重磁数据的线性滤波与反演失真问题

汤悦林 陈元平

(零陵师范高等专科学校 湖南 永州 425006)

摘要:文中对国内研制的4种主要线性滤波方法进行了对比分析。选出一种具代表性的滤波方法,用计算机模拟 观测场,探讨了在复杂干扰下重磁异常因滤波引起的失真,并就重磁异常在因滤波而引起失真的情况下如何反演 解释,提出了可行的办法和建议。

关键词 线性滤波 沒杂干扰 滤波失真 失真数据的反演

中图分类号: P631 文献标识码: A 文章编号: 1000 - 8918(2002)03 - 0225 - 07

重磁数据的线性滤波和反演,通常都被当作 2 个完全独立的问题加以阐述或介绍,在实际应用中, 这两者内在的因果关系也常被忽略。当实测重磁数 据在进行反演前或反演中需要进行线性滤波以提高 其信噪比时,必然使信号产生某种程度的失真,利用 这种失真的信号作反演计算,不论反演方法如何,它 的反演结果也必然是有某种程度失真的结果。如何 选用简单易行的滤波方法,改善滤波后失真信号反 演计算结果的失真,作者将分两部分做简要阐述。

1 不同线性滤波方法的对比分析

1.1 补偿圆滑法1]

为了求得一个准矩形滤波函数,取初始圆滑算 子 $\varphi_0(u') = \exp(-4\pi^2\lambda u'^2)(式中 u' 是以截止波$ $数归一化了的滤数),以递推公式 <math>\varphi_n(u') = [2 - \varphi_{n-1}(u')]\varphi_{n-1}(u')$ 计算第 n 次补偿圆滑算子。 这个递推公式不便于直接利用和分析对比。笔者引 用数学归纳法推导出了补偿圆滑滤波的解析公式:

 $\varphi_n(u') = 1 - [1 - \exp[-4\pi^2 \lambda u'^2)]^n$ (1) 式中 λ, n 为滤波参数。

1.2 正则化稳定因子^[2]

正则化稳定因子是为了"研究解决迅速形成'具 有理想低通滤波特性和较强适应能力'的、简单连 续、光滑度高的滤波因子"的问题而提出来的,它的 假设前提是"低频信号与高频信号之间混频范围较 小,近于不相关",存在一个 u₀ 使波数在大于或等 于 u₀ 处接收的信号全是干扰,波数在小于 u₀ 处, 接收的信号全是有用信号。原理是用稳定正值序列 ξ_m 、正则化参数 α 来限定离散傅里叶逆变换的解趋于光滑稳定。正则化稳定因子:

$$f_{\alpha}^{m} = 1/(1 + \alpha \xi_{m}), \qquad (2)$$

取稳定正值序列: $\xi_m = \exp[\beta(|u| - u_0) \cdot \lambda_x]$ 。式 中 λ_x 为基波波长 $,\alpha,\beta,u_0$ 为滤波参数 ,且规定 $\beta \ge 2$,u 为波数 $u = m/\lambda_x$,m 为波数域一维坐标系 u上的波数编号(m = 0, 1, 2, 3, \dots , n)。

1.3 最佳线性滤波器

滤波不可能绝对地滤去干扰而不压制有用信 号,最佳线性滤波就是针对这一问题提出的。它建 立了一套在最小二乘意义下"将干扰压低到一定比 例,使信号失真为最小"或"允许信号有一定程度的 失真而将干扰压缩到最小"的滤波理论^[3]。

在文献 4 冲提出了最佳线性滤波的近似公式:

 $L_h = 1 \Lambda (1 + \lambda' \exp(4\pi fh))$, (3)

式中 ,f 为波数 $\lambda' 和 h$ 为滤波参数 同时提出(3)式 还可视作一个简单易调节的光滑的准矩形滤波窗口 (为便于以后的对比 将 λ' 表示为 α_3 ,f表示为u), 且有

$$L_{h}(u,h,\alpha_{3})|_{u=0} = \frac{1}{1+\alpha_{3}};$$
 (4)

 $L_h(u,h,\alpha_3)|_{u=u_{1/2}} = 1/2_{\circ}$ (5)

 $\exists \partial L_h(u,h,\alpha_3)/\partial u \in u = u_{1/2}$ 处取极值 – πh 时,

$$L'_{h}(u_{1/2}, h_{\alpha_{3}}) = -\pi h;$$
 (6)

$$u_{1/2} = -\ln \alpha_3 / 4\pi h$$
 , ($\alpha_3 \ll 1$) (7)

收稿日期 2001-09-07

IE.

