doi:10.3969/j.issn.1007-3701.2018.02.002

西南天山皮羌断裂中辉绿岩群的 LA-ICP-MS U-Pb 年龄

王 峰,周 斌,白小鸟,王明志,潘 亮

WANG Feng, ZHOU Bin, BAI Xiao-Niao, WANG Ming-Zhi, PAN Liang (陕西省地质调查中心,西安 710016) (Geological Survey of Shaanxi Province, Xi'an 710016, Shaan, China)

Wang F, Zhou B, Bai X N, Wang M Z, Pan L. LA-ICP-MS U-Pb ages of the dolerite dyke along the Piqiang Fault in Southwest Tianshan. Geology and Mineral Resources of South China, 2018, 34(2):107–113.

Abstract: Through the 1: 50000 mapping in Piqiang area in the southwest Tianshan Mountains, a large number of diabase groups were found along the nearly north-south fractures, consistent with the distribution of the Piqiang fault. Through zircon U-Pb dating of diabase, indicated that the diabase assemblage was intruded at ~53 Ma, belongs to the Eocene, it shows that there is a prototype of near-north-north fault system in Piqiang area. At the same time, it is considered that the north-south fault on the Keping fault is the north-south fracture formed under the compression of north-south during the Eocene. Since the Pliocene, the north-south fault has been used as a northeastern thrust nappe tectonic displacement adjustment zone, which has the fault feature.

Keywords: Southwest Tianshan; Piqiang; North-South fault; Diabase; LA-ICP-MS zircon U-Pb dating

塔里木西北缘柯坪隆起内发育两组方向不同 的断裂系统,一组走向呈北东向,具逆冲推覆性质, 延伸大于几百千米,一组走向呈近南向,平面上具 左行走滑特征,延伸大于 80 km,两者在空间上近 直交。近年来对近南北向断裂已经开展了大量的研 究,但研究多集中在巴楚地区,对于南北向断裂形 成的时间和变形方式各家观点之间的分歧很大,主 要有两种观点,一种鉴于柯坪隆起的皮羌断裂与巴 楚隆起的色力布亚断裂具有良好对接关系,认为皮 羌断裂是色力布亚断裂在柯坪隆起的延伸,深部具 有逆冲性质,浅层受差异推覆作用则表现出走滑特 征,认为南北向的皮羌断裂早于北东向逆冲推覆断 裂^[1-5];另一种鉴于平面上北东向逆冲断裂被南北向 断裂错断,两侧地质体对应关系良好,认为皮羌断

收稿日期:2018-2-23;修回日期:2018-4-7

基金项目:中国地质调查局"新疆西南天山皮羌地区矿产地质调查项目"(1212011220608).

作者简介:王峰(1968—),男,工程师,长期从事矿产勘查工作,E-mail:1127222361@qq.com.

裂起始于 24 Ma 左右,为柯坪隆起形成阶段^[6-9]。笔 者 2009-2014 年在霍什布拉克-皮羌地区开展区域 地质调查工作,工作区包含了近南北向的皮羌断 裂,并发现一系列成群分布的近南北向辉绿岩脉。 本文首次通过对皮羌断裂带中辉绿岩脉的 LA-ICP-MS U-Pb 年代学测定,为岩脉的侵入时代提供 了可靠的科学数据,并以此探讨了岩脉年龄与区域 岩浆活动时代的关系,以及皮羌断裂的形成和活动 时代。 市以东的哈拉峻乡皮羌村一带,是柯坪断隆内近南 北向断裂构造最发育的地区,皮羌断裂与其东部的 萨尔干断裂一起构成了柯坪断隆中西段的南北向 断裂构造系统,在南北向缩短作用下,该地区断裂、 节理、裂隙密布,且岩浆活动频繁,发育有大量的岩 脉,但对于岩脉的研究则相对薄弱。近南北向断裂 在研究区出露完好,断层与地层的切割关系非常清 楚,辉绿岩脉群在地表的走向与断裂一致(图1)。

