熊耳山矿集区小河流域水体及底泥重金属污染评价

张登峰,孙建伟

(中国地质调查局西安矿产资源调查中心,陕西 西安 710100)

摘要:这是一篇矿山环境领域的论文。河流是矿产资源开发过程中产生的重金属最主要的迁移途径和汇 聚地,熊耳山矿集区矿产资源开发对河流的影响程度尚不清晰。为准确掌握熊耳山矿集区矿产资源开发对河流 重金属的影响,以矿集区内小河流域的水体和底泥为研究对象,分析了小河干流及其主要支流水体和底泥中 Cu、Pb、Zn、Cd、As、Hg 重金属含量特征。用单项污染指数和内梅罗综合污染指数法对水体重金属污染程度 进行评价:用地质累积指数法和质量基准法对河流底泥中重金属累积程度和污染程度进行评价。结果表明,小 河流域水体中 6 种重金属平均含量在 0.08~289.86 µg/L 之间,污染程度 As>Hg> Cd>Pb>Cu>Zn,主要重金属污 染物为 As、Hg,主要污染河段分布于矿业活动强烈区,矿产资源开发是引起河流水体污染的主要因素。Cu、 Pb、Zn、Cd、As、Hg 在小河流域河道底泥中累积效应显著,重金属污染程度严重,质量基准法评价结果显 示,小河流域底泥中 Pb、Cd、Cu、Zn、As、Hg 所有样品均严重污染,综合地质累积指数法和质量基准法评价 结果,小河流域河道底泥污染程度:Pb>Cd >Cu>Zn>As>Hg,其中 Pb、Zn、Cu、Cd 是主要污染元素,Hg, As 是次要污染元素。研究认为:熊耳山矿集区矿产资源开发是引起小河流域水体、河道底泥重金属污染的主要 因素,已经对河流水体和底泥造成不同程度的重金属污染,加强矿产资源开发全过程的源头治理和监管,是保 护和改善小河流域重金属污染的根本手段。

关键词: 矿山环境; 水体; 底泥; 重金属污染

doi:10.3969/j.issn.1000-6532.2024.01.013

中图分类号: X522 文献标志码: A 文章编号: 1000-6532 (2024) 01-0109-11

引用格式: 张登峰, 孙建伟. 熊耳山矿集区小河流域水体及底泥重金属污染评价[J]. 矿产综合利用, 2024, 45(1): 109-119.

ZHANG Dengfeng, SUN Jianwei. Water body and sediment of Xiaohe Watershed in Xiongershan ore concentration area heavy metal pollution assessment[J]. Multipurpose Utilization of Mineral Resources, 2024, 45(1): 109-119.

重金属具有极强的生物毒性,由于其危害的 不可逆性和持久性及生态系统放大效应,而成为 生态环境中危害较重的一类污染物^[1-2]。重金属进 入水体后,经吸附、絮凝形成络合物、螯合物沉 积在河流底泥中^[3],当环境条件发生改变时,易造 成二次污染而危害周边生物,并可能通过食物链 危及人体健康^[4]。矿产开采、选冶加工导致重金属 元素进入河水,引发地表水体重金属污染风险^[5-8]。 如 2012 年广西金河矿业股份有限公司利用溶洞排 放废液,导致广西龙江发生镉污染; 2013 年广西 汇威选矿厂排放选矿废水,导致贺江水体镉、铊 重金属污染事件等,都说明矿业活动已经成为地 表水体重金属污染的一种重要类型。因此,通过 科学的研究方法摸清矿集区河流水体和底泥重金 属污染特征,清晰掌握矿业生产对河流水体和底 泥的影响,对于矿集区河流生态环境保护和修

收稿日期: 2023-06-16

基金项目:中国地质调查局地质大调查项目(DD20208079)

作者简介: 张登峰(1982-)男, 学士, 高级工程师, 研究方向为资源勘查。

通信作者:孙建伟(1982-),男,硕士,高级工程师,研究方向为国土空间生态修复。

复,支撑区域山水林田湖草一体化保护修复具有 重要意义。

目前,国内外学者对矿区河流重金属污染状 况开展了大量研究,研究结果表明,矿集区矿业 活动已经对流经的河流水体和底泥造成不同程度 的重金属污染[9]。刘瑞平等[10]研究了青藏高原 5座金属矿山不同开采阶段河流重金属污染的严重 程度,发现金属矿山在勘查、开采、闭坑各阶段 均对河流造成了重金属污染,其中尤以开采阶段 造成的河流污染相对更为严重;徐友宁等[11]研究 了潼关金矿集区一带的太峪河以及太峪水库的底 泥重金属累积特征,评价了金矿开采过程中重金 属元素对底泥的影响机理和程度,发现太峪河底 泥 Hg、Pb、Cd、Cu、Zn 元素的累积程度达到了 极度污染程度,污染程度最高的是Hg、Pb、 Cd 三种元素。高云峰等^[12] 研究了秦岭某大型钼矿 区下游的东川河水体与底泥中 Cd 的累积程度和生 态风险特征,结果表明,河水中 Cd 的含量明显高 于对照区, 主沟 Cd 含量达对照区的 3 倍, 近 70% 的底泥样点均存在不同程度的累积, Cd 的潜在生 态危害指数平均值为120.27,总体达到强生态风 险程度,Cd已经严重威胁到流域的生态安全。上 述研究结果表明, 矿集区、典型矿山的矿业活动 造成河流重金属污染的现象较为普遍。熊耳山矿 集区已有30余年的矿业生产历史,然而针对熊耳 山矿集区矿产资源开发对河流重金属的影响却鲜 有报道,本文选择熊耳山矿集区的小河作为研究 对象,分析矿产资源开发对河流水体和底泥的重 金属影响现状,为熊耳山矿集区河流生态环境保 护和修复提供参考依据。