(4)~(6)式分别表示准矩形滤波器的高、宽、陡。

1.4 正则化下延滤波因子^[5]

重磁异常向下延拓属位场反演中的不适定问题,数学家^[6]对此问题提出了具有严格数学理论的 正则化解法,倍受理论界的重视,但从实际应用上来 看,如重磁异常向下延拓的正则化解法,最终仍归结 为提供了一个与向下延拓的深度和实测数据中误差 "能量"的估值有关的波数域线性滤波因子^[7]

$$v(\alpha) = 1/\left[1 + \alpha \left(\frac{n\pi}{l}\right)^2 \exp\left(\frac{2n\pi}{l}z\right)\right]. \quad (8)$$

式中, z 为向下延拓距离; l 为基波波长; α, z 为滤 波参数。既然(8)式也是一个线性滤波因子,所以作 者认为可以列入对比研究的范围。

为了便于对比分析,下面将几种滤波函数公式 中的符号做统一规定:滤波参数 α 以下标 1~4 区 别 4 种不同的滤波方法。如此,补偿圆滑滤波因子 (1)式可表示为:

$$\varphi_n = 1 - \left(1 - \exp(\alpha'_1 u^2)\right)^{2^n}; \quad (9)$$
则化稳定滤波因子(2)式可表示为:

- o₄ = 1

- a₄ = 50

万方数据

表1 滤波因子对比分析

滤波因子	决定或影响 滤波窗宽度	决定或影响 滤波窗陡度	当 u = 0 时	$u_{1/2}$ 与其它参数的关系	原文献中对 参数的限定
补偿圆滑	$lpha_1$, n	$lpha_1$, n	$\varphi_n = 1$	$u_{1/2} = \sqrt{\frac{\ln(1 - 1/2\sqrt[n]{2})}{\alpha'_{1}}}$ $\alpha'_{1} = -4\pi^{2}\lambda$	原 _{α1 ≈} 20 由于 <i>u</i> 的 单位改变,换算为 α′ ₁ ≈800
正则化稳定	α_2 , u_0	β	$f_a^m = \frac{1}{1 + \alpha_2 \exp(-u_0 \beta \lambda_x)}$	$u_{1/2} = \frac{1}{\beta \lambda_x} \cdot \ln \frac{1}{\alpha_2} + u_0$	$\beta \ge 2$, $\alpha_2 > 0$
最佳线性滤波	α_3 , h	h	$L_{\rm e,m} = \frac{1}{1 + \alpha_3}$	$u_{1/2} = -\frac{\ln \alpha_3}{4\pi h}$	$0 < \alpha_3 \leq 0.01$
正则化下延	$lpha_4$, z	z	$v(\alpha) = 1$	$z = \frac{-\{\ln (\alpha_4 \cdot (\pi u_{1/2})^2)\}}{2\pi u_{1/2}}$	<i>α</i> ₄ > 0

 $f_{\alpha}^{m} = 1/\{ 1 + \alpha_{2} \exp\{ \beta (u - u_{0})\lambda_{x} \}; (10)$ 最佳线性滤波因子(3)式可表示为:

 $L'_{h} = 1 / (1 + \alpha_{3} \exp(4\pi uh));$ (11) 正则化下延滤波因子(8)式可表示为:

 $v(\alpha) = 1/(1 + \alpha_{4}(\pi u)^{2} \exp(2\pi uz))$ 。(12) 以上各公式中 滤波参数的变化决定了滤波窗口形 态的变化(图1);滤波参数的作用和特定条件下的 滤波因子值及 $u_{1/2}$ 与其它参数的关系见表 1。

利用(7)式(11)式还可写成另一种使用方便的 表达形式:

$$L_h = 1/\{1 + \exp\{(\ln \alpha_3)(\frac{u_{1/2} - u}{u_{1/2}})\}$$
 (13)
如令 $L_h = 1/k(k \ge 2)$ 时对应的波数为 $u_{1/k}$,由(13)
式经简单运算,可得:

$$u_{1/k} = u_{1/2} \Big[1 - \frac{\ln(k-1)}{\ln \alpha_3} \Big]$$
 (14)