1 区域地质背景

研究区位于克孜勒苏柯尔克孜自治州阿图什

本次研究的辉绿岩脉广泛分布于皮羌地区,呈

2 辉绿岩脉地质及岩石学特征

近南北向平行成群分布,倾角近直立,宽 0.5~5 m,

图1 西南天山皮羌地区地质图

Fig 1. The Simplified regional geological map of Piqiang in the Southwest Tianshan

a—据参考文献[3]修改;b—1-第四系;2-西域组;3-阿图什组;4-巴立克立克组;5-康克林组;6-克孜尔塔格组;7-依木干他乌组;8-塔 塔埃尔塔格组;9-柯坪塔格组;10-其浪组;11-丘里塔格组上段;-12丘里塔格组下段;13二长岩脉;14-辉绿岩脉;14-实测地质界线;15-平 行不整合界线;16-角度不整合界线;17-实测断层及推测隐伏断层;18-产状;19-采样位置. 延伸稳定,长度 1~7 km,侵入于古生代-中生代地 层之中(图 1)。野外特征总体看来,侵入界面平直、 清楚,围岩见烘烤边(图 2a)。

辉绿岩呈灰绿色,辉绿结构,块状构造,主要矿 物成分为斜长石48%-54%,辉石30%-43%,次要 矿物成分为橄榄石3%-8%。斜长石呈半自形板条 状,部分颗粒发生弱的绢云母化及碳酸盐化,聚片 双晶发育,粒径多数介于0.04 mm × 0.16 mm ~ 0.24 mm × 0.56 mm。辉石为单斜辉石,呈半自形和 它形粒状,见较大辉石颗粒中包裹斜长石呈嵌晶含 长结构,局部辉石呈粒状充填于斜长石架状空间中 构成辉绿结构。橄榄石呈它形粒状并全部伊丁石化 (图 2d)。

3 样品选择与测试方法

本文对沿近南北向裂隙侵位的辉绿岩脉进行 了系统的年代学研究。锆石 U-Pb 同位素测年样品 采自辉绿岩脉中新鲜岩石,对两件辉绿岩样品 (D0038-1、D4092-1)进行锆石 U-Pb 测年。

样品锆石挑选由河北省区域地质矿产调查研 究所实验室完成,辉绿岩属于基性岩,锆石含量很 少,两件样品 50 kg 样品中仅挑出 100 多颗锆石, 且锆石颗粒较小(图 3)。锆石 LA-ICP-MS 年代学 分析在西北大学大陆动力学国家重点实验室完成。 方法是将所挑选出的锆石放置于环氧树脂中进行 打磨,将锆石中心面露出,并进行抛光,之后对处理 好的样品进行反射光以及阴极发光(CL)照相。阴 极发光照相(CL)采用美国 Gatan 公司的 Mono CL3+X型阴极荧光探头。锆石测试点的选择通过发 射光照片和阴极发光照片反复对比,避开内部裂隙 和包体,以期获得较为准确的年龄数据。锆石 U-Pb 同位素分析在四极杆 ICP-MS Elan6100DRC 上进 行测定。激光剥蚀系统是德国 MicroLas 公司生产的 GeoLas200 M。激光束斑直径为 30 µm,激光脉冲 10Hz,能量 32~36 MJ。同位素组成采用美国哈佛大 学矿物博物馆的标准锆石 91500 进行外标校正。分 析的详细方法和流程见袁洪林等(2003)¹⁰及 Yuan et al.(2004)^[11]。采用 Glitter 和 Isoplot 进行数据处理 和作图。在进行年龄数据分析时,对于<1000 Ma的测 点,采用 206Pb/238U 年龄值。同时,结合 206Pb/238U 来计算 锆石各测点数据的谐和性,剔除206Pb/238U年龄相对于 ²⁰⁷Pb/²⁰⁶Pb 年龄偏差大于±10%的测点数据。

4 结果

本次工作对研究区的两件辉绿岩样品 (D0038-1、D4092-1)分别开展锆石U-Pb定年工 作。两件样品中挑选出的锆石多呈自形、柱状,大部 分锆石长度在100 µm左右,CL图像中部分锆石 环带清晰,部分锆石有二次生长的亮边,结合锆石 Th/U比值(>0.40),所测试的锆石为典型的岩浆型 锆石特征(图3)。36个测点获得30个有效年龄数 据,获得的年龄具宽年龄谱系特征,年龄范围为

 图2皮羌地区辉绿岩脉野外露头及镜下照片 (Pl-斜长石,Cpx-单斜辉石,βμ-辉绿岩脉)
 Fig. 2 Outcrop and mirror photos of diabase in Piqiang area

2883~46 Ma,数据分散(图 4),但这 30 个数据可分 660 Ma、442~368 Ma、271~198 Ma、64~46 Ma (图 为 6 个年龄组 2883~2410 Ma、1005~822 Ma、777~ 4)。这 6 组年龄数据可能准确地记录着区域上重大

图 3 辉绿岩样品中锆石的 CL 图像及其 U-Pb 年龄(单位为:Ma) Fig.3 Cathodoluminescence(CL) images of zircons from dolerite and theirU-Pb ages

