文章编号: 1009-3850(2003)03-0056-06

云南腾冲火山岩岩石学特征

陈廷方

(西南科技大学 四川 绵阳 621002)

摘要: 腾冲火山岩群是我国著名的新生代火山岩群之一。岩相学特征表明, 该火山群为典型的钙碱性系列玄武岩-安山岩-英安岩弧火山岩组合。 它喷发于晚上新世一晚更新世, 但这一时期腾冲地区已为大陆板内环境, 腾冲弧火山岩的形成至少在俯冲作用停止以后60Ma, 属于一种滞后型弧火山。

关 键 词: 腾冲; 火山岩; 钙碱性系列; 岩相学; 云南

中图分类号: P588.14 文献标识码: A

1 火山地质

腾冲火山岩群位于云南怒江以西,它是我国著 名的年轻火山岩群之一,也是喜马拉雅地热带内唯 一的火山地热区。它所处大地构造位置属于中国南 部陆缘区波密-腾冲褶皱带。班公湖-怒江带为南北 两个大陆对接带,在晚古生代和中、新生代曾经历了 复杂的接合和对接过程^[1]。腾冲火山岩群分布在 腾冲-梁河断陷的北部,以腾冲盆地为中心展布,火 山岩出露范围南北长约100km、东西宽约90km。区 内出露地层由老到新为:元古界高黎贡群变质岩,岩 性主要为深绿色、灰绿色绢云母千枚岩、片岩、混合 花岗岩及片麻岩,分布零星,厚度大于1000m;石炭 系勐洪群仅见于大盈江断裂西部,为一套泥岩、板 岩、含砾杂砂岩和白云岩组合.厚度为3528m;之后. 地层缺失, 直到古近纪; 古近系南林组陆相碎屑沉积 不整合于燕山期和喜马拉雅期花岗岩及元古界变质 岩之上,为一套碎屑岩。中、新生代岩浆活动以广泛 分布燕山期和喜马拉雅期花岗岩为特征,这些花岗 岩以 S 型为主, I 型只占少数^[2], 新生代火山作用主 要形成腾冲火山岩群。

腾冲火山作用共分 4 个喷发期, 始自于新近纪

末,终止于第四纪,其 K-Ar法中值年龄分别为: 2.93Ma、0.81Ma、0.31Ma、0.13Ma^[3]。火山岩为一 套玄武岩-安山岩-英安岩的岩石组合. 以英安岩为 主,其中玄武岩约占1/4(表1)。腾冲火山岩的分 布见图 1。值得注意的是,火山岩自早期至晚期呈 明显的对称分布,第一、二期分布在腾冲盆地两侧的 高山区、第三、四期分布在盆地内部的低山区、这种 分布型式与拉张环境下所形成的火山活动随时间自 两翼山区向盆地内部迁移的形式相同。这种侧向水 平分带实质上可与洋中脊玄武岩迁移规律相比.说 明腾冲火山喷发时处于水平扩张的环境。它们虽然 都直接覆盖于燕山期、喜马拉雅期的花岗岩基底之 上,但在地形上形成了中间低、两侧高的火山盆地, 具有明显的拉张特征。如果以火山盆地第一期玄武 岩分布处与盆地内部第四期火山分布的距离及喷发 时代间隔估算拉张速度 $v = S / \Delta t (v)$ 为拉张速度. cm/a; S 为距离; Δt 为时间间隔), 计算结果为 υ 值 为1.6cm/a。