小河位于豫西熊耳山南麓,发源于栾川县白 土镇一带,向东流经至栾川县潭头镇汇入伊河, 径流长44.2 km,河流上游源区白土镇境内铅锌矿 山密布,其支流北川河上游有大型在产金矿一 处。小河中游狮子庙镇沿岸分布有金矿山和尾矿 库,下游自狮子庙镇流至潭头镇无矿山分布。河 流上游山谷河床狭窄,水流量小,河流底部有砂 石沉积,部分河段基岩裸露。农田沿河岸呈带状 分布。下游因坡度渐缓,因不断有支流汇入而流 量稍增。降雨集中在7、8 两个月,年均降水量 889 mm,是小河最重要补充来源。小河是沿岸居 民重要的生产生活水源保障,是伊河重要的支流 之一。

1 材料与方法

1.1 样品采集

根据小河流域矿山分布特征,在小河及其支 流共布设水质样品采样点57个,主要布设于小河 干流和北川河支流,其他次级较小支流采取少量 采样点控制,采样点分布见图1。水质样品采集执 行《水质采样样品的保存和管理技术规定》(HJ 493-2021)标准,水质样品采集时间为2020年 6月份。在矿区、选矿厂、尾矿库等位置样品布设 适当加密,无矿业活动区域适当放稀。水质样品 采集前,先用河水清洗容器3次。根据测试重金 属元素种类和性质,每件样品分4个容器各采集 5L,分别加入不同稳定剂,确保水中重金属元素

底泥样品布设参照《底泥污染状况调查点布 设技术规范》(DB37/T 4327-2021),共采集河流 底泥样品 32件,样品分布与 57件水质样品中的 24个点位重合,有8件底泥样品与水质样品点位 不重合,底泥样品采样点分布见图2。底泥样品采 集使用柱塞抽吸式底泥采样器,样品采集后常温 避光自然风干,粉碎剔除杂物,过1.7 mm 尼龙筛 后装入聚乙烯塑料瓶,送实验室待检。

1.2 样品测试

水质样品分析测试标准和使用的仪器设备见 表 1,其中 Cd、Zn、Pb、Cu 四种元素用 ICP-MS 法测试;As、Hg 两种元素用 AFS 法测试。底泥样 品分析测试执行标准和采用的仪器设备见表 2,其 中 Cd、Zn、Pb、Cu 四种元素用 ICP-MS 法测试, As、Hg 两种元素用 AFS 法测试。水质样品由中陕 核工业集团综合分析测试有限公司承担,底泥样 品由中国地质调查局西安矿产资源调查中心实验 室承担。

1.3 评价方法

1.3.1 水质评价方法

由于研究区不是水源涵养地,也非自然保护 区,本次依据 GB 3838-2002 地表水III类水质标准 计算单项污染指数和综合污染指数,评价小河流 域河水中重金属单因子污染程度和综合污染程度。 1.3.1.1 单因子污染指数法

单因子污染指数法是一种较为成熟和应用广 泛的水质评价方法,指标权重具有较强的客观 性^[13-14],计算公式如下:

图 1 小河流域水质样品采样点分布 Fig.1 Distribution of sampling points of water quality samples in small river basins

图 2 小河流域底泥样品采样点分布 Fig.2 Distribution of sampling points of sediment samples in small river basin

$$P_i = C_i / C_0 \tag{1}$$

式中: *P_i*为单项污染指数; *C_i*为地表水采样点样品 i 的重金属含量实测值(µg/L); *C*₀为地表水国家标准中某种元素的限值。单因子污染分级标准见表 3。

1.3.1.2 内梅罗综合污染指数法

内梅罗综合污染指数不仅考虑到各种影响参数的平均污染状况,还特别考虑了污染最严重的因子,在加权过程中避免了加权系数中主观因素的影响,克服了平均值法各种污染分担的缺陷,

是目前应用较为广泛的环境质量指数^[15]。计算公 式如下:

$$p_z = \sqrt{\frac{\left(\overline{p_i}\right)^2 + \left(maxP_i\right)^2}{2}}$$

式中: Pz 为综合污染指数; maxPi 为同一样品多 种污染物中最大单项污染指数; ($\overline{p_i}$) 为同一样品多 种污染物中单项污染指数平均值。地表水质内梅 罗综合污染分级标准见表 4。

表1	水质样品分析方法
Mathada	Cor analyzia of water quality community

(2)

rable i Methods for analysis of water quarty samples							
分析元素	样品类型	执行标准	仪器设备及型号	检测限/(µg/L)			
锌	河水样品	HJ700-2014	电感耦合等离子体质谱仪Agilent 7850 ICP-MS	0.67			
铜	河水样品	HJ700-2014	电感耦合等离子体质谱仪Agilent 7850 ICP-MS	0.08			
铅	河水样品	Н 700-2014	电感耦合等离子体质谱仪Agilent 7850 ICP-MS	0.09			
镉	河水样品	Н 700-2014	电感耦合等离子体质谱仪Agilent 7850 ICP-MS	0.05			
砷	河水样品	H 694-2014	原子荧光分光光度计AFS-230E	0.3			
汞	河水样品	H 694-2014	原子荧光分光光度计XGY-1011A	0.04			