Fig. 4 Zircon U-Pb dating distribution of diabase in geologic time scale

图5 皮羌地区辉绿岩脉锆石U-Pb谐和图及206Pb/28U年龄加权平均值图

Fig. 5 Zircon concordia diagram and 206Pb/238U age weighted average value diagram from dacite and rhyolitic crystal tuff of

diabase in Piqiang area

	ne dolerite sample
表1 辉绿岩样品锆石 年龄测试数据	Tab.1 LA-ICP-MS U-Pb dating data of zircons from the

비	ν. 	含量/10-6				<u> </u>	司位素比值						年龄/Ma			
ы Г	$\mathbf{P}_{\mathbf{D}}$	Th	N		$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	±lσ	$^{207}\mathrm{Pb}/^{235}\mathrm{U}$	±lσ	$^{207}\mathrm{Pb}/^{238}\mathrm{U}$	±lσ	²⁰⁷ Pb/ ²⁰⁶ Pb	±lσ	$^{206}\mathrm{Pb}/^{235}\mathrm{U}$	±lσ	$^{206}\mathrm{Pb}/^{238}\mathrm{U}$	±lσ
Rz4092-1-03	10	41	57	0.71	0.06703	0.00295	1.18429	0.04151	0.12811	0.00217	839	89	793	19	TTT	12
Rz4092-1-04	78	85	108	0.79	0.16602	0.00526	10.68183	0.19731	0.46654	0.00735	2518	52	2496	17	2468	32
Rz4092-1-05	35	146	150	0.97	0.07279	0.00249	1.6399	0.0359	0.16336	0.00243	1008	68	986	14	975	13
Rz4092-1-07	с	113	123	0.92	0.05279	0.02706	0.11103	0.05593	0.01525	0.00151	320	874	107	51	98	10
Rz4092-1-08	117	46	170	0.27	0.20706	0.00636	15.56328	0.25768	0.54504	0.00827	2883	49	2850	16	2805	35
Rz4092-1-10	195	299	285	1.05	0.16367	0.0049	10.15344	0.14817	0.44984	0.00633	2494	50	2449	13	2395	28
Rz4092–1–11	4	202	305	0.66	0.05734	0.00429	0.07649	0.00525	0.00967	0.00019	56	277	09	L	60	7
Rz4092-1-12	21	145	102	1.41	0.06643	0.00308	1.25982	0.04769	0.13752	0.00242	820	94	828	21	831	14
Rz4092-1-13	35	107	66	1.61	0.10854	0.00359	4.91066	0.09972	0.32806	0.00507	1775	59	1804	17	1829	25
Rz4092–1–14	69	176	319	0.55	0.07266	0.00231	1.68921	0.03001	0.16857	0.0024	1005	63	1005	11	1004	13
Rz4092-1-15	б	469	267	1.76	0.04561	0.00888	0.04494	0.00851	0.00715	0.00029	0	391	45	8	46	7
Rz4092-1-16	1	61	73	0.83	0.04687	0.01074	0.05386	0.01216	0.00833	0.00028	42	472	53	12	54	7
Rz4092-1-17	62	597	1388	0.43	0.05251	0.00284	0.22823	0.01059	0.03152	0.00055	308	119	209	6	200	б
Rz4092-1-18	47	296	345	0.86	0.07436	0.00278	1.13301	0.02968	0.11049	0.00171	1051	73	<i>1</i> 69	14	676	10
RZ0038-1-01	33	566	322	0.57	0.0573	0.00393	0.46336	0.02858	0.05867	0.00119	503	145	387	20	368	7
RZ0038-1-02	0	9	28	4.46	0.04939	0.05998	0.06767	0.0814	0.00994	0.00169	167	1622	67	LL	64	11
RZ0038-1-03	51	244	337	1.38	0.07072	0.00682	1.05179	0.09577	0.10788	0.00338	949	186	730	47	660	20
RZ0038-1-04	81	242	543	2.25	0.06848	0.0022	1.12273	0.01866	0.11893	0.00154	883	65	764	6	724	6
RZ0038-1-05	181	89	378	4.27	0.16682	0.00564	9.12587	0.18609	0.39679	0.00627	2526	56	2351	19	2154	29
RZ0038-1-06	14	143	391	2.74	0.05116	0.00277	0.21958	0.01004	0.03113	0.00051	248	120	202	8	198	3
RZ0038-1-07	101	405	678	1.68	0.06656	0.00212	1.07783	0.01736	0.11744	0.00153	824	65	743	8	716	6
RZ0038-1-09	7	106	122	1.15	0.05808	0.0036	0.3435	0.01875	0.04288	0.00078	532	131	300	14	271	5
RZ0038-1-10	31	141	140	1.00	0.07218	0.00269	1.51757	0.03818	0.15245	0.00224	991	74	938	15	915	13
RZ0038-1-11	15	138	166	1.20	0.05632	0.0025	0.55131	0.01906	0.07098	0.00108	464	96	446	12	442	L
RZ0038-1-12	78	61	148	2.41	0.15571	0.00529	9.40435	0.19896	0.4379	0.00711	2410	57	2378	19	2341	32
RZ0038-1-13	17	87	204	2.33	0.06139	0.0025	0.57215	0.01712	0.06756	0.001	653	85	459	11	422	9
RZ0038-1-14	74	574	587	1.02	0.06844	0.0064	1.1299	0.09965	0.11968	0.00367	882	182	768	48	729	21
RZ0038-1-15	140	437	300	0.69	0.16629	0.00551	8.69346	0.17085	0.37899	0.00591	2521	55	2306	18	2072	28
RZ0038-1-16	15	85	111	1.30	0.06064	0.00698	0.90899	0.10033	0.10867	0.00377	626	231	657	53	665	22
RZ0038-1-18	120	433	736	1.70	0.07346	0.00319	1.37827	0.04626	0.136	0.00227	1027	85	880	20	822	13