2 火山岩岩相学特征

腾冲火山岩以熔岩为主,主要岩石类型有:(1) 玄武岩类 —— 橄榄玄武岩、辉橄玄武岩、辉石玄武 表1 腾冲火山群的喷发期及岩石类型

Table 1 Eruption phases and rock types in the Tengchong volcanic terrains

喷出期	出露面积/ km ²	熔岩量/km ³	占总量比例	岩石类型	火山体
第四期 Q ₄	90	1.8	3.0%	粗面安山岩、含橄安山岩	马鞍山、打鹰山、黑空山
第三期 Q ¹	110	5.5	9. 1%	橄榄玄武安山岩、玄武岩、安山岩	老龟坡、大空山、小空山、城子楼、左所营
第三期 Q ₃ ²	107	3~5	6. 6%	橄榄玄武岩	朱星街、马耳山、鸦乌山
第二期 Q ₂	610	40	66. 4%	以安山岩为主、安山岩	余家大山、大六冲、象塘、来风山、老羊河
第一期 N ₂	140	9	14. 9%	橄榄玄武岩	象鼻山、郎桑、杏塘、团田

* 原始资料引自北京大学地热科考队, 1985

图 1 腾冲新生代火山群地质简图 (据北京大学地热科考队,1985)

 第四期火山岩; 2. 第三期火山岩 (Q₃²); 3. 第三期火山岩 (Q₃¹);
 4. 第二期火山岩; 5. 第一期火山岩。γ₅. 燕山期花岗岩; Pz. 古生 界; Pt. 元古界黎贡群

Fig.1 Simplified geological map of the Tengchong Cenozoic volcanic terrains

1= fourth-phase volcanic rocks; 2= third-phase volcanic rocks (Q_3^2); 3= third-phase volcanic rocks (Q_3^1); 4= second-phase volcanic rocks; 5= first-phase volcanic rocks. γ_5 = Yanshanian granite; Pz= Palaeozoic; Pt= Proterozoic Ligong Group 岩、橄榄粗面玄武岩;(2)玄武岩与安山岩过渡类型 ——玄武安山岩、粗面玄武安山岩;(3)安山岩类 ——辉石安山岩、粗面安山岩、角闪安山岩、二辉安 山岩;(4)英安岩类——方辉闪石英安岩、斜辉英安 岩、玄闪英安岩。现按喷发期次分述如下。

1. 第一期火山岩(N₂)

该期火山岩主要岩石类型为橄榄玄武岩、辉橄 玄武岩及辉石玄武岩。

(1) 橄榄玄武岩: 黑色一深灰色, 块状构造, 气孔 发育, 结晶程度高, 间粒结构。斑晶矿物主要为斜长 石、橄榄石及少量辉石, 含量在15%~20%之间, 橄 榄石和斜长石各占一半。斑晶橄榄石为半自形不等 粒状, 粒度0.2~0.5mm, 裂隙发育, 伊丁石化明显, $2V(+) = 84^{\circ} ~ 88^{\circ}$, Fo= 81~83; 斑晶斜长石为自 形一半自形板条状晶体, 粒度为0.2mm×1.0mm左 右, 卡钠复合双晶发育, 长石牌号An65-71。基质 由全晶质斜长石(60%)、橄榄石(20%)、辉石(8%) 及少量暗色矿物组成。

(2) 辉橄玄武岩: 深灰色一灰色, 具间粒结构、拉 斑玄武结构, 块状构造。斑晶由斜长石、橄榄石及辉 石组成, 约占20%左右, 其中斜长石8%, 橄榄石及辉 石各占6%左右。斑晶橄榄石为半自形不等粒状, 粒 度为0.3mm~0.5mm, 裂纹发育, 可见辉石反应边, Fo=81。辉石主要为钛普通辉石, 粒度0.5mm左 右, 2V(+) = 51° ~ 55°, 消光角 $N_g \land C = 34° ~ 36°$, 还有少量斜方辉石。个别单斜辉石颗粒很大, 粒度 达1.2mm×2.0mm, 具扭折带。基质由微晶斜长石 (60%)、辉石(30%)、磁铁矿及少量隐晶质组成 (10%)。