表 2 底泥样品分析方法

Table 2	Methods	for	anal	vsis	of s	edimen	t samp	les

	- · · · · · · · · · · · · · · · · · · ·							
分析元素	样品类型	执行标准	仪器设备及型号	检测限/(mg/kg)				
锌	底泥样品	H 803-2016	电感耦合等离子体质谱仪Agilent 7850 ICP-MS	7				
铜	底泥样品	Н 803-2016	电感耦合等离子体质谱仪Agilent 7850 ICP-MS	0.5				
铅	底泥样品	H 803-2016	电感耦合等离子体质谱仪Agilent 7850 ICP-MS	2				
镉	底泥样品	H 803-2016	电感耦合等离子体质谱仪Agilent 7850 ICP-MS	0.07				
砷	底泥样品	H 680-2013	原子荧光分光光度计AFS-230E	0.01				
汞	底泥样品	H 680-2013	原子荧光分光光度计XGY-1011A	0.002				

表 3 地表水单因子污染程度分级

 Table 3
 Classification of single factor pollution degree of surface water

	Surface water	
污染等级划分	单项污染指数 (P_i)	污染程度
Ι	$P_i < 1$	未受污染
II	$1 \leq P_i < 2$	轻微污染
III	$2 \leq P_i < 3$	轻度污染
IV	$3 \leq P_i < 5$	中度污染
V	$P_i \ge 5$	重度污染

表 4	地表水综合污染程度分约	及
12 4	地极小场百万禾住反力。	N

 Table 4
 Classification of comprehensive pollution degree of surface water

污染等级划分	综合污染指数 (P_z)	污染程度
Ι	$P_z \leq 0.7$	未受污染
II	$0.7 < P_z \le 1.0$	轻微污染(警戒线)
III	$1.0 < P_z \le 2.0$	轻度污染
IV	$2.0 < P_z \le .3.0$	中度污染
V	P _z >3.0	重度污染

1.3.2 底泥评价方法

1.3.2.1 质量基准法

质量基准的含义是某重金属元素在底泥中的

限值^[16],是主要对于依赖底泥组成的微生态系统 生物而言的,指该生物群落不会遭受某种金属元 素危害的临界值。沉积物质量基准是评价底泥遭 受重金属污染程度的标准^[17],研究过程简便。把 底泥中重金属元素的实测含量与给定的生物毒性 效应阈值 ERL 和 ERM 对比,底泥中重金属含量 大于给定的 ERM 值,定义为底泥遭到严重污染, 可能呈现严重生物毒性效应;底泥中重金属含量 小于给定 ERL 值,定义为底泥没有遭到污染,无 生物毒性效应;如处于 ERL 和 ERM 之间,则定 义为底泥中等重金属污染水平。该方法采用的基 准值 ERL 和 ERM,引用自 Long 和 MacDonald 在 研究美国北部沉积物生物效应数据库得出生物毒 性效应阈值见表 5^[18]。

表 5 底泥中重金属生物毒性阈值

 Table 5
 Biological toxicity threshold of heavy metals in sediment

seument									
阈值	As	Cd	Cr	Cu	Hg	Pb	Zn		
ERL	8.2	1.2	81	34	0.15	46.7	150		
ERM	70	9.6	370	270	0.71	218	410		

第1期 2024年2月

1.3.2.2 地质累积指数法

地质累计指数(Igeo)通常称为 Muller 指数,是 1960年后期形成的用于研究沉积物重金属 污染的评价指标,详细计算公式如下:

$$I_{\text{geo}} = \log_2 \left| C_n^i / \left(K \times B_n^i \right) \right| \tag{3}$$

式中: C_n^i 为元素 i 在沉积物中的实际含量/(mg·kg⁻¹); B_n^i 为元素 i 的地球化学背景值; K 为经验值,通常 取 1.5^[19]。

本文选择黄河中游土壤背景值作为参照值^[20] 计算 Igeo 值。地质累积指数按重金属污染程度有 两种分级标准,Forstner 等分为 7 级^[21]、Anon 等 分为 5 级^[22],具体分级标准见表 6。本次研究采用 的地质累积指数重金属污染程度分级标准采用 Forstner 的 7 级分级标准。

表 6 地质累积指数分级 Table 6 Classification of geological accumulation index

ruble o Chassification of geological accumulation index								
<i>I</i> _{geo} (Forstner)	级别	污染程度	Igeo (Anon)	级别	污染程度			
<0	1	无影响	<0	1	无影响~轻度影响			
0~1	2	无影响~中度影响	0~1	2	中度影响			
1~2	3	中度影响	1~3	3	中度影响~强影响			
2~3	4	中度影响~强影响	3~5	4	强影响			
3~4	5	强影响	>5	5	极强影响			
4~5	6	强影响~极强影响						
>5	7	极强影响						

2 结果与讨论

2.1 河水重金属含量特征及污染评价

2.1.1 河水重金属含量特征

从表 7 地表水样品中重金属含量可以看出, 水体中 6 种重金属含量存在明显差异性,最大值 分别是地表水环境质量标准(III级标准)的 1.069、17.18、0.163、14.202、304.84、3.30倍, 说明小河流域水体中仅 Zn 不存在污染,而 Cu、 Pb、Cd、As、Hg 等 5 种重金属存在不同程度的污 染。从小河流域水体重金属含量平均值可以看 出,As平均值是地表水环境质量标准的304.84 倍,是污染程度最为严重的重金属元素。经数据 检查发现,Hg有两件样品含量分别达到了15242 (µg/L)和4209.46(µg/L),是造成Hg平均含 量整体较高的一个重要原因。从各重金属的变异 系数来看,Cu、Pb、Cd、As、Zn变异系数均大 于100%,变异程度极高,说明在空间上差异较 大^[23],空间分布不均匀。Hg变异系数63%,为中 等程度变异,说明Hg在空间上差异性相对较小, 在空间分布上相对均匀。