在(10)式中,当 $u = u_0$ (即要消除高频干扰信号的 最小波数)时,对应的 $f_a^m = 1.(1 + \alpha_2)$ 是随 α_2 而变 化的,如 α_2 很小,此时 f_a^m 可能接近于 1。在对比分 析中还发现,根据参考文献 2]要应用(10)式时,首 先规定 $\beta \ge 2$,其次选定 u_0 ,在此条件下可认为 β 及 u_0 为 f_a^m 的已知常数,可将(10)式改写成:

$$f_a^m = 1/(1 + \alpha_2 \exp(-\beta u_0 \lambda_x) \cdot \exp(\beta u \lambda_x)),$$

$$\mathbf{m} \Rightarrow \mathbf{T} + \alpha_2 \exp(-\beta u_0 \lambda_x) = \alpha_3 \ \beta \lambda_x = 4\pi h \ \beta (10)$$

最终可写成:

$$a_{a}^{m} = 1 \Lambda (1 + \alpha_{3} \exp(4\pi uh))$$
,

此式与 L_h 表达式(11)完全一致 ,即 $f_a^m = L_{e,m}$,正则 化稳定滤波因子等效于最佳线性滤波因子(反过来 说也同样正确)。由此可见 ,虽然推导出这 2 种滤波 因子的理论和出发点各不相同 ,但表达式及滤波效 果可以完全相同。

广而言之,对比分析4种滤波因子,其理论依据 和滤波参数各不相同,但从滤波因子表达式和图1 的滤波因子曲线来看,或相同,或相似,且都可以形 成光滑的准矩形(理想)滤波器,这种滤波器对重磁 数据不仅应用方便且能有效地提高其信噪比。

2 经滤波后失真信号的反演解释问题

为了阐明这一问题,笔者进行了理论模型计算 实验工作。

2.1 实验准备

为了简明而直观地说明问题,作者以磁薄板作 为理论模型。设磁薄板垂直磁化,埋深 H = 100 m, 厚度 2b = 10 m,磁化强度 M = 40 A/m,测量点距 $\Delta x = 20$ m。由理论公式计算其空间域的垂直磁场 强度分布,再由电脑"随机数发生器"产生3组服从 正态分布的 128 个随机干扰数据(表 2),理论场与 干扰场叠加情况见图 2。

因为薄板傅氏变换周期要大于 $20H = 2\ 000$ m^[8],所以采用 128 点快速傅氏变换(周期 = 127 × $\Delta x = 2\ 540\ m$),空间域中 x 轴点位从 – 64 ~ 63 点, 磁性体中心在原点。

表 2 3 组随机干扰特征 nT							
特征值	随机数1	随机数 2	随机数 3				
平均值	13.442 499 4	8.969 870 9	7.548 622 7				
标准误差	7.532 326 7	6.292 402 1	7.475 871				
中值	19.859 862 7	6.359 277 9	7.173 093 8				
标准偏差	85.218 548 4	71.190 402 6	84.579 825 4				
样本方差	72.622 01	50.680 734 2	71.537 468 6				
最小值	- 186.261 605	- 163.173 536	- 293.459 743				
最大值	193.064 624 9	207.242 555 9	234.192 702 9				
个数	128	128	128				