(3) 辉石玄武岩:黑色一深灰色,拉斑玄武结构, 致密块状构造。斑晶由斜长石、普通辉石、橄榄石组 成,含量约20%,其中斜长石10%,普通辉石7%,橄 榄石3%。斑晶斜长石为自形一半自形板条状晶体, 粒度较均匀,粒径为0.2mm左右。辉石为半自形不 等粒柱状,粒径为0.3mm~0.8mm,解理发育, $2V(+) = 53^{\circ}, N_g \land C = 34^{\circ} \sim 36^{\circ}$ 。橄榄石为不等粒 粒状,粒径为0.5mm左右,Fo=82。基质由微晶斜 长石、辉石、橄榄石、磁铁矿及少量隐晶质组成。

2. 第二期火山岩(Q1)

该期火山岩主要岩石类型为:二辉安山岩、角闪 安山岩、斜辉英安岩、方辉闪石英安岩、云闪英安岩 等岩类。

(1)二辉安山岩:浅灰色,致密块状构造,玻晶交织结构。斑晶矿物由斜长石、普通辉石、古铜辉石组成,斑晶矿物含量约10%,常见普通辉石-古铜辉石结合晶,或斜长石-辉石结合晶。基质由微晶斜长石、少量微晶辉石及玻璃质、隐晶质组成。

(2)角闪安山岩:灰色,致密块状构造,斑状结构,基质为交织结构。斑晶由斜长石和角闪石组成,含量约30%,其中斜长石16%、角闪石14%。斜长石常被溶蚀成筛状,正环带发育,角闪石几乎全被暗化。基质由微晶斜长石、隐晶质及玻璃质组成。

(3) 斜辉英安岩: 灰色一浅灰色, 块状构造, 斑状结构, 基质为隐晶结构。斑晶主要为普通辉石, 还有少量斜长石及石英捕掳晶, 含量约8%, 其中辉石约占6%。基质由少量微晶斜长石、辉石, 隐晶质及玻璃质组成。

(4)方辉闪石英安岩:浅灰色一灰白色,块状构 造,斑状结构,基质为显微微晶结构。斑晶由斜长 石、角闪石、斜方辉石组成,含量约30%,其中斜长石 15%、角闪石12%、辉石3%,常见斜长石-角闪石结 合晶。基质由斜长石微晶、隐晶质及玻璃质组成。

(5) 云闪英安岩:浅灰色,块状构造,斑状结构, 基质为玻基交织结构。斑晶由斜长石、角闪石、黑云 母组成,含量约35%,其中斜长石20%、角闪石13%、 黑云母2%。斜长石表面干净,少溶蚀,振荡环带发 育,常见角闪石-斜长石结合晶。基质由微晶斜长 石、隐晶质及玻璃质组成。

3. 第三期火山岩(Q¹₃,Q²₃)

该期火山作用分两个亚期,第一亚期火山岩为 橄榄粗面玄武岩,第二亚期出露岩石有辉石玄武岩、 含橄玄武岩、粗面玄武安山岩和安山岩。

(1)橄榄粗面玄武岩: 深灰色, 块状构造, 气孔发 育, 拉斑玄武结构, 岩石结晶程度高。斑晶矿物由橄 榄石和斜长石组成, 含量为20%, 其中橄榄石12%, 斜长石8%。橄榄石伊丁石化明显, 见巨大的橄榄石 -橄榄石结合晶, 粒径一般为1.0mm×2.0mm左右。 基质为斜长石、辉石, 板条状斜长石组成的格架内充 填有微晶辉石及少量玻璃质。 (2) 辉石玄武岩:黑色一深灰色,块状构造,气孔 发育,拉斑玄武结构。斑晶矿物由斜长石、普通辉石 组成,含量约10%,其中斜长石7%、普通辉石3%,常 见斜长石-辉石结合晶。基质由微晶斜长石、辉石及 隐晶质组成。