表 7 小河流域水中重金属含量统计特征

	Table / Statistical characteristics of neavy metals in water of small river basin								
元素	最大值/(µg/L)	最小值/(µg/L)	平均值/(µg/L)	标准差	变异系数/%	地表水环境质量Ⅲ级标准/(μg/L)			
Cu	1069.00	0.41	22.60	139.98	619	1000			
Pb	859.00	0.10	17.19	113.54	660	50			
Zn	163.00	0.61	8.67	26.80	309	1000			
Cd	71.01	0.06	2.90	12.45	429	5.00			
As	15242.00	1.50	389.86	2062.39	529	50			
Hg	0.33	0.05	0.08	0.05	63	0.10			

2.1.2 河水重金属污染评价

小河流域水体重金属单项污染指数表 8 显示, Cu 仅小河源头支流 S12 采样点出现轻微污染,其他点位未见污染。Pb 在白土镇西部小河支流 S46 采样点出现重度污染, S46 号采样点上游分

布有铅锌矿尾矿库,根据相对位置分析,该点位 Pb污染与上游尾矿库有关,其他点位未见污染。 Zn所有采样点位未见污染,属清洁状态。Cd在白 土镇小河南侧支流 S47采样点位出现重度污染, S47点位紧邻尾矿库下游,尾矿库是该支流唯一的

样号	Cu	Pb	平坝/ Zn	5來指致 Cd	As	Hg	综合污染指数	
S1	0.006	0.043	0.001	—	0.129	0.720	0.525	
S 6	0.005	0.007	0.004	—	2.219	3.300	2.461	
S 7	0.004	0.003	0.006	0.014	0.272	2.500	1.798	
S9	0.006	0.008	0.004	0.192	84.189	2.000	60.395	
S12	1.069	0.199	0.036	0.494	0.030	0.550	0.806	
S15	0.004	0.008	0.163	0.098	0.156	1.300	0.942	
S17	0.003	0.007	0.015	_	0.148	1.000	0.726	
S20	0.003	0.022	0.007	_	0.144	0.900	0.654	
S25	0.002		0.004		0.144	0.600	0.444	
S27	0.005	0.002	0.004		0 148	0.600	0.438	
S29	0.003	0.003	0.002		0.148	0.600	0.437	
S30	0.002	0.092	0.002		0.156	0.600	0 441	
S31	0.001	0.048	0.002		0.150	0.500	0.367	
S32	0.001	0.042	0.002	0.026	0.172	0.500	0.364	
S34	0.000	0.042	0.002	0.020	0.182	0.500	0.134	
\$35	0.000	0.023	0.002	0.012	0.174	0.500	0.154	
835 836	0.005	0.045	0.001	0.012	0.180	0.500	0.364	
\$30 \$27	0.000	0.024	0.001	0.018	0.154	0.500	0.366	
\$28	0.001	0.015	0.003	0 102	0.154	0.500	0.360	
538	0.003	0.005	0.002	0.102	0.214	0.500	1.820	
539	0.004	0.108	0.007	0.010	2.340	0.000	1.039	
544 S45	0.006	0.254	0.006	0.084	0.104	0.900	0.050	
S45	0.006	0.277	0.001	0.070	17.080	0.800	12.20/	
S46	0.024	17.180	0.003	0.360	304.840	0.900	218.896	
S47	0.001	0.026	0.004	14.202	0.164	0.600	10.19/	
S48	0.001	0.047	0.002	0.196	0.150	0.600	0.440	
S49	0.001	0.033	_	0.126	3.880	0.600	2.821	
\$50	0.003	0.036		0.022	0.128	0.600	0.439	
S52	0.002	0.034	0.001	0.172	5.040	_	3.640	
S53	0.003	0.041	0.002	0.282	4.980	0.600	3.590	
S54	0.000	0.030		0.024	0.140	0.500	0.367	
S55	0.003	0.046	0.010	0.288	5.340	0.600	3.848	
S57	0.002	0.037	0.001	0.108	5.360		3.869	
S58	0.003	0.026	—	0.352	0.138	0.500	0.382	
S59	0.004	0.025	0.001	0.336	0.138	0.500	0.373	
S60	0.003	0.028		0.090	0.030	0.500	0.365	
S61	0.002	0.004	—	—	0.136	0.600	0.444	
S63	0.002	0.021	0.004	—	0.126	0.700	0.509	
S64	0.002	0.013	—	—	0.124	0.700	0.517	
S65	0.002	0.006	—	—	0.128	0.600	0.444	
S66	0.002	0.004	_	0.015	0.138	0.900	0.654	
S67	0.002	0.006	_	_	0.130	0.600	0.444	
S68	0.002	0.005			0.128	0.700	0.517	
S69	0.002	0.005	_	—	0.120	0.600	0.443	
S70	0.002	0.005			0.114	0.700	0.516	
S71	0.001	0.006	_	_	0.126	0.700	0.516	
S72	0.000	0.008	_	_	0.118	0.600	0.443	
S73	0.001	0.005	_	_	0.118	0.600	0.443	
S75	0.001	0.008	—	_	0.124	0.600	0.444	
S76	0.001	0.007		_	0.116	0.700	0.516	
S78	0.002	0.020	0.001	0.048	0.036	0.700	0.504	
S79	0.002	0.024	0.001	0.048	0.962	0.700	0.710	
S81	0.001	0.014			0.074	0.700	0.514	
S82	0.002	0.021		0.044	0.036	0.700	0.508	
<u>883</u>	0.047	0.056	0.002	0.054	0.842	0 700	0.628	
S84	0.006	0.027	0.002		0.078	0 700	0.508	
585	0.004	0.033	0.002	0.050	0 788	0 700	0.587	
586	0.004	0.019	0.002	0.050	0 718	0.700	0.550	
	0.005	0.010		0.032	0.710	0.700	0.000	