2.2 滤波因子及参数选定

经4种不同的线性滤波因子的对比分析,最佳

线性滤波因子不仅在形式上可能化为正则化稳定因 子,而且关系式系统全面、简单明确,故选用该滤波 因子作为准矩形滤波器对叠加干扰的薄板磁异常进 行滤波实验。

众所周知 ,当滤波窗的陡度太大时 ,滤波后会出

现吉布斯效应 在磁异常的尾部出现明显的波动 图 3)。这是我们在选滤波参数时要避免的。笔者计算

α3	h∕m	k	<i>u</i> _{1/2}	$\Delta Z_{\rm max}/{ m nT}$	是否出现
	100	2 ~ 32	0.003 665 ~ 0.002 099	680.7~555.4	否
	150	2 ~ 8	0.002 443 ~ 0.001 717	593.6~502.3	否
0.01	150	> 16	< 0.001 538	< 472.6	出现
0.01	200	2	0.001 832	519.6	否
	200	≥4	≤0.001 479	≤462.0	出现
_	250	≥2	≤0.001 466	≤459.6	都出现
	100	2 ~ 32	0.005 497 ~ 0.003 672	759.9~702.3	否
	150	2~16	0.003 665 ~ 0.002 633	702.0~629.7	否
0.001	150	32	0.002 448	611.4	出现
0.001	200	2	0.002 749	640.2	否
		≥4	≤0.002 371	≤603.2	出现
	250	≥2	≤0.002 199	≤583.2	都出现
0.0001	100	2 ~ 16	0.007 329 ~ 0.005 664	786.6~769.4	否
	150	2~16	0.004 886 ~ 0.003 776	754.0~714.9	否
	200	2 ~ 4	0.003 665 ~ 0.003 274	709.4~687.0	否
	200	≥8	≤0.003 025	≤669.7	出现
-	250	≥2	≤0.002 993	≤662.5	都出现

表 3 薄板磁异常滤波后出现吉布斯效应情况

了一个简表(表3),分别列出了最佳线性滤波在上 述磁薄板情况下选择滤波参数的不同,出现吉布斯 效应的情况。

从表 3 中得知随着 h 的增大 ,吉布斯效应必然 出现 ,出现吉布斯效应的速度受 α 的控制 ,α 越小 , 出现吉布斯效应越缓慢 ;在同一个 α 和 k 下 ,h 值越 大 ,出现吉布斯效应的机会就越多。我们在选择参 数时 ,应参照(6)和(7)武 ,避免选择出现吉布斯效应 的参数值 ,一般而言 ,h 的取值不超过地质体估计埋 万方数据 深的 1.5 倍为宜。

滤波窗口宽度 $u_{1/2}$ 的确定 选确定 $u_{1/k}$ 将理论 磁异常与 3 组干扰分别叠加 作傅氏变换振幅谱 从 振幅谱上根据信号与干扰的高、低波数振幅的特征 , 确定波数 $u_{1/k}$ (图 4),再利用(14)式计算出 $u_{1/2}$ 。

综合以上因素,对比实验选: $\alpha_3 = 0.01$ 、 $u_{1/k} = 0.003 665 和 \alpha_3 = 0.01$ 、 $u_{1/k} = 0.002 443$,适当变化 k 值 利用(14)式计算相应的 $u_{1/2}$ 进行最佳线性滤 波效果对比。

2.3 滤波效果

笔者解释了 3 组叠加干扰的磁异常,选用了 5 个参量来综合分析随滤波参数的变化而出现的滤波 效果变化(表 4)。

表中参量说明:"极大值保留"为空间域叠加干扰的磁异常最大值滤波后与滤波前之比,可表明滤 波后异常极值失真情况;离差平方和之比"为空间 域中叠加干扰的磁异常滤波后与理论磁异常之差的

叠加干扰	滤波效果	$u_{1/k} = 0.003\ 665$					$u_{1/k} = 0.002443$		
		k = 2	k = 4	k = 8	<i>k</i> = 16	<i>k</i> = 32	k = 4	k = 8	k = 16
笋1组	极大值保留	87.43%	81.65%	77.4%	73.95%	70.80%	68.67%	63.85%	60.01%
	离差平方和保留	20.02%	23.69%	28.32%	33.47%	39.16%	43.68%	56.19%	68.44%
信品比	干扰能量保留	16.06%	13.91%	12.60%	11.53%	10.58%	9.96%	8.69%	7.86%
后来儿	信号能量保留	79.90%	76.96%	74.61%	72.46%	70.41%	68.98%	65.66%	62.91%
6.55	滤波后信噪比	32.57	36.22	38.76	41.14	43.55	45.32	49.48	52.39
	提高信噪比倍数	4.98	5.53	5.29	6.28	6.65	6.92	7.56	8.00
笛っ细	极大值保留	85.7%	80.1%	75.9%	72.4%	69.2%	67.2%	62.5%	58.8%
	离差平方和保留	12.0%	19.6%	28.2%	37.7%	47.9%	55.8%	76.5%	95.7%
おとユ	干扰能量保留	5.2%	4.2%	3.7%	3.3%	3.0%	2.9%	2.6%	2.4%
	信号能量保留	81.8%	78.9%	76.6%	74.6%	72.7%	71.4%	68.4%	65.8%
8.77	滤波后信噪比	138.28	165.21	183.43	198.28	210.37	217.43	229.87	237.32
	提高信噪比倍数	15.76	18.83	20.91	22.60	23.98	24.78	26.20	27.05
	极大值保留	87.8%	82.2%	78.1%	74.8%	71.8%	69.9%	65.4%	61.6%
笛ュ组	离差平方和保留	18.8%	21.7%	26.5%	31.8%	37.3%	41.5%	52.8%	64.3%
第3组 信噪比 6.94	干扰能量保留	14.3%	10.6%	8.6%	7.2%	6.1%	5.4%	4.2%	3.5%
	信号能量保留	80.7%	77.8%	75.7%	73.7%	71.9%	70.5%	67.2%	64.4%
	滤波后信噪比	39.3	50.93	60.85	71.21	82.39	90.85	111.78	128.93
	提高信噪比倍数	5.66	7.34	8.77	10.26	11.88	13.09	16.11	18.58

