以含碳固废为还原剂的铜渣颗粒直接还原正交实验

左宗良',罗思义',于庆波²,张敬奎3

(1. 青岛理工大学 环境与市政工程学院,山东 青岛 266520;2. 东北大学 冶金学 院,辽宁 沈阳 110819;3. 上海电力大学 能源与机械工程学院,上海 200090)

摘要:通过转杯离心粒化法制备铜渣颗粒。以铜渣颗粒、碳质还原剂、粘结剂和造渣剂为主要原料制备 铜渣含碳球团,在实验条件下,六种考查因素对铜渣含碳球团还原率影响的主次关系为:反应温度>造渣剂配比>气氛>还原剂种类>铜渣粒径>还原剂配比。通过极差分析得出铜渣含碳球团直接还原较佳还原条件:反应温 度为 1150℃,造渣剂配比 (S/CaO)为 1:0.4,实验气氛为 CO₂(50%)N₂(50%),还原剂为煤粉,铜渣粒径为+0.425 mm,还原剂配比 (C/O)为 1.2:1,此时铜渣的还原率为 98.2%。

关键词:铜渣;离心粒化;直接还原

doi:10.3969/j.issn.1000-6532.2022.05.009 中图分类号: TD982 文献标志码: A 文章编号: 1000-6532 (2022) 05-0046-05

铜渣是铜冶炼过程中排出的副产物,出炉温 度可达 1300℃。仅我国每年产生的铜渣就可达 2000万t^[1]。铜渣铁含量可达 30%~45%,高于我 国铁矿石的开采品位(TFe>27%),具有较高的 余热回收和金属回收价值^[2]。而目前我国铜渣资源 化回收利用率低,只有少量用于水泥混凝土、除 锈材料及微晶玻璃制作等领域^[34]。铜渣资源化利 用的研究主要集中在铜渣中 Fe、Cu、Zn、Pb 及 Co 等金属的提取^[5]。

铜渣中铁含量虽然高,但是铜渣中铁主要集 中于铁橄榄石 (Fe₂SiO₄) 和磁铁矿 (Fe₃O₄) 中,传 统矿物加工方法难以有效分离渣中铁组分^[6]。铜渣 中铁的回收方法的研究主要包括氧化法^[7]、还原 法^[8]、湿式冶金法^[9]及物理选矿法^[10]。还原法是将 铜渣中的铁还原析出的方法,具有渣铁易于分 离,铁回收率高的优点,成为学者研究的重点。 还原法按照温度不同可分为高温熔融还原和直接 还原。高温熔融还原所需温度在铜渣熔点以上, 能耗高。直接还原法是非高炉炼铁主要方法之 一,通过直接还原所得的铁含碳量低,金属化率 高,铁含量高,生产过程污染少。直接还原后的 矿石需要通过磨矿磁选或者熔融分离的方式进行 进一步分离,以期得到海绵铁或粒铁。

目前,已有学者提出在转底炉或竖炉中通过 直接还原的方式处理不同类型的铁矿石,如褐铁 矿、赤铁矿、尼尔森选矿机选得的精矿、钒钛磁 铁矿以及硼铁矿等^[11-12]。目前还原处理工艺未对铜 渣余热进行有效回收。为此,依据铜渣干法粒化 及余热回收-直接还原-熔融分离的技术路线,本文 利用转杯粒化法产生的铜渣颗粒制备铜渣含碳球 团,开展了铜渣含碳球团直接还原的正交实验, 考查气氛、温度、还原剂配比、还原剂种类以及 造渣剂配比对铜渣还原率的影响。

1 实验设备及条件

1.1 实验原料

实验原料:铜渣、还原剂、粘结剂(膨润 土)和造渣剂(CaO)。实验所用铜渣来自闪速熔 炼炉产生的冷却后的铜渣,化学分析结果见表1, 图1为铜渣 X射线衍射图谱。铜渣中铁主要以 Fe₃O₄ 及铁橄榄石 (Fe₂SiO₄)形式存在,二者质量 百分比分别为 20.25% 及 69.49%。由铜渣扫描电镜