表 8 小河流域水中重金属单项污染指数和综合污染指数 Table 8 Single pollution index and comprehensive pollution index of heavy metals in water of small river basin

污染源,是引起 S47 采样点位 Cd 污染的主要原因。As 有 S6、S39 样点出现轻度污染、有 S49、S53 样点出现中度污染、有 S9、S45、S46、S52、S55、S57 等 6 个点位出现重度污染,所有出现污染点位均位于尾矿库、矿业工业场地周边,矿业活动是引起上述点位 As 污染的重要因素。Hg 有 S15、S17 样点出现轻微污染,有 S6、S7、S9 等3 个点位出现轻度污染,全部污染点位均位于小河及其支流北川河分布的尾矿库下游,出现污染也 主要与矿业活动有关。

内梅罗综合污染指数评价显示,小河及其支流水体中重金属分别有4个采样点位出现轻微污染、2个样点出现轻度污染、2个样点出现中度污染、8个样点出现重度污染。各个级别污染点位均分布于金矿、铅锌矿尾矿库、采场、工业场地下游,矿业活动是引起小河流域水体重金属污染的主要因素,主要污染元素是As和Hg。总体而言,小河干流及支流白土镇段、小河支流北川河源区段,均是矿业活动强烈区,矿业活动已经对

小河流域水体造成了不同程度的污染。

2.2 底泥重金属含量特征及污染评价

2.2.1 底泥重金属含量特征

河流底泥中重金属含量(表9)存在明显差 异,Pb、Zn含量明显高于其他元素,是底泥中高 含量重金属元素。Pb的最高值达13545 mg/kg, 范围为216~13545 mg/kg,平均值为2116 mg/kg。 Zn的最高值为2345 mg/kg,范围为198~2345 mg/kg,平均值为780 mg/kg。底泥中重金属元素 的平均含量从大到小依次排序为:Pb>Zn>Cu>As> Cd>Hg。从上游到下游的不同样点,均显示分布 于金矿区和铅锌矿区内及尾矿库下游样点重金属 含量较高,下游距离矿业活动越远的样点重金属 含量越低。所有样品的重金属含量均值均远远高 于背景值,除Hg外Cu、Pb、Zn、Cd、As五种重 金属含量均值也高于研究区表层土壤筛选值,可 以明显看出金矿、铅锌矿开发是造成小河流域底 泥中重金属含量显著增加的最主要原因。

Table 9 Statistical characteristics of heavy metals in sediment of small river basin									
元素	最大值/	最小值/	平均值/	标准差	变异系数/%	黄河中游土壤	表层土土壤		
	(mg/kg)	(mg/kg)	(mg/kg)	1,1,1,1,2, <u>1</u>					
Cu	1178.00	68.00	291.00	275.97	95	24.00	100.00		
Pb	13545.00	216.00	2116.00	2676.64	127	23.00	170.00		
Zn	2345.00	198.00	780.00	569.01	73	67.00	300.00		
Cd	11.63	0.84	3.70	3.07	83	0.155	0.60		
As	1420.30	3.38	191.40	349.12	182	12.00	25.00		
Hg	8.59	0.10	1.78	1.74	98	0.042	3.40		

表 9 小河流域底泥中重金属含量统计特征

2.2.2 质量基准法评价

由图 3 可以看出:小河流域底泥中 Zn、Cu、Pb、Cd、As、Hg 6 种元素均超过了 ERM 值。其中 Zn 有 22 个点元素超过 ERM 值,说明这些区域污染严重,达到产生严重生物毒性效应条件;10 个点处于 ERL 与 ERM 之间,说明上述点位达到中等污染等级,具备产生中等生物毒性效应条件。Cu 有 11 个样点高于 ERM 值,21 个样点处于 ERL 与 ERM 之间,说明该 11 个样点底泥重金属污染程度达到严重等级,达到产生严重生物毒性效应条件,21 个样点底泥受到中等污染,可能会呈现中等生物毒性效应。Pb 全部 32 个样点中有 30 个样点高于 ERM 值,2 个接近 ERM 值,说明小河流域源区所有采样点位置底泥受到严重污

染,达到产生严重生物毒性效应条件。As有14个 点超过 ERM值,说明这些区域污染严重,达到产 生严重生物毒性效应条件,6个点处于 ERM值和 ERL之间,说明上述样点达到中等污染等级,具 备产生中等生物毒性效应条件,12个点小于 ERL值,说明未受到污染。Hg有23个点超过 ERM值,说明这些区域污染严重,达到产生严重 生物毒性效应条件,9个点处于 ERL与 ERM之 间,说明上述样点达到中等污染等级,具备产生 中等生物毒性效应条件。Cd有3个点超过 ERM值,29个点处于 ERM和 ERL值之间,说明 采样点位底泥Cd以受到中等污染为主,具备产生 中等生物毒性效应条件。系统考虑全部样点中重 金属与基准阈值比较的超差特征,小河流域源区