(3) 含橄玄武岩: 深灰色一灰色, 厚层块状构造, 拉斑玄武结构。斑晶由单斜辉石、斜长石、橄榄石组 成, 含量约10%, 其中斜长石4%、辉石4%、橄榄石 2%, 见斜长石-辉石-橄榄石结合晶及辉石-橄榄石结 合晶。基质由微晶斜长石、辉石、磁铁矿、隐晶质及 少量玻璃质组成。

(4) 粗面玄武安山岩:黑色一深灰色,块状构造, 交织结构。斑晶由斜长石、普通辉石组成,含量约 10%,其中斜长石6%、普通辉石4%,见斜长石-斜长 石结合晶。基质由微晶斜长石,少量微晶辉石及隐 晶质、玻璃质组成。

(5) 安山岩: 灰色, 块状构造, 交织结构。斑晶由 斜长石、普通辉石组成, 含量约8%, 其中斜长石6%、 辉石2%。基质为长条状微晶斜长石, 微晶辉石, 其 间充填有少量隐晶质及玻璃质。

4. 第四期火山岩(Q4)

该期主要岩石类型有:辉石玄武安山岩、粗面安 山岩、辉石安山岩。

(1) 辉石玄武安山岩:黑色至灰色,块状构造,气 孔发育,间粒间隐结构。斑晶矿物为斜长石、辉石及 橄榄石,含量约10%,其中斜长石6%、辉石3%、橄榄 石1%。辉石为普通辉石,2V(+)=56°,NgAC= 36°~39°,橄榄石无伊丁石化,见橄榄石-辉石、辉石-斜长石结合晶。基质由微晶斜长石、辉石、隐晶质及 玻璃质组成。

(2) 粗面安山岩:黑色至深灰色,块状构造,气孔 发育,玻基交织结构。斑晶矿物为斜长石、辉石及橄 榄石,含量约7%,其中斜长石4%、辉石2%、橄榄石 1%,见斜长石-斜长石、橄榄石-橄榄石结合晶。基 质由长条状微晶斜长石,微晶辉石、隐晶质及玻璃质 组成。

(3) 辉石安山岩:黑色至深灰色,块状构造,玻基 交织结构。斑晶为斜长石、辉石,含量约10%,其中 斜长石8%、辉石2%。斑晶辉石具扭折带,见斜长石 -斜长石结合晶。基质由微晶斜长石、辉石及玻璃质 组成。岩石中常见显微捕掳体,捕掳体由磁铁矿、辉 石及长石组成。

3 矿物成分特征

1. 橄榄石

表2列出了橄榄石电子探针分析及晶体化学计 算结果,腾冲火山岩之橄榄石大多属贵橄榄石,橄榄 石成分为Fo79Fa21-Fo83Fa17,还出现透铁橄榄 石,其成分为Fo56Fa44。第一期橄榄玄武岩及第三 期的橄榄粗面玄武岩之橄榄石成分比较稳定,为 Fo81Fa19-Fo83Fa17,代表了本区岩石中进化程度 最低的岩石,但其成分比地幔岩的橄榄石成分Fo90 左右低,说明这些岩石经历了一定程度的演化。

2. 斜长石

由表 3 可知腾冲火山岩斜长石成分变化范围较 大,长石牌号为An30-An72,但大多数属于拉长石 及中长石。环带结构发育,如KC837样品。长石成 分由环带中心至边缘变化为An60-An72-An60-An57-An71-An57-An40。而该样品为英安岩边 缘环带成分才能代表本源岩浆结晶的斜长石成分, 但如此高的斜长石牌号,用结晶分异作用难以解释, 可能预示着岩浆的复杂演化过程或外来物质的加 入。此外,第二期安山岩、英安岩中,斜长石大多属 于拉长石,与岩浆成分不相符,显示一种不平衡的现 象。