收稿日期: 2020-09-24; 改回日期: 2020-11-02

基金项目:山东省自然科学基金青年基金(ZR2020QE150);山东省自然科学基金面上项目(ZR2019MEE015) 作者简介:左宗良(1990-),男,副教授,研究方向为固废能源化利用。 通信作者:罗思义(1981-),男,教授,研究方向为生物质热化学转化。

及能谱分析结果可知,铜渣中的 Fe、Si 和 O 三种 元素呈镶嵌分布,铜渣中 Cu 与 S 结合。实验选取 了煤粉、煤焦、生物质、生物质碳及塑料焦五种 还原剂,其中生物质为松木屑,生物质碳为松木 屑快速热解产生的固定碳,五种还原剂的工业分 析结果见表 2,五种还原剂中塑料焦的固定碳含量 最高。

 表1 铜渣化学成分/%

 Table 1
 Chemical composition of copper slag

 Feo
 Fe₃O₄ CaO
 Al₂O₃
 MFe
 SiO₂
 Cu
 MgO
 S
 Zn
 其他

 37.50
 18.90
 0.23
 0.98
 1.24
 31.99
 0.74
 0.42
 0.39
 2.78
 4.87

 SiO2
 SiO
 SiO

Fig.1 XRD pattern of copper slag

表 2 还原剂工业分析/%

Table 2	Industrial	analysis	of reducing	agents
---------	------------	----------	-------------	--------

还原剂种类	水分	挥发分	灰分	固定碳
煤粉	6.59	26.05	34.41	32.95
煤焦	0.22	1.47	28.61	69.7
生物质	3.93	77.31	3.13	15.63
生物质碳	0.44	6.76	18.07	74.73
塑料焦	0.11	0.92	8.6	90.37

1.2 实验装置与方法

首先将铜渣加热至 1350℃,利用离心粒化装 置将熔融铜渣破碎为铜渣颗粒。将干燥后还原剂 机械破碎至-0.074 mm。称取一定质量的铜渣颗 粒,根据设计质量比,将还原剂、CaO、膨润土粘 结剂以及水完全混合后置于自制的压球机中,并 在 10 MPa 的压力下制备球径为 15 mm 的铜渣含 碳球团。将压好的含碳球团放入温度为 150℃ 的 干燥箱中干燥 2 h,之后每隔 30 min 取出称重,直 至两次称量之间其质量的变化率小于 0.1%。将干 燥好的铜渣含碳球团在自行搭建的热重实验平台 上进行恒温还原实验。铜渣含碳球团置于管式炉 内吊篮中,吊篮为刚玉材质,由铂铑合金悬丝悬 挂并与电子天平连接。在还原过程中铜渣含碳球 团的质量信号经电子天平传送至计算机。

1.3 考查指标

铜渣还原的本质是铜渣中铁氧化物中的氧与 还原剂中的碳反应生成气体 CO。铜渣含碳球团的 还原失重是铜渣中铁的氧化物失氧和还原剂失碳 的过程。因此根据还原过程中的失重量可以直观 地反映铜渣含碳球团的还原程度。铜渣含碳球团 直接还原的还原率的计算见式 (1)^[13]:

$$R_{\rm Fe} = \frac{\frac{16}{28} \times (m_0 - m_1 - m_R)}{m_c \times \left({\rm FeO\%} \times \frac{16}{72} + {\rm Fe_3O_4} \times \frac{64}{232} \right)} \times 100\%$$
(1)

式中: R_{Fe} 为铜渣中铁的还原率,%; m_0 是物料质量的初始质量,mg; m_1 为还原结束时物料的质量,mg; m_R 为铜渣含碳球团中还原剂的失重量,mg; m_c 为铜渣含碳球团中铜渣的质量,mg:FeO%及Fe₃O₄%分别为铜渣中FeO及Fe₃O₄质量百分含量。