一带底泥重金属污染水平由高到低次序为: Pb、 Zn、Cu、Hg、As、Cd,其中主要污染元素是 Pb、

> 图 3 小河流域底泥重金属含量分布 Fig.3 Distribution of heavy metals in sediment of Xiaohe Basin

2.2.3 地质累积指数法评价

采用地质累积指数进行重金属污染评价,背 景值的选择是最主要的影响因素。据前人研究经 验,同一研究区的土壤或沉积物的背景值与底泥 背景值具有通用性^[24],本文以研究区所处的黄河 中游土壤背景值,作为本次河道底泥重金属污染 研究评价的对照值。表 10 结果显示:Hg 元素累 积指数小于 0,说明小河流域源区一带河道底泥未 遭重金属 Hg 污染;Cu 有 9 个样点累积指数达到 中度污染级别,11 个样点达到中-强污染级别, 7 个样点达到强污染级别,2 个样点达到强-极强污 染,2 个样点达到极强污染,说明沉积物中 Cu 元 素污染较为严重;Pb 有 2 个样点累积指数达到中-强污染级别,4 个样点达到强污染级别,9 个样点 达到强-极强污染级别,17 个样点达到极强污染级 别,从指数分布看 Pb 元素污染程度最为严重,在 沉积物中累积程度最高; Zn 地质累积指数在无、 无-中、中、中-强、强、强-极强、极强等污染级 别分布的点数分别为0、1、9、11、7、4、0个, 说明, Zn 在沉积物中均有不同程度的累积, 但最 强仅达到强-极强污染级别,未达到极强级别; Cd 地质累积指数分布范围为中、中-强、强、强-极强、极强的点数分别为1、8、12、7、4个,从 数据分布看,Cd元素在沉积物中累积程度整体较 高,主要分布于中-强污染级别以上;As地质累积 指数在无、无-中、中、中-强、强、强-极强、极 强等污染级别分布的点数分别为14、3、1、4、 6、1、3个,说明As元素在底泥中累积较为普 遍。根据该方法评价结果,小河流域源区一带河 道底泥重金属污染等级由高到低排序是 Pb、Cd、 Cu、Zn、As、Hg,小河流域底泥中重金属污染以 Zn、Cd、Cu、As、Pb 为主,其次是 Hg。

Cu、As、Zn、Hg,其次是Cd。

第1期 2024年2月

衣 10 河水低泥里金属地质系积指数及污染级别											
Table 10 Geological accumulation index and pollution level of heavy metals in river sediment											
元素	最小值	最大值	平均值	背景值	各级样品所占比例/%						
					0级	1级	2级	3级	4级	5级	6级
Cu	0.92	5.03	2.57	24	0	3.13	28.13	34.34	21.88	6.25	6.25
Pb	2.64	8.62	5.18	23	0	0	0	6.25	12.5	28.13	53.13
Zn	0.98	4.54	2.63	67	0	31.3	28.13	34.34	21.88	12.5	0
Cd	1.85	5.64	3.55	0.155	0	0	3.13	25	37.5	21.88	12.5
As	-2.41	6.30	1.21	12.00	43.75	9.38	3.13	12.5	18.75	3.13	9.38
Hg	-9.30	-2.87	-5.89	42	100	0	0	0	0	0	0

十 4 。 冲上去泡子人口以了田坞比米五江油炉则

2.3 两种评价方法对比

综合比较分析两种方法评价结果,较为一致 的说明 Pb、Cu、Zn 都是小河流域河流底泥中的主 要污染元素,不同之处在于质量基准法评价 Cd 污 染程度级别较低,为次要污染元素,但在地质累 积指数法评价中 Cd 污染程度较高,为主要污染元 素,分析原因为质量基准值法采用的阈值是外部 引入数据,没有与当地地球化学背景值进行有效 结合,理论数据与背景数据没有联系,而地质累 积指数法以当地客观地球化学背景值作为参评依 据,能够有效反映矿业及其他外部活动影响而产 生的重金属元素累积富集,不同的方法各有侧重 点。综合两种方法的评价结果,考虑研究区实际 把 Pb、Zn、Cd、Cu、As 划为底泥主要污染元 素,其次为Hg。

3 结 论

(1) 小河流域 57 件水体样品中有 16 件出现 不同级别的水质重金属污染现象,污染点位达到 28%, 主要污染元素为 As 和 Hg, 污染点位主要分 布于矿业活动集中区,矿产资源开发是河水水质 污染的主要因素。

(2) 对比发现底泥中重金属污染较水体严 重,原因是水体是流动的,重金属含量只能代表 研究时间节点的水质污染情况,而河道底泥基本 上是固定的, 底泥中重金属含量是反映长期富集 累积的特征,底泥是潜在的二次污染源,应加强 源头治理,避免底泥中重金属累积进一步加剧。

(3) 地质累积指数法和质量基准法两种评价 方法因侧重点和研究原理不同,致使底泥重金属 评价结果略有差异,经综合分析地质累积指数和 质量基准两种方法结果,最终认为:河流底泥污 染程度 Pb> Cd > Cu >Zn>As >Hg, Pb、Cd、Cu、 Zn、As 是底泥中主要污染元素, Hg 是次要污染 元素。

(4) 研究区矿产资源开发是引起小河流域水 体重金属污染和河道底泥重金属污染的主要因 素,已经对河流水体和底泥造成不同程度的重金 属污染,因此,加强矿产资源开发全过程的源头 治理和监管,是保护和改善小河流域重金属污染 的根本途径。

参考文献:

[1] 宋文, 成少平, 迟晓杰, 等. 重金属污染土壤遥感监测研究 进展[J]. 矿产综合利用, 2021(4):21-28.