3. 单斜辉石、斜方辉石

表4和表5列出了本区火山岩中单斜辉石及斜 方辉石电子探针分析及晶体化学计算结果,端元组 成表明单斜辉石为普通辉石。具环带结构的单斜辉 石在化学成份上表现为:由环带中心至边缘,TiO₂、 Al₂O₃、FeO经历由低到高再降低的变化,而MgO表 现为高一低一高的变化特征。斜方辉石成分较稳 定:(En77-En75),属古铜辉石。表6、表7为角闪 石及黑云母化学成分电子探针分析结果。

4 讨 论

钙碱性系列的玄武岩-安山岩-流纹岩套是构成 岛弧的主要岩石组合,由于它常与俯冲带相伴生,所 以称之为造山火山岩系或岛弧火山岩系。综上所 述,本区火山岩具有岛弧火山岩的岩石组合及岩相 学特征,在成分方面也具有明显的岛弧、造山带火山 岩特征^[4],并且还有以下特点:(1)在构造背景方 面. 从中生代中晚期开始,由于滇西地区板块构造的 拼合,已经成为大陆环境;(2)与一般的俯冲作用的 岛弧火山岩的分布有所不同,腾冲火山群不呈带状 分布. 各期火山岩沿着腾冲盆地两侧呈对称分布: (3) 目前在腾冲地区及附近尚未发现与弧火山作用 相对应的、同时代的蛇绿岩。因此,根据腾冲火山岩 既有岛弧火山岩特征但又与所处的构造环境不一致 这种特点,可以认为它属于一种滞后型弧火山作用。 它发生在俯冲、碰撞造山作用之后,弧火山发育与相 应的洋壳俯冲闭合有明显的时间差。腾冲火山作用 可能与该地区中生代未怒江洋盆的闭合有密切的关 系。现代怒江的位置曾为新特提斯大洋它存在的时 代为晚三叠世一晚侏罗世(据邓晋福等)。受印度板 块与欧亚板块拼合的影响晚白垩世末怒江洋盆闭 合,洋壳向西俯冲下插到上地幔。在源区条件不足 以发生部分熔融形成基性岩浆时,没用立即诱发形 成弧火山作用,在推迟了一段时间以后,直至新近纪 未形成腾冲火山群第一期芒棒组基性火山岩时,估 计时间间隔约为60Ma左右,由于该地区地幔的上降 作用,使深部源区发生部分熔融以至形成具有洋壳 残余成分特征的弧火山喷发作用。

表 2 橄榄石成分及晶体化学组成(wg/%)

					•						× 2 / ·	<i></i>	
样品	时 代	SiO_2	TiO_2	Al_2O_3	FeO	MnO	MgO	CaO	Na_2O	K ₂ O	P_2O_5	$C r_2 O_3$	端元组成
KC842	N_2	40.92	0.01	0.11	16.01	0.09	42.08	0.11	0.14	0.00	0.21	0.23	Fo82Fa18
KC848	N_2	40.75	0.00	0.00	15.62	0.14	42.20	0.18	0.00	0.02	0.00	0.19	Fo83Fa17
KC852	N_2	41.11	0.11	0.00	16.68	0.32	41.10	0.24	0.32	0.00	0.00	0.17	Fo81Fa19
KC832	Q_3^1	41.14	0.03	0.06	17.00	0.32	41.47	0.14	0.34	0.02	0.02	0.00	Fo81Fa19
KC803	Q_4	36.35	0.03	0.00	36.32	0.71	25.66	0.16	0.00	0.00	0.05	0.00	Fo56Fa44
K C 809	Q_3^2	40.35	0.15	0.00	18.91	0.32	40.08	0.27	0.15	0.03	0.05	0.09	Fo79Fa21

Table 2 Chemical compositions and crystallochemical compositions of olivine ($w_{B'}$ %)

表 3 斜长石成分及晶体化学组成(wg/%)

Table 3 Chemical compositions and crystallochemical compositions of plagioclase ($w_{B'}$)