2 结果与分析

2.1 铜渣转杯离心粒化

转杯离心粒化法是冶金渣干式粒化法的一种,其工艺过程是将冶金渣利用转杯破碎为颗粒,然后粒化后的高温铜渣颗粒所蕴含的热量可有效回收^[14]。基于干法粒化技术,铜渣干法粒化及余热回收-直接还原-熔融分离技术可实现铜渣余热回收及铁的回收。利用转杯离心粒化技术可实现铜渣熔渣的离心破碎,且破碎的铜渣颗粒粒度均匀,圆整度高。图2为冷却后的铜渣颗粒。

图 2 冷却后的铜渣颗粒 Fig.2 Cooled copper slag particles

2.2 粘结剂配比对铜渣含碳球团抗压强度的影响

制备的铜渣含碳球团应满足一定的抗压强 度。粘结剂配比对铜渣含碳球团抗压强度有重要 影响,是造球过程需要考查的重要因素。图 3 为 粘结剂配比对铜渣含碳球团抗压强度的影响。当 粘结剂的添加比为 2% 时,铜渣含碳球团的抗压强 度可达 23 N,但当粘结剂的添加量大于 2% 时, 继续加入粘结剂,铜渣球团抗压强度增加趋缓。

图 3 粘结剂配比对球团抗压强度的影响 (煤粉) Fig.3 Effect of binder ratio on compressive strength of pellets (pulverized coal)

2.3 铜渣含碳球团直接还原正交实验

铜渣含碳球团的还原反应主要包括直接还原 (式 2、3)、间接还原 (式 4、5)以及碳的气化反应 (式 6)。

 $C + Fe_3O_4 = 3FeO + CO(g)$ (2)

$$C + FeO = Fe + CO(g)$$
(3)

$$CO(g) + Fe_3O_4 = 3FeO + CO_2(g)$$
(4)

$$CO(g) + FeO = Fe + CO_2(g)$$
 (5)

 $C + CO_2(g) = 2CO(g) \tag{6}$

该正交实验考查了气氛、反应温度、铜渣粒 径、还原剂配比(还原剂中固定碳的摩尔量与铜渣 中O原子的摩尔量之比,C/O)、还原剂种类以及 造渣剂配比(铜渣与CaO质量比,S/CaO)六个因 素对铜渣还原率的影响^[15]。实验制备了五种粒径 的铜渣,-0.074 mm以及-0.106+0.074 mm为机械 破碎的铜渣渣粉,-0.425 mm、-0.71+0.425 mm以 及+0.71 mm为转杯离心粒化后的铜渣颗粒。实验 中每个因素的取值见表3。在选择正交表时,每个 因素有五个水平, 故选用正交表头 L₂₅(5⁶)。

表 4 为铜渣含碳球团直接还原正交实验结 果。通过极差分析可得,反应温度的极差较大, 所以反应温度对直接还原反应的影响程度较大。 其次,造渣剂及实验气氛对铜渣还原率均有显著 影响。在实验条件下,按极差的大小顺序,影响 铜渣还原率各因素的主次关系为:反应温度>造渣 剂配比>气氛>还原剂种类>铜渣粒径>还原剂配 比。在实验条件下,通过极差分析得出铜渣含碳 球团直接还原理论较佳还原条件为,反应温度为 1150℃,造渣剂配比为 1:0.4, CO₂(50%)N₂(50%), 还原剂为煤粉,铜渣粒径为-0.425 mm,还原剂配 比为 1.2:1。此时,铜渣还原率为 98.2%。