SONG W, CHENG S P, CHI X J, et al. Research progress on remediation of heavy metal contaminated soil monitored by remote sensing[J]. Multipurpose Utilization of Mineral Resources, 2021(4):21-28.

[2] 端爱玲,杨树俊,韩张雄,等.矿区土壤重金属污染化学修 复及强化方法研究进展[J]. 矿产综合利用, 2022(6):104-109.

DUAN A L, YANG S J, HAN Z X, et al. Research progress on chemical remediation and strengthening methods of heavy metal contaminated soil in mining areas[J]. Multipurpose Utilization of Mineral Resources, 2022(6):104-109.

[3] 周芬琦, 王小芳, 赵新如, 等. 安徽庐江尾矿区河流重金属 分布及污染评价[J].环境化学, 2020, 39(10): 2792-2803.

ZHOU F Q, WANG X F, ZHAO X R, et al. Heavy metal distribution and pollution evaluation of rivers along mining area in Lujiang County, Anhui Province[J]. Environmental Chemistry, 2020, 39(3): 2792-2803.

[4] 李瑞娟, 周冰. 安徽铜陵铜尾矿土壤污染评价及综合利用 研究[J]. 矿产综合利用, 2021(4):36-40.

LI R J, ZHOU B. Study on soil pollution evaluation and comprehensive utilization of Tongling tailings in Anhui[J]. Multipurpose Utilization of Mineral Resources, 2021(4):36-40.

[5] Meng Y B, Zhou L F, He S L, et al. A heavy metal module coupled with the SWAT model and its preliminary application in a mine-impacted watershed in China[J]. Science of the Total Environment, 2018, 613/614:1207-1219.

[6] 刘雨昕, 路星雯, 宁寻安, 等. 浸提法去除铁尾矿中重金 属 Pb、Zn、Cu、Cr、和 Ni的研究[J]. 矿产综合利用, 2022(4):33-40.

LIU Y X, LU X W, NING X A, et al. Removal of Pb, Zn, Cu, Cr and Ni in iron tailings by leaching[J]. Multipurpose Utilization of Mineral Resources, 2022(4):33-40

[7] 罗妍, 黄艺, 余大明, 等. 东北典型煤矿区重金属环境评价 与分析[J]. 矿产综合利用, 2021(4):50-58.

LUO Y, HUANG Y, YU D M, et al. Environmental assessment of heavy metals in typical coal mining areas in Northeast China[J]. Multipurpose Utilization of Mineral Resources, 2021(4):50-58.

[8] 赵连兵, 先永俊, 文书明, 等. 铅锌选矿废水净化处理研究 概述[J]. 矿产综合利用, 2022(3):100-106.

ZHAO L B, XIAN Y J, WEN S M, et al. Brief introduction of lead and zinc beneficiation wastewater treatment[J]. Multipurpose Utilization of Mineral Resources, 2022(3):100-106.

[9] 刘雅瑾, 雷国元. 冶金工业园周边水域底泥中重金属污染 评价[J]. 矿产综合利用, 2017(4):89-94.

LIU Y J, LEI G Y. Pollution Assessment of heavy metals in sediment of the surrounding waters of metallurgical industrial park[J]. Multipurpose Utilization of Mineral Resources, 2017(4):89-94.

[10] 刘瑞平,徐友宁,张江华,等. 青藏高原典型金属矿山河 流重金属污染对比[J]. 地质通报, 2018, 37(12):2154-2168.

LIU R P, XU Y N, ZHANG J H, et al. A comparative study of the content of heavy metals in typical metallic mine rivers of the Tibetan Plateau[J]. Geological Bulletin of China, 2018, 37(12):2154-2168.

[11] 徐友宁, 张江华. 陕西潼关金矿区太峪河底泥重金属元 素的含量及污染评价[J]. 地质通报, 2008, 27(8): 1263-1271.

XU Y N, ZHANG J H. Contents of heavy metals in bottom sediments of the Taiyu River in the Tongguan gold mining area, Shanxi, China, and contamination assessments[J]. Geological Bulletin of China, 2008, 27(8): 1263-1671.

[12] 高云峰, 徐友宁, 张江华. 秦岭某钼矿区开发对东川河流 域 Cd 的影响[J]. 地质通报, 2018, 37(12):2241-2250.

GAO Y F, XU Y N, ZHANG J H. Evaluation of Cd pollution of a molybdenum ore area in Dongchuan River basin of the

Qinling Mountain[J]. Geological Bulletin of China, 2018, 37(12):2241-2250.

[13] 刘应冬,代力,张卫华.青海某金矿矿集区土壤重金属污 染评价及综合利用讨论[J]矿产综合利用,2018(5):97-100.

LIU Y D, DAI L, ZHANG W H. Assessment of soil heavy metals pollution and comprehensive utilization in a gold mine area in Qinghai[J]. Multipurpose Utilization of Mineral Resources, 2018(5): 97-100.

[14] 温春云, 刘聚涛, 胡芳, 等. 鄱阳湖水质变化特征及水体 富营养化评价[J]. 中国农村水利水电, 2020(11):83-88.

WEN C Y, LIU J T, HU F, et al. Water quality change characteristics and eutrophication assessment of Poyang lake[J]. Rural water conservancy and hydropower in China, 2020(11):83-88.