111

地质事件的发生时间,最年轻的这组年龄可以确定 辉绿岩脉群的形成时代为~53 Ma(图 5)。

5 讨论

5.1 皮羌断裂的活动时代

以辉绿岩为代表的浅成基性岩,由于其中二氧 化硅含量不饱和,岩石在结晶过程中不能形成锆 石,所以基性岩中锆石含量非常低,所含的少量锆 石多为继承锆石,由于继承锆石的年龄变化很大, 通过大量的测年数据,归纳出一个地区岩浆活动的 期次^[13]。本文测试的辉绿岩锆石数量虽然不多,但 辉绿岩的锆石测年能够破译一个地区的热活动的 密码,能够反映出该地区的几次强烈的岩浆活动, 因而具有较重要的科学意义。

断裂活动时代经常是通过岩浆岩的时代来限 定的。托云盆地火山岩的成因与断裂构造活动之间 存在非常密切的关系,罗照华等认为托云地区玄武 质岩浆活动与沿走滑断裂的走滑量差异和块体旋 转有关^[14]。断裂的活动时代和地层的变形时代除了 少数情况存在同生变质矿物外,多数情况不能直接 确定,断裂带中的辉绿岩是在断裂活动后侵入的, 可以代表断裂活动上限。

辉绿岩脉群的形成年龄为~53 Ma,属始新世,反映了该地区岩浆活动的期次,也反映了塔 里木盆地西北缘由于岩石圈拆沉作用导致了幔 源岩浆活动^[12],并沿近南北向裂隙喷出地表和侵 位于地壳浅部,反映了皮羌地区近南北向断裂系 统的已具雏形。

5.2 皮羌断裂形成机制

作者认为柯坪断隆上的南北向断裂带不是东 西向冲断层被走滑断层所切割,而是一种不同时期 构造带的叠加。最初,始新世受印度-亚洲碰撞造山 的远程效应,在南北向挤压作用下,形成南北向的 张裂隙,同时在始新世岩石圈发生拆沉作用^[12],沿 张裂隙充填辉绿岩脉,代表了南北向构造雏形。而 柯坪地区逆冲带形成时间为上新世-第四纪77,表明 了南北向构造带形成在前,北东向推覆产生于后, 而北东向逆冲推覆过程中受到南部的巴楚隆起阻 挡,形成与大型逆掩断层(冲断层)伴生的平移断层 (捩断层),这是在褶皱推覆体或冲断岩席的一部分与 相邻部分发生运动差异而形成的、与逆掩断层直交。 北东向低角度逆掩断裂与柯坪断隆上近南北向断裂 之间关系表明、皮羌南北向断裂为北东向构造位移 调节带,随着逆冲作用的进行逐渐演变为走滑断裂, 并调节逆冲构造向前陆运移幅度的变化,而且在走 滑断裂附近的逆冲构造沿走向发生弯曲(图 6)。

结合皮差地区辉绿岩脉群形成时代为始新世, 认为柯坪断隆内部的南北向断裂体系形成始于始 新世。柯坪断隆上的南北向断裂体系与柯坪冲断带 之中的北东向冲断层之间的近于正交的空间断层 关系是不同时代断层的叠加。