此外,由表4可知反应温度及造渣剂配比是两个重要的影响因素。对于塑料焦、生物质炭、 煤焦、煤粉而言,在其他条件变化、温度为 1150℃时,含碳球团的还原率均提高至92.5%以 上,分别为93.8%、92.51%、96.6%、97.94%。这 是因为在实验工况下温度升高时,还原反应的动 力学条件得到改善,反应速率加快。且在此温度 下物质扩散增快,弥补了由于铜渣颗粒粒度过大 引起的扩散受阻状况。造渣剂配比是铁橄榄石与 碳粒反应的化学反应速率的限制性环节。从表中 第15、24 组数据可以看出,当渣钙比 S/CaO 为 1:0时,生物质和塑料焦的还原温度在1100℃以 上时,二者还原率分别只到70.58%及67.19%,难 以进一步提高。因此,适当的渣钙比 (>0.2) 是有 效还原的前提。

3 结 论

(1)转杯离心粒化法可实现铜渣熔渣的离心 破碎,且破碎的铜渣颗粒粒度均匀,圆整度高。

(2)随着粘结剂配比的增加,铜渣含碳球团 抗压强度逐渐升高,但当粘结剂的添加量大于2%时,继续加入粘结剂,铜渣球团抗压强度增加

Table 3 Experimental conditions							
考查因素	气氛(CO2/N2)	反应温度/℃	铜渣粒径/mm	还原剂配比(C/O)	造渣剂配比(S/CaO)	还原剂种类	
1	N ₂	800	-0.074	0.8:1	1:0	煤粉	
2	CO ₂ (25%)N ₂ (75%)	900	-0.106+0.074	0.9:1	1:0.1	煤焦	
3	CO ₂ (50%)N ₂ (50%)	1000	+0.71	1:1	1:0.2	生物质	
4	CO ₂ (75%)N ₂ (25%)	1100	-0.71+0.425	1.1:1	1:0.3	生物质碳	
5	CO ₂	1150	-0.425	1.2:1	1:0.4	塑料焦	

表3 实验工况

第5期 2022年10月

Table 4 Orthogonal experimental results of direct reduction for carbon-bearing pellets of copper slag								
_ 序号_	气氛(CO ₂ N ₂)	反应温度/℃	铜渣粒径/mm	还原剂配比(C/O)	造渣剂配比(S/CaO)	还原剂种类	还原率/%	
1	N ₂	800	-0.074	0.8:1	1:0	煤粉	14.97	
2	N_2	900	-0.106 + 0.074	0.9:1	1:0.1	煤焦	29.08	
3	N_2	1000	+0.71	1:1	1:0.2	生物质	51.28	
4	N ₂	1100	-0.71+0.425	1.1:1	1:0.3	生物质碳	80.91	
5	N ₂	1150	-0.425	1.2:1	1:0.4	塑料焦	93.8	
6	CO ₂ (25%)N ₂ (75%)	800	-0.106+0.074	1.1:1	1:0.3	塑料焦	67.17	
7	CO ₂ (25%)N ₂ (75%)	900	+0.71	1.2:1	1:0.4	煤粉	73.7	
8	CO ₂ (25%)N ₂ (75%)	1000	-0.71+0.425	0.8:1	1:0	煤焦	30.23	
9	CO ₂ (25%)N ₂ (75%)	1100	-0.425	0.9:1	1:0.1	生物质	66.96	
10	CO ₂ (25%)N ₂ (75%)	1150	-0.074	1:1	1:0.2	生物质碳	92.51	
11	CO ₂ (50%)N ₂ (50%)	800	-0.106+0.074	0.9:1	1:0.1	生物质碳	77.6	
12	CO ₂ (50%)N ₂ (50%)	900	+0.71	1:1	1:0.2	塑料焦	75.38	
13	CO ₂ (50%)N ₂ (50%)	1000	-0.71+0.425	1.1:1	1:0.3	煤粉	87.31	
14	CO ₂ (50%)N ₂ (50%)	1100	-0.074	1.2:1	1:0.4	煤焦	89.97	
15	CO ₂ (50%)N ₂ (50%)	1150	-0.106+0.074	0.8:1	1:0	生物质	74.58	
16	CO ₂ (75%)N ₂ (25%)	800	+0.71	1.2:1	1:0.4	生物质	69.34	
17	CO ₂ (75%)N ₂ (25%)	900	-0.71+0.425	0.8:1	1:0	生物质碳	39.68	
18	CO ₂ (75%)N ₂ (25%)	1000	-0.074	0.9:1	1:0.1	塑料焦	62.42	
19	CO ₂ (75%)N ₂ (25%)	1100	-0.106+0.074	1:1	1:0.2	煤粉	86.34	
20	CO ₂ (75%)N ₂ (25%)	1150	+0.71	1.1:1	1:0.3	煤焦	96.6	
21	CO_2	800	-0.71+0.425	1:1	1:0.2	煤焦	29.03	
22	CO_2	900	-0.074	1.1:1	1:0.3	生物质	28.98	
23	CO_2	1000	-0.106+0.074	1.2:1	1:0.4	生物质碳	88.3	
24	CO_2	1100	+0.71	0.8:1	1:0	塑料焦	67.19	
25	CO_2	1150	-0.71+0.425	0.9:1	1:0.1	煤粉	97.94	
Ι	270.04	258.11	288.91	226.65	226.65	360.27		
II	330.56	246.81	345.47	334.01	334.01	274.91		
III	404.83	319.55	366.38	334.53	334.53	291.14		
IV	354.39	391.38	353.78	360.97	360.97	379.01		
V	311.45	455.43	316.79	415.12	415.12	365.95		
I /5	54.00	51.62	57.58	45.33	45.33	72.05		
II/5	66.11	49.36	69.09	66.8	66.8	54.98		
III/5	80.97	63.91	73.28	66.91	66.91	58.22		
IV/5	70.88	78.28	70.76	72.19	72.19	75.8		
V/5	62.29	91.09	63.36	83.02	83.02	73.19		
极差	26.96	41.72	15.50	37.69	37.69	20.82		