[15] 李苏, 闫志宏, 徐丹, 等. 改进的内梅罗指数法在水库水质评价中的应用[J]. 科学技术与工程, 2020, 20(31):13079-13084.

LI S, YAN Z H, XU D, et al. Application of improved nemerow index method in reservoir water quality evaluation[J]. Science Technology and Engineering, 2020, 20(31):13079-13084.

[16] 宁阳明, 尹发能, 李香波. 几种水质评价方法在长江干流 中的应用[J]. 西南大学学报 (自然科学版), 2020, 42(12):126-133.

NING Y M, YIN F N, LI X B. Application of several evaluation methods for river water quality in the Yangtze River mainstream[J]. Journal of Southwest University(Natural Science), 2020, 42(12):126-133.

[17] 李军. 湘江长株潭段底泥重金属污染分析与评价[D]. 湖南: 湖南大学, 2008: 12-16.

LI J. Analysis and evaluation of heavy metal pollution in sediment of Chang Zhu Tan section of Xiangjiang River[D]. Hunan: Hunan University, 2008: 12-16.

[18] Long E R, Field L J, MacDonal D D. Predicting toxicity in marine sediments with numerical sediment quality guidelines[J]. Environ- mental Toxicology and Chemistry, 1998, 17(4):714-727.

[19] LOSKA K, WIECHULA D. Korus I Metal contamination of farming soils affected by industry[J]. Environment International, 2004, 30(2):159-165.

[20] 侯叶青,杨忠芳,余涛,等.中国土壤地球化学参数.北 京:地质出版社,2020, ISBN 978-7-116-11926-0.

HOU Y Q, YANG Z F, YU T, et al. Soil geochemical parameters in China: Beijing, Geological Publishing House,

2020, ISBN 978-7-116-11926-0.

[21] Forster U. Lecture notes in earth sciences(contaminated sediments)[M]. Berlin Forsterverlag, 1989: 107-109.

[22] 胡艳霞, 周连第, 魏长山, 等. 北京水源保护地土壤重金 属空间变异及污染特征[J]. 土壤通报, 2013, 44(6):1483-1490.

HU Y X, ZHOU L D, WEI C S, et al. Spatial variability and pollution characteristics of soil heavy metals in water source protection sites in Beijing[J]. Soil Bulletin, 2013, 44(6):1483-1490.

[23] 王亚维, 王中美, 王益伟, 等. 贵阳市岩溶地下水水化学 特征及水质评价[J]. 节水灌溉, 2019(6):60-66. WANG Y W, WANG Z M, WANG Y W, et al. Hydrochemical characteristics and water quality evaluation of Karst groundwater in Guiyang[J]. Water saving irrigation, 2019(6):60-66.

[24] 胡国成, 许振成, 彭晓武, 等. 广东长潭水库表层沉积物 重金属污染特征与潜在生态风险评价研究[J]. 农业环境科 学学报, 2011, 30(6):1166-1171.

HU G C, XU Z C, PENG X W, et al. Pollution characteristics and potential ecological risk assessment of heavy metals in surface sediment from Changtan Reservoir, Guangdong Province, China[J]. Journal of Agro-Environment Science, 2011, 30(6):1166-1171.

Water Body and Sediment of Xiaohe Watershed in Xiongershan Ore Concentration Area Heavy Metal Pollution Assessment

ZHANG Dengfeng, SUN Jianwei

(Xi'an mineral resources investigation center of China Geological Survey, Xi'an 710100, Shaanxi, China) Abstract: This is an article in the field of mining environment. Rivers are the main migration paths and convergence places of heavy metals produced in the process of mineral resources development. The impact of mineral resources development in Xiongershan ore concentration area on rivers is not clear. In order to clearly understand the impact of mineral resources development on river heavy metals in Xiongershan ore concentration area. Taking the water and sediment of small river basins in the mining area as the research object, the content characteristics of Cu, Pb, Zn, Cd, as, Hg heavy metals in the mainstream of the small river and its main tributaries and sediment were analyzed. The single pollution index and Nemero comprehensive pollution index were used to evaluate the pollution degree of heavy metals in water; The accumulation degree and pollution degree of heavy metals in river sediment were evaluated by geological accumulation index method and quality standard method. The results showed that the average contents of six heavy metals in the water body of the small river basin ranged from 0.08 to 289.866 μ g/L, the pollution degree As>Hg>Cd>Pb>Cu>Zn, the main heavy metal pollutants are as and Hg, the main polluted river reaches are distributed in the areas with strong mining activities, and the development of mineral resources is the main factor causing river water pollution. The accumulation effect of Cu, Pb, Zn, Cd, as and Hg in the river sediment of the small river basin is significant, and the pollution degree of heavy metals is serious. The evaluation results of the quality standard method show that all samples of Pb, Cd, Cu, Zn, as and Hg in the river sediment are seriously polluted. According to the evaluation results of the comprehensive geological accumulation index method and the quality standard method, the pollution degree of the river sediment of the small river basin is: Pb>Cd >Cu>Zn>As>Hg, in which Pb, Zn, Cu and Cd are the main pollution elements, Hg, As is a secondary pollution element. The research shows that the development of mineral resources in Xiongershan ore concentration area is the main factor causing heavy metal pollution in the water body and river sediment of the small river basin. It has caused heavy metal pollution in different degrees to the river water body and sediment. Strengthening the source control and supervision in the whole process of mineral resources development is the fundamental means to protect and improve the heavy metal pollution in the small river basin.

Keywords: Mining environment; Water body; Bottom mud; Heavy metal pollution