样	品	时 代	产 状	SiO_2	TiO ₂	A l ₂ O 3	FeO	MnO	MgO	CaO	N a2O	K20	P2O5	Cr ₂ O ₃	端元组成
K	C848	N_2	斑晶	52.94	0.18	30.04	0.50	0.00	0.00	11.53	3.41	0.33	0.03	0.00	Ab35An65
K	C852	N_2	斑晶	53.49	0.13	30.87	0.42	0.04	0.13	11.37	3.65	0.27	0.00	0.00	Ab37An63
K	C842	N_2	斑晶	52.4	0.02	32.13	0.49	0.00	0.00	12.74	2.90	0.21	0.08	0.08	Ab29An71
K	C840	Q_1	斑晶	56.42	0.00	28.88	0.57	0.05	0.02	9.27	4.60	0.24	0.00	0.00	Ab47An53
K	C833	Q_1	斑晶	59.74	0.07	26.09	0.15	0.01	0.00	6.52	5.96	0.60	0.00	0.00	Ab62An38
K	C837	Q_1	环带 _中	54.07	0.06	30.44	0.52	0.00	0.00	10.99	3.98	0.30	0.00	0.08	Ab40An60
K	C837	Q_1	环带1	51.38	0.12	32.16	0.75	0.00	0.00	12.66	2.76	0.21	0.06	0.00	Ab28An72
K	C837	Q_1	环带2	54.56	0.00	30.43	0.53	0.00	0.00	10.87	3.92	0.20	0.00	0.02	Ab40An60
K	C837	Q_1	环带3	55.34	0.00	28.99	0.43	0.00	0.00	9.75	4.11	0.31	0.00	0.18	Ab43An57
K	C837	Q_1	环带 $_4$	52.36	0.07	32.50	0.32	0.04	0.00	12.55	2.76	0.26	0.00	0.00	Ab29An71
K	C837	Q_1	环带₅	55.35	0.00	29.84	0.25	0.01	0.00	10.19	4.20	0.32	0.18	0.02	Ab43An57
K	C837	Q_1	环带6	60.00	0.00	26.26	0.14	0.15	0.00	6.89	5.75	0.72	0.03	0.01	Ab60An40
K	C821	Q_1	斑晶中	51.20	0.00	31.98	0.67	0.05	0.00	12.83	2.74	0.25	0.00	0.05	Ab28An72
K	C821	Q_1	斑晶 _边	55.13	0.03	30.34	0.51	0.02	0.00	10.97	3.96	0.28	0.10	0.00	Ab40An60
K	C832	Q_3^1	斑晶	53.32	0.00	30.26	0.59	0.00	0.001	1.56	3.49	0.26	0.00	0.11	Ab35An65
K	C805	Q_{3}^{2}	斑晶	54.45	0.16	30.15	0.55	0.00	0.001	1.22	3.53	0.36	0.00	0.05	Ab38An62
K	C809	Q_3^2	斑晶	62.10	0.00	24.40	0.12	0.00	0.00	5.57	6.09	0.89	0.16	0.02	Ab66An34
K	C823	Q_3^2	斑晶	53.89	0.10	30.39	0.17	0.06	0.00	10.54	3.74	0.48	0.00	0.00	Ab39An61
K	C812	Q_4	斑晶	54.97	0.00	29.63	0.53	0.00	0.00	10.58	3.82	0.52	0.00	0.05	Ab40An60
K	C829	Q_4	斑晶	60.47	0.17	25.94	0.16	0.05	0.00	6.28	5.75	0.81	0.08	0.00	Ab62An38
K	C803	Q_4	斑晶	54.96	0.13	29.99	0.38	0.07	0.00	10.69	3.67	0.42	0.00	0.07	Ab38An62
K	C842	N_2	微晶	55.74	0.21	27.68	0.70	0.00	0.00	9.57	5.64	0.60	0.01	0.16	Ab52An48
K	C841	Q_1	斑晶 _中	55.74	0.09	27.21	0.12	0.00	0.00	9.91	5.37	0.60	0.00	0.03	Ab50An50
K	C841	Q_1	斑晶 _边	58.71	0.00	26.20	0.40	0.00	0.00	8.11	6.26	0.98	0.11	0.06	Ab58An42