表 4 铜渣含碳球团直接还原正交实验结果

趋缓。

(3) 以铜渣颗粒、还原剂、粘结剂和造渣剂 为主要原料制备铜渣含碳球团。在实验条件下, 六种因素对铜渣含碳球团还原率影响的主次关系 为:反应温度>造渣剂配比>气氛>还原剂种类>铜 渣粒径>还原剂配比。通过极差分析得出铜渣含碳 球团直接还原理论较佳还原条件为,CO₂(50%) N₂(50%),反应温度为1150℃,铜渣粒径为+0.425 mm,还原剂配比为1.2:1,造渣剂配比为1:0.4, 还原剂为煤粉。此时,铜渣还原率为98.2%。

参考文献:

[1] 姜平国, 吴朋飞, 胡晓军, 等. 铜渣综合利用研究现状及其 新技术的提出[J]. 中国矿业, 2016, 25(2):76-79.

JIANG P G, WU P F, HU X J, et al. Research review of comprehensive utilization of copper slag and new technology[J]. China Mining Magazine, 2016, 25(2):76-79.

[2] 孙伟, 刘建远, 贺政, 等. 某铜渣浮选试验研究[J]. 矿产综合利用, 2019(2):112-114.

SUN W, LIU J Y, HE Z, et al. Study on flotation of copper slag[J]. Multipurpose Utilization of Mineral Resources, 2019(2):112-114.

[3] YANG Z H, LIN Q, XIA J X, et al. Preparation and crystallization of glass–ceramics derived from iron-rich copper slag [J]. Journal of Alloys and Compounds, 2013, 574: 354-360.

[4] LIU H Y, LU H X, CHEN D L, et al. Preparation and properties of glass-ceramics derived from blast-furnace slag by a ceramic-sintering process [J]. Ceramics International. 2009, 35(8): 3181-3184.

[5] Rudnik E, Burzńska L, Gumowska W. Hydrometallurgical recovery of copper and cobalt from reduction-roasted copper converter slag[J]. Minerals Engineering, 2009, 22(1):88-95.

[6] 邓彤, 凌云汉. 含钴铜转炉渣的工艺矿物学[J]. 中国有色 金属学报, 2001, 11(5):881-885.

