例 如5.0~4.0 ka B.P.和8.0~5.6 ka B.P.期间,区域 陆面蒸发消耗相对稳定,变化率约为 – 21.8%, 蒸发系数($k_e = E/P$)较小,分别为0.78和0.76。 4 000 a 以来 陆面蒸发消耗随着气候的干湿频繁变 化而变化,蒸发量减小,蒸发系数增大。其中,3.1~ 2.7 ka B.P.和2.05~1.45 ka B.P.期间,区域地下 水储变量与陆面蒸发量之间变化率约为 24.5%,蒸 发系数分别为 0.91 和 0.89。

2.4 区域地下水系统自变特征

若无降水和无蒸发影响,区域地下水呈现负均 衡,其变化率(k₀)与地下水埋藏深度有关(图5)。 随地下水位的升高,变化率越大,年侧向径流量增 大,反之,地下水位越低,变化率越小,年侧向径流量 减小。例如5.0~4.0 ka B.P.和8.0~5.6 ka B.P. 期间,区域地下水自变率最大,分别为 – 6.59mm/a 和 – 6.72 mm/a。4 000 a 以来,区域地下水自变率 变化频繁,但量值较小,其中,3.1~2.7 ka B.P.和 2.05~1.45 ka B.P.期间自变率分别为 – 2.77 mm/a 和 – 3.09 mm/a。

从上述分析可看出,降水变化是层圈间水循环 演化过程中水分通量演变的关键因素,降水量增加 是层圈间水分通量增大的前提条件。

3 区域地下水演化周期性

通过对全新世以来华北平原典型区区域地下水 储变量分别进行 25 a、50 a、100 a 和 200 a 平滑功率 谱分析 ,得到区域地下水演化周期(表 1)。 表1表明,全新世以来华北平原区域地下水演 变周期:千年时间尺度周期分别为8133~8250 a、 3062~4125 a、1633~1650 a和1029~1031 a,百年周 期为750~851 a、358 a和284 a。200 a以下的有关 华北平原水文演化周期,前人研究成果较多(孔昭寰 等,1982;黄荣辉等,1989;李克让等,1990;许青海 等,1992,施雅风等,1995),主要为100~200 a、100~ 140 a、60~80 a、26~40 a、10~22 a、7~8 a、5~6 a 和 2.5~3.6 a(表1)。上述地下水演化周期特征,与区 域旱涝事件密切相关,表明区域地下水演化过程与 区域水文循环演化周期性密切相关。

表1 华北平原区域地下水演化周期

平滑时段/a		备注
25	12375, 8250, 4125, 1650, 1031, 750, 358, 284	1.5 万 a 来华北平原地下水规律
50	12250, 8166, 3062, 1633, 1029, 851	
100	12300, 8200	
200	12200, 8133	
50	120 ~ 140, 70 ~ 80	公元 950 年来海河流域
10,11,15	102 ~ 127, 46, 38 ~ 39, 31 ~ 33, 22, 10 ~ 11, 4 ~ 5	5、10、22、37 a 周期最显著
1	33.4, 15.9, 10.3, 4.9, 2.7	
	100、40、10~11、5	公元 1470 年来京津冀地区干旱规律
	100, 35, 10 ~ 11, 5	公元 1470 年来河北地区干旱规律
	34, 22, 10, 5	河北、陕晋、鲁淮平原干旱规律
1	7.7,5.5~5.6,5.0~5.1,3.4	公元 1470 年来华北平原涝灾规律
	26.1 ~ 28.3, 13, 10.3 ~ 10.5, 7.5	公元 1470 年来华北平原旱灾规律
	34,7.1,6.4~6.5,3.4	公元 1470 年来华北平原旱涝灾规律
	干旱 :< 50 湿润 :100~200	近千年来黄河流域旱涝规律
每年7~8月	64、21、8、4.9~3.6、2.5~2.6	公元 1841 年来北京地区降水规律

 Table 1
 The periodicity of the regional groundwater in North China Plain since Holocene

4 区域地下水演化趋势

500 a、1000 a 和 2000 a 系列(李克让等,1990 陈 宗宇等,1998)周期变化(图6)表明,2000~2010 a 期 间,水文循环水分通量减少,区域地下水年补给量也 呈减少趋势,但幅度有限;2010~2020 a 期间,水文 循环水分通量显著增加,但 2000 a 序列水分通量呈

参 考 文 献

- 陈宗宇, 张光辉等.1998. 华北地下水古环境意义及古气候变化对地 下水形成的影响. 地球学报, 19(4) 338~345.
- 黄荣辉等.1989.华北降水的年代和年际变化及其对经济的影响.北 京科学出版社.95~101.
- 孔昭寰等.1982.北京地区 10 000 年以来的植物群发展和气候变化. 植物学报 24(2):172~181.
- 李克让等.1990.华北平原旱涝气候.北京 科学出版社 80~111.
- 施雅风等.1995.气候变化对西北华北水资源的影响.济南:山东科学

技术出版社 ,216~220.