6 结论

(1)沿近南北向断裂侵位的辉绿岩锆石 U-Pb 年龄为~53 Ma,代表了辉绿岩脉的结晶年龄,其时 代与始新世塔西北缘岩浆活动的时代一致,表明皮

a 始新世在南北向挤压作用下,柯坪南北向的断裂系统开始活动,形成一系列南北向裂隙,辉绿岩沿裂隙充填,b中新世以来南天山向塔 里木盆地冲断推覆,北东向的柯坪冲断带形成,南北向断裂为北东向构造位移调节带,沿早期南北向裂隙形成捩断层,造成差异性变形. 图6 柯坪—巴楚地区断裂系统形成的模型图(据文献[2]修改)

Fig. 6 A tectonic model for fault systems in the Keping-Bachu area

羌断裂初始活动时代为始新世。

(2)柯坪断隆上的南北向断裂带不是东西向冲 断层被走滑断层所切割,而是一种不同时期构造带 的叠加。南北向断裂体系是始新世时期在南北向挤 压作用下,形成南北向的张裂隙,上新世以来,南北 向断裂作为北东向逆冲推覆构造位移调节带,具有 捩断层特征。

参考文献:

- [1] 肖安成,杨树锋,王清华,陈汉林,谢会文,李曰俊.塔里木 盆地巴楚-柯坪地区南北向断裂系统的空间对应性研究
 [J]. 地质科学,2002,37(增刊):64-72.
- [2] 肖安成,杨树锋,李曰俊,王清华,陈汉林,程晓敢.塔里木 盆地巴楚隆起断裂系统主要形成时代的新认识[J]. 地质 科学,2005,40(2):291-302.
- [3] 于靖波,张 健,李培海.塔里木盆地巴楚隆起与塔北隆起构造-热演化的对比分析[J].中国科学院研究生院学报, 2012,29(4):485-492.
- [4]杨 庚,石 昕,贾承造,张君峰,张朝军,何登发,李洪 辉,孙方源.塔里木盆地西北缘柯坪-巴楚地区皮羌断裂 与色力布亚断裂空间关系 [J]. 铀矿地质,2008,24(4): 201-207.
- [5]张子亚,刘冬冬,朱 贝,郭召杰.塔里木盆地西北缘晚新 生代印干断层的运动学特征及其区域构造意义[J].大地 构造与成矿学,2013,37(2):184-193.
- [6] 何文渊,李江海,钱祥麟,张臣.塔里木盆地巴楚断隆中新

生代的构造演化 [J]. 北京大学学报 (自然科学版), 2000,36(4):539-546.

- [7] 汤良杰,邱海峻,云露,杨勇,黄太柱,王鹏昊,谢大庆, 李 萌,蒋华山.塔里木盆地北缘-南天山造山带盆-山耦 合和构造转换[J].地学前缘,2012,19(5):195-204.
- [8] 何文渊,李江海,钱祥麟,郑多明.塔里木盆地柯坪断隆断 裂构造分析[J].中国地质,2002,29(1):37-43.
- [9] 杨 庚,郭 华.塔里木盆地西北缘柯坪逆冲构造带与巴 楚隆起的叠加关系[J].铀矿地质,2003,19(1):1-7.
- [10] 袁洪林,吴福元,高山,柳小明,徐平,孙德有.东北地区新 生代侵入体的错石激光探针U-Pb年龄测定与稀土成分 分析[J].科学通报,2003,48(14):1511-1520.
- [11] Yuan H L, Gao S, Liu X M, Gunther D and Wu F Y. Accurate U–Pb age and trace elements determinations of zircon by laser ablation–inductively coupled plasma mass spectrometry [J]. Geostandards and Geoanalystical research, 2004, 28(3): 353–370.
- [12] 李德东,王玉往,王京彬,王莉娟,龙灵利,廖 震.西南天 山新生代造山岩浆作用响应—以皮羌盆地新生代火山 岩为例[J]. 地质通报,2012,30(2):123-131.
- [13] 肖伟峰,周新桂,王宗秀,张林炎.燕山中段走滑断裂中 辉绿岩脉的SHRIMPU-Pb年龄和Ar-Ar年龄[J]. 地质通 报,2011,30(11):1721-1726.
- [14]梁涛,罗照华,李文韬,柯珊,李莉,詹华明.托云火山 群的火山地质特征及其构造意义[J].新疆地质, 2005,23(2):105-110.