DENG T, LING Y H. Process mineralogy of Cobalt - bearing copper converter slag[J]. Chinese Journal of Nonferrous Metals, 2001, 11(5):881-885.

[7] Gyurov Stoyko, Rabadjieva Diana, Kovacheva Daniela, et al. Kinetics of copper slag oxidation under nonisothermal conditions[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(2):945-954.

[8] Siwiec G, Oleksiak B, Matula T, et al. Reduction of copper slag with the use of carbon granulates [J]. Metallurgy. 2014, 53(4): 585-587.

[9] 邓彤, 文震, 刘东. 硫酸介质中氯化物参与下氧化浸出铜 渣过程[J]. 中国有色金属学报, 2001, 11(2):302-306.

DENG T, WEN Z, LIU D. Leaching of copper residue with oxygen in sulfuric acid with participation of chloride[J]. Chinese Journal of Nonferrous Metals, 2001, 11(2):302-306.

[10] Warczok A, Riveros G. Slag cleaning in crossed electric and magnetic fields[J]. Minerals Engineering. 2007, 20(1): 34-43.

[11] 马泳波, 杜雪岩, Alibek Kakimov, 等. 富铁镍渣综合利用的研究与进展综述[J]. 矿产综合利用, 2018(6):25-31.

MA Y B, DU X Y, Alibek Kakimov, et al. Research and progress of nickel slag's comprehensive utilization[J]. Multipurpose Utilization of Mineral Resources, 2018(6):25-31. [12] 李伟. 云南某低品位含铁硫化铜矿综合回收试验研 究[J]. 矿产综合利用, 2018(1):50-54.

LI W. Experimental study on comprehensive recovery for one low-grade copper sulphide ore containing iron in Yunnan[J]. Multipurpose Utilization of Mineral Resources, 2018(1):50-54.

[13] SUN Y S, HAO Y X, GAO P, et al. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms[J]. International Journal of Mineral Processing, 2015, 143:87-97.

[14] 李涛, 刘晨, 佘世杰. 铜渣中铁铜回收的实验研究[J]. 矿 产综合利用, 2020(2):145-150.

LI T, LIU C, SHE S J. Research on recovery of iron and copper in copper slag[J]. Multipurpose Utilization of Mineral Resources, 2020(2):145-150.

[15] 徐冬林,谢冬冬,张旭,等.基于均匀试验的赤铁矿石助 磨剂复配试验研究[J].矿产综合利用,2019(2):30-36.

XU D L, XIE D D, ZHANG X, et al. Experimental study on the mixing test of grinding aids of hematite ore based on uniform design[J]. Multipurpose Utilization of Mineral Resources, 2019(2):30-36.

Orthogonal Experiments of Copper Slag Particles Direct Reduction by Carbon-Containing Solid Waste Reductant

Zuo Zongliang¹, Luo Siyi¹, Yu Qingbo², Zhang Jingkui³

(1.Qingdao University of Technology, Qingdao, Shandong, China; 2.Northeastern University, Shenyang,

Liaoning, China; 3. Shanghai University of Electric Power, College of

Energy and Mechanical Engineering, Shanghai, China)

Abstract: Copper slag particles were prepared by rotary cup atomizer. Carbon-containing copper slag pellets were prepared by copper slag particles, carbon reductant, binder and slag former. The effects of six factors on reduction ratio of carbon-containing copper slag pellets were in accordance with the sequence of reaction temperature > the ratio of slag former > atmosphere > the types of reductant > particle size of copper slag > the addition ratio of reductant, under experiment conditions. The optimum condition for direct reduction of carbon-containing copper slag pellets was that the reaction temperature was 1150° C, the ratio of slag former was 1:0.4, atmosphere was $CO_2(50\%)+N_2(50\%)$, the reductant was coal, particle size of copper slag was +0.425 mm and the addition ratio of reductant was 1.2:1. On this condition, the reduction ratio of copper slag is 98.2%.

Keywords: Copper slag; Centrifugation; Direct reduction