表 4 薄板叠加干扰滤波后情况对比

注 滤波前理论磁异常极大值 = 799.33 nT

图 5 叠加干扰的薄板磁异常滤波效果

平方和之比,可表明滤波后的磁异常与理论模型的 偏离程度;干扰能量保留"为波数域中干扰数据滤 波后与滤波前的能量之比,可表明滤波对干扰的压 制程度;信号能量保留"为波数域中叠加干扰磁异 常滤波滤波后与滤波前的能量之比,可表明滤波对 叠加干扰信号的压制程度,滤波后信噪比等于滤波 万方数据 后信号能量除以滤波后干扰能量,反映了滤波的最终目的——压制干扰,突出有用信号的能力。从表4中可看出,3组叠加干扰的磁异常通过滤波,信噪比至少提高了约5倍以上。

随着滤波参数的变化,滤波曲线的形态也在发 生变化,以第2组、第3组干扰为例,图5反映的是 分别叠加第 2 组干扰、第 3 组干扰的磁异常的滤波 效果。从图中可知,当 $\alpha_3 = 0.001$ 时滤波曲线在信 号的峰值部分基本不失真,但曲线的尾部却存在有 很多的干扰波动; $\alpha_3 = 0.01$ 时的滤波曲线,虽然信 号峰值处被'压制'得很厉害,位于曲线的两侧却获 得了较光滑的曲线。这便产生了一对矛盾:要想滤 波不失真,干扰"压制"严重不够;要想较大限度地 "压制"干扰,利于计算机的反演拟合,有用信号必定 失真。面对这种情况,重磁异常反演解释时该不该 考虑滤波后的失真问题 ,传统的作法是不予考虑的 , 以为可" 忽略不计 "。

下面再做一个实验,如果不考虑滤波失真问题, 将滤波后的结果直接与理论模型拟合解释,会产生 什么样的结果。

2.4 反演解释

首先了解一下理论模型在不同的埋深 H、磁化 强度 M、厚度 b 情况下形态的变化(图 6),再看图 5 要想理论曲线与滤波后光滑的异常曲线很好拟

图 6 不同参数情况下理论曲线的形态

合,必须改变理论模型参数,使理论曲线"变矮变 胖"。从图6可知,改变h就可达到这一目的。下 面用计算机模拟的方法将理论模型的埋深改变,去 拟合图5中的2条滤波后的平滑曲线,以离差平方 和的最小值来判断最佳最拟合效果(表5)。

表 5 滤波后曲线与理论模型直接拟合情况

理论模型	叠	加第2组干扰	叠加第3组干扰		
h = 100 m	h/m	离差平方和/nT ²	h/m	离差平方和/nT ²	
b = 5 m	142	69 334.4	154	140 937.5	
最小值	143	69 309.4	155	140 835.1	
	144	69 479.6	156	140 894.9	

从表 5 可以看出 ,2 组滤波结果分别与 h = 143 m 和 h = 155 m 时拟合最好。这就说明因滤波而失 真使反演解释结果都与实际结果产生了偏离 ,加大 了反演解释的地质体埋深 ,这就是传统反演解释所 没有考虑到的。现在我们将理论模型经过同样的滤

波以后,与2组叠加干扰的异常滤波结果拟合,看情 况又是怎样的。

从表 6 看出,叠加干扰磁异常滤波后结果与经 过同样滤波后的理论模型拟合,离差平方和较表 5 中的值已变得相当小了,是表 5 的 0.26 倍和 0.23 倍,说明在重磁反演解释中,理论模型经滤波后再与 滤波后失真实测曲线拟合,不仅可以提高拟合度而