表 4 斜方辉石成分及晶体化学组成(w_B/%)

Table 4 Chemical compositions and crystallochemical compositions of enstenite ($w_{B}/ \frac{0}{0}$)

样品	时代	产状	SiO_2	TiO ₂	Al_2O_3	FeO	MnO	MgO	CaO	Na ₂ O	K20	P ₂ O ₅	Cr_2O_3	En	Fs
KC854	Q_1	斑晶	53.97	0.26	2.29	14.72	0.26	25.73	1.33	0.00	0.02	0.12	0.29	76	24
KC855	Q_1	斑晶	54.91	0.13	1.15	14.59	0.32	26.32	1.28	0.21	0.00	0.16	0.02	76	24
KC812	Q 4	斑晶	53.41	0.41	3.11	14.95	0.10	25.80	1.41	0.03	0.00	0.07	0.20	75	25

注:由中国地质大学(北京)探针室分析

表 5 单斜辉石成分及晶体化学组成(wB/ %)

Table 5 Chemical compositions and crystallochemical compositions of clinopyroxene ($w_{B'}$ $\frac{0}{0}$)

样品	时代	产状	SiO_2	${\rm TiO}_2$	$\mathrm{Al}_2\mathrm{O}_3$	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	Cr_2O_3	En	Fs	Wo
KC848	N_2	斑晶	51.49	1.51	3.36	8.01	0.19	13.26	19.56	0.45	0.12	0.19	0.46	41.6	14.2	44.2
KC812	Q_4	斑晶	50.46	1.71	6.44	10.30	0.17	12.52	17.61	0.60	0.00	0.21	0.16	40.5	18.7	40.8
KC829	Q_4	斑晶	53.26	0.22	0.35	16.33	0.57	10.57	17.29	0.30	0.05	0.00	0.17	32.8	28.5	38.7
KC852	N_2	斑晶	49.93	2.22	4.30	10.57	0.24	11.71	18.65	0.50	0.00	0.25	0.10	37.7	19.2	43.1
KC842	N_2	斑晶	50.09	2.36	5.18	9.03	0.28	12.16	18.94	0.53	0.07	0.19	0.31	39.4	16.4	44.2
KC832	Q_{3}^{1}	斑晶	51.34	2.12	2.62	11.53	0.14	12.01	17.93	0.61	0.00	0.22	0.00	38.3	20.7	40.0
KC809	Q_3^2	斑晶	52.32	0.94	2.27	10.52	0.37	14.65	15.45	0.42	0.12	0.23	0.48	45.8	18.6	35.6
KC855	Q_1	斑晶	52.19	0.42	2.67	7.87	0.21	14.97	20.05	0.38	0.00	0.22	0.43	44.3	13.1	42.6
KC823	Q_{3}^{2}	斑晶 *	51.85	0.58	3.72	6.24	0.33	15.46	20.00	0.44	0.06	0.00	0.19	46.4	10.5	43.1
KC823	Q_3^2	环带 0	51.13	0.97	4.15	7.69	0.31	14.25	21.46	0.24	0.01	0.00	0.15	41.9	12.7	45.4
KC823	Q_{3}^{2}	环带 1	50.74	0.96	4.50	7.79	0.07	14.16	21.05	0.38	0.00	0.00	0.12	42.1	13.0	44.9
KC823	Q_{3}^{2}	环带 2	51.00	1.01	4.70	7.42	0.20	14.05	21.37	0.24	0.02	0.09	0.06	41.9	12.4	45.7
KC823	Q_{3}^{2}	环带 3	49.75	1.16	4.99	8.85	0.25	13.68	19.79	0.53	0.07	0.12	0.11	41.6	15.1	43.3
KC823	Q_{3}^{2}	环带 4	47.92	1.67	6.57	10.44	0.24	12.92	19.45	0.54	0.00	0.00	0.10	39.4	17.9	42.7
KC823	Q_3^2	环带 5	50.52	1.02	4.30	7.21	0.18	14.72	20.60	0.19	0.05	0.00	0.33	43.7	12.0	44.3
KC823	Q_3^2	环带6	50.64	1.12	4.41	8.74	0.28	14.02	19.76	0.25	0.01	0.00	0.00	42.3	14.8	42.9

注:由中国地质大学(北京)探针室分析;*为具扭折带辉石

表6 黑云母成分组成(w_B/%)

Table 6 Chemical compositions of biotite ($w_{B'}$ %)

样品	时代	产状	SiO_2	TiO ₂	$A l_2 O_3$	FeO	MnO	MgO	CaO	Na_2O	K ₂ O	P_2O_5	$C r_2 O_3$
KC821	Q_1	斑晶	36.40	3.89	14.90	19.09	0.30	10.71	0.05	0.80	8.35	0.00	0.00
KC833	Q_1	斑晶	39.24	4.63	14.98	13.12	0.08	15.21	0.07	0.72	8.89	0.04	0.11
KC840	Q_1	斑晶	38.22	4.37	14.37	18.65	0.14	11.60	0.04	0.84	8.80	0.16	0.00

注:由中国地质大学(北京)探针室分析

表 7 角闪石成分组成(wg/%)

Table 7Chemical compositions of amphibole ($w_{\mathbf{B}'} \ \frac{9}{2}$)

样品	时代	产状	SiO_2	TiO ₂	$A l_2 O_3$	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	$C r_2 O_3$
KC821	Q 1	斑晶	45.70	2.49	10.21	14.43	0.18	12.50	9.84	1.75	0.82	0.13	0.00
KC837	Q_1	斑晶	43.27	2.90	11.21	16.14	0.25	10.60	9.74	1.73	1.15	0.01	0.17
K833	Q_1	斑晶	45.28	2.13	11.43	12.27	0.16	13.47	9.90	1.85	0.64	0.00	0.01
KC840	Q_1	斑晶	44.97	2.40	10.61	14.41	0.36	12.09	9.48	1.72	0.92	0.21	0.00

注:由中国地质大学(北京)探针室分析

参考文献:

- [1] 王鸿祯. 从活动观点论中国大地构造分区[J]. 地球科学, 1981, 14(1): 42-66.
- [2] 罗万林, 胡正言. 滇西地区 S 型和 I 型花岗岩类的岩石化学特 征[J]. 云南地质, 1983, 2(2); 248-259.
- [3] 穆治国, 佟伟, Curtis G H. 腾冲火山 活动的时代和岩浆来源问 题[J]. 地球物理学报, 1987, 30(3): 261-270.
- [4] 赵崇贺,陈廷方. 腾冲新生代火山作用构造 岩浆类型的探讨
 一一种滞后型的弧火山[J].现代地质,1992,6(2):119-129.
- [5] 陈廷方. 腾冲火山岩岩 浆源区 性质探 讨[J]. 建材地质, 1997,
 (6): 7-9.

The petrology of the volcanic rocks in Tengchong, Yunnan

CHEN Ting-fang

(Southwest University of Science and Technology, Mianyang 621002, Sichuan, China)

Abstract: The volcanic terrains in Tengchong, Yunnan are famous Cenozoic volcanic terrains in China. The examination of the petrography shows that the volcanic terrains in Tengchong are typical of the basalt-andesitedacite arc volcanic rock associations of the calc-alkaline series. These volcanic rocks were erupted during the late Pliocene to late Pleistocene when the Tengchong region was developed into a continental intraplate environment. The Tengchong arc volcanic rocks were formed at least at 60 M a in response to the termination of the subduction in this area.

Key words: Tengchong; volcanic rock; calc-alkaline series; petrography; Yunnan