万方数据

减少趋势,区域地下水年补给量存在略有增加的可 能性。2020~2030 a 期间,千年尺度序列水文演化 呈水分通量明显增加趋势,是未来百年尺度区域地 下水主要补给期之一。2030~2050 a 期间,水文循 环水分通量将明显减少,区域地下水净补给可能再 度出现10 a 或更长时间尺度的多年平均负均衡,水 资源量将显著减少。

- 吴 忱.1992.华北平原四万年来自然环境演变.北京:中国科学技术 出版社.
- 许青海等.1992.海河流域全新世气候演变的初步认识.北京 海洋出版社,18~19.
- 张宗祜等.1997.论华北平原第四系地下水系统之演化.中国科学 (2):168~173.
- 张光辉等.2000.全新世以来太行山前倾斜平原地下水演化规律.地 球学报 21(2):121~127.
- 张光辉等.2000.华北平原地下水形成与区域水循环演化的关系.水 科学进展年(4):415~420.

图 3 全新世以来区域地下水储变量与降水之间水分通量关系(k₁)演化过程

Fig.3 The relationship(k₁) between the evolution of regional groundwater and the precipitation since the Holocene a-地下水储变量与降水量之间关系(k₁)的演化过程; b-k₁的水分通量与降水量之间关系

Fig.4 The relationship(k₂) between the evolution of regional groundwater and the land evaporation since the Holocene a-地下水储变量与陆面蒸发量之间关系(k₂)的演化过程; b-k₂的水分通量与降水量之间关系

Evolutionary Process of Hydrologic Cycle and Periodicity of Groundwater

图 6 区域水循环中水分通量演变趋势

Fig. 6 The evolution trend of regional hydrologic cycle in North China Plain from 2000 to 2030 AD

Change in North China Plain since Holocene

Zhang Guanghui Nie Zhenlong Chen Zongyu

(Open Laboratory of Environmental Geology ,MGMR ,Shijiazhuang ,Hebei)

Lai Qinbo Wang Jinzhe

(Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang, Hebei)

Abstract The recharge of the regional groundwater is related to the evolutionary course of the regional hydrologic cycle in North China Plain , which reveals clearly the periodicity and the variability since Holocene. The relationship between regional groundwater (Dr) and the natural surface runoff (R) (Dr/R equals 0.32) is most close , the relationship between the evolution of regional groundwater and the land evaporation (E) (Dr/E equals 0.26) possesses the second place , the relationship between the evolution of regional groundwater and the precipitation (P) (Dr/P equals 0.24) is closer as well. The precipitation is the key factor , which causes the evolution of regional groundwater in North China Plain. The coefficients of the relationship among regional groundwater evolution , precipitation surface runoff and land evaporation change continuously with the evolution of regional hydrologic cycle in periodicity.

The periodicity of the regional groundwater in Holocene includes $12\ 200 \sim 12375$ years , $8\ 133 \sim 8\ 250$ years , $3\ 062 \sim 4\ 125$ years , $1\ 633 \sim 1\ 650$ years , $1\ 029 \sim 1\ 031$ years , $750 \sim 851$ years , $358 \sim 284$ years , $140 \sim 200$ years , $60 \sim 80$ years , $26 \sim 40$ years , $10 \sim 22$ years , $5 \sim 8$ years and $2.5 \sim 3.6$ years. On the basis of the evolutionary periodicity of the regional hydrologic cycle , it is forecasted that the recharge of the regional groundwater will tend to decrease from $2\ 000$ to $2\ 010$ AD , to increase from $2\ 010$ to $2\ 020$ AD , to increase remarkably from $2\ 020$ to $2\ 030$ AD which is the main recharge period of the regional groundwater in the forthcoming 50 years , and to decrease remarkably from $2\ 030$ to $2\ 050$ AD which is in short of groundwater reserves.

Key words Holocene North China Plain hydrologic cycle groundwater evolution periodicity