理论模型	$\alpha = 0$ h = 150	0.01 , m ,k = 4	$\alpha = 0.01$, h = 150 m, $k = 16$		
1912 3	理论滤波	叠加2滤波	理论滤波	叠加3滤波	
$\Delta Z_{\rm max}/{\rm nT}$	539.2	536.8	472.6	492.7	
离差平方和/nT ²		17 948.8		31 726.7	

注:离差平方和为叠加干扰磁异常与理论磁异常分别滤波后 之差的平方和。

且解释结果也更符合实际了。图 7 形象地说明了理 论模型滤波前后与 2 组叠加干扰的滤波平滑曲线的 拟合情况,可明显地示出 2 条滤波后的曲线几乎重 叠。由此说明传统的重磁数据反演解释存在一个不 容忽视的问题,即应将理论模型经相同参数的滤波 因子滤波后再与因滤波而失真的观测场曲线对比拟 合,这是解决滤波后因信号失真造成反演结果失真 问题的一个较好办法。

3 结论

在重磁数据处理中,线性滤波是一种压制干扰、 提高信噪比的最有效方法。线性滤波的理论和方法 各异,在重磁数据处理的实际应用中,以准矩形滤波 窗口最为简便、灵活和有效。但从广义上说,任何一 种滤波方法在突出某种异常信息的同时,都不可避 免地使有用信号发生一定程度的畸变,因为野外影 响重磁数据的干扰很多,有随机干扰和非随机干扰, 而有用信号与干扰或误差之间在波数域上没有明显 的分界线。对待因滤波而失真的有用信号,如何解 释,传统的做法是将滤波后的信号与标准的正演曲 线拟合,以此来反演地质体形态和物性参数,这样必 将带来反演地质体形态和物性的失真。将标准正演 曲线也进行同样的滤波后,再反演解释,才能较客观 地反映地质体的真实情况。王继伦教授曾经提出过 这种反演解释方法^{8]},作者通过一系列的模拟计 算,已证实了这一点,即对滤波后失真信号而言,传 统的反演解释程序有必要做适当的修改。

特别感谢王继伦教授的指导和建议。

参考文献:

- [1] 侯重初.一种压制干扰的频率滤波方法[J].物探与化探, 1979(5).
- [2] 安玉林, 管志宁. 滤除高频干扰的正则化稳定因子[J]. 物探 化探计算技术, 1985, 7(1).
- [3] 王继伦.二维最佳线性数字滤波器的设计原理[J].地球物理 学报,1977 20(2).
- [4] 王继伦.二维最佳线性数字滤波的设计原理在重磁数据处理 中的应用和效果的研究[J]. 地球物理学报,1983.26(增刊).
- [5] 杨文采.地球物理反演的理论与方法[J].北京 地质出版社, 1996.
- [6] 吉洪诺夫 A H ,阿尔先宁 B Я.不适定问题解法[M].北京: 地质出版社,1979.
- [7] 重磁资料数据处理问题编写组.重磁资料数据处理问题[M]. 北京:地质出版社,1977.
- [8] 申宁华, 管志宁. 磁法勘探问题[M]. 北京 地质出版社, 1985.
- [9] 王继伦.线性滤波的基本矛盾与作用[J].地质与勘探,1979, (4).

THE LINEAR FILTERING OF GRAVITY AND MAGNETIC DATA AND THE PROBLEM OF INVERSION DISTORTION

TANG Yue-lin ,CHEN Yuan-ping

(Lingling Normal High Training School , Yongzhou 425006 , China)

Abstract: Based on the comparison and analysis of four major filtering methods designed and developed in China , this paper derived a new expression of the filtering technique. The author chose a representative filtering method , simulated the observational field on computer , and investigated the distortion of gravity and magnetic anomaly caused by filtering under the condition of complex interference. On such a basis , a feasible method is proposed concerning the inversion interpretation under such a distortion condition.

Key words : linear filtering ; complex interference ; distortion of filtering ; inversion of distorted data

作者简介:汤悦林(1963-),女,湖南永州人,高级工程师。1983年毕业于华东地质学院物探系,曾在核工业华东地质局 264 大队从事综合找矿和数学地质研究工作,现任教于零陵师范高等专科学